首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfhydryl cross-linking poly(ethylene glycol) (PEG)-peptides and glycopeptides were prepared and tested for spontaneous polymerization by disulfide bond formation when bound to plasmid DNA, resulting in stable PEG-peptide and glycopeptide DNA condensates. A 20 amino acid synthetic peptide possessing a single sulfhydryl group on the N-terminal cysteine, with two or five internal acetamidomethyl (Acm)-protected cysteine residues, was reacted with either PEG vinyl sulfone or iodoacetamide tyrosinamide triantennary N-glycan. Following RP-HPLC purification, Acm groups were removed by silver tetrafluoroborate to generate sulfhydryl cross-linking PEG-peptides and glycopeptide that were characterized by either (1)H NMR or LC-MS. Sulfhydryl cross-linking PEG-peptides and glycopeptides were found to bind to plasmid DNA and undergo disulfide cross-linking resulting in stable DNA condensates with potential utility for in vivo gene delivery.  相似文献   

2.
We present here the biological performance in supporting tissue regeneration of hybrid hydrogels consisting of genetically engineered protein polymers that carry specific features of the natural extracellular matrix, cross-linked with reactive poly(ethylene glycol) (PEG). Specifically, the protein polymers contain the cell adhesion motif RGD, which mediates integrin receptor binding, and degradation sites for plasmin and matrix-metalloproteinases, both being proteases implicated in natural matrix remodeling. Biochemical assays as well as in vitro cell culture experiments confirmed the ability of these protein-PEG hydrogels to promote specific cellular adhesion and to exhibit degradability by the target enzymes. Cell culture experiments demonstrated that proteolytic sensitivity and suitable mechanical properties were critical for three-dimensional cell migration inside these synthetic matrixes. In vivo, protein-PEG matrixes were tested as a carrier of bone morphogenetic protein (rhBMP-2) to heal critical-sized defects in a rat calvarial defect model. The results underscore the importance of fine-tuning material properties of provisional therapeutic matrixes to induce cellular responses conducive to tissue repair. In particular, a lack of rhBMP or insufficient degradability of the protein-PEG matrix prevented healing of bone defects or remodeling and replacement of the artificial matrix. This work confirms the feasibility of attaining desired biological responses in vivo by engineering material properties through the design of single components at the molecular level. The combination of polymer science and recombinant DNA technology emerges as a powerful tool for the development of novel biomaterials.  相似文献   

3.
4.
We present a study on the effects of cross-linking on the adhesive properties of bio-inspired 3,4-dihydroxyphenylalanine (DOPA). DOPA has a unique catechol moiety found in adhesive proteins in marine organisms, such as mussels and polychaete, which results in strong adhesion in aquatic conditions. Incorporation of this functional group in synthetic polymers provides the basis for pressure-sensitive adhesives for use in a broad range of environments. A series of cross-linked DOPA-containing polymers were prepared by adding divinyl cross-linking agent ethylene glycol dimethacrylate (EGDMA) to monomer mixtures of dopamine methacrylamide (DMA) and 2-methoxyethyl acrylate (MEA). Samples were prepared using a solvent-free microwave-assisted polymerization reaction and compared to a similar series of cross-linked MEA materials. Cross-linking with EGDMA tunes the viscoelastic properties of the adhesive material and has the advantage of not reacting with the catechol group that is responsible for the excellent adhesive performance of this material. Adhesion strength was measured by uniaxial indentation tests, which indicated that 0.001 mol % of EGDMA-cross-linked copolymer showed the highest work of adhesion in dry conditions, but non-cross-linked DMA was the highest in wet conditions. The results suggest that there is an optimal cross-linking degree that displays the highest adhesion by balancing viscous and elastic behaviors of the polymer but this appears to depend on the conditions. This concentration of cross-linker is well below the theoretical percolation threshold, and we propose that subtle changes in polymer viscoelastic properties can result in significant improvements in adhesion of DOPA-based materials. The properties of lightly cross-linked poly(DMA-co-MEA) were investigated by measurement of the frequency dependence of the storage modulus (G') and loss modulus (G'). The frequency-dependence of G' and magnitude of G' showed gradual decreases with the fraction of EGDMA. Loosely cross-linked DMA copolymers, containing 0% and 0.001 mol % of EGDMA-cross-linked copolymers, displayed rheological behavior appropriate for pressure-sensitive adhesives characterized by a higher G' at high frequencies and lower G' at low frequencies. Our results indicate that dimethacrylate cross-linking of DMA copolymers can be used to enhance the adhesive properties of this unique material.  相似文献   

5.
Guo X  Deng F  Li L  Prud'homme RK 《Biomacromolecules》2008,9(6):1637-1642
We report the synthesis of biocompatible polymeric hydrogels based on poly(vinyl acetate) (PVAc) and poly(methyl vinyl ether-co-maleic anhydride) (PMVE-MA). These polymeric hydrogels show strong and tunable adhesion to both hydrophobic and hydrophilic surfaces and should be ideal candidates as bioadhesives for applications such as denture adhesion. PVAc was partially hydrolyzed and then mixed with PMVE-MA. Crosslinking between these two polymers through reactions between hydroxyl groups in partially hydrolyzed PVAc and maleic anhydride groups in PMVE-MA increased their compatibility and prevented phase separation so transparent hydrogels were formed. The adhesion of these polymeric hydrogels to hydrophobic and hydrophilic surfaces was tailored by regulating the degree of hydrolysis of PVAc and the molecular weights of the polymers. In the vicinity of critical gel point, where the elastic modulus G' and the viscous modulus G' scale as G' approximately G' approximately omega (0.3), polymeric hydrogels show optimal adhesion. Transparent gels are formed in mixed solvents of water and ethanol. The content of ethanol in the mixed solvent can be partially replaced by propylene glycol, glycerol, or poly(ethenyl glycol)-400, and the composition of appropriate mixed solvents can be determined by the calculation of solubility parameters.  相似文献   

6.
Cysteine proteinases are key virulence factors of the protozoan parasite Entamoeba histolytica. We have shown that cysteine proteinases play a central role in tissue invasion and disruption of host defenses by digesting components of the extracellular matrix, immunoglobulins, complement, and cytokines. Analysis of the E. histolytica genome project has revealed more than 40 genes encoding cysteine proteinases. We have focused on E. histolytica cysteine proteinase 1 (EhCP1) because it is one of two cysteine proteinases unique to invasive E. histolytica and is highly expressed and released. Recombinant EhCP1 was expressed in Escherichia coli and refolded to an active enzyme with a pH optimum of 6.0. We used positional-scanning synthetic tetrapeptide combinatorial libraries to map the specificity of the P1 to P4 subsites of the active site cleft. Arginine was strongly preferred at P2, an unusual specificity among clan CA proteinases. A new vinyl sulfone inhibitor, WRR483, was synthesized based on this specificity to target EhCP1. Recombinant EhCP1 cleaved key components of the host immune system, C3, immunoglobulin G, and pro-interleukin-18, in a time- and dose-dependent manner. EhCP1 localized to large cytoplasmic vesicles, distinct from the sites of other proteinases. To gain insight into the role of secreted cysteine proteinases in amebic invasion, we tested the effect of the vinyl sulfone cysteine proteinase inhibitors K11777 and WRR483 on invasion of human colonic xenografts. The resultant dramatic inhibition of invasion by both inhibitors in this human colonic model of amebiasis strongly suggests a significant role of secreted amebic proteinases, such as EhCP1, in the pathogenesis of amebiasis.  相似文献   

7.
The synthesis of novel hybrid hydrogels by stepwise copolymerization of multiarm vinyl sulfone-terminated poly(ethylene glycol) macromers and alpha-omega cysteine oligopeptides via Michael-type additions is described. Cross-linking kinetics, studied by in situ rheometry, can be controlled by pH and the presence of charged amino acid residues in close proximity to the Cys, which modulates the pK(a) of the thiol group. These end-linked networks were characterized by their equilibrium swelling in water, by their viscoelastic properties in the swollen state, and by their soluble fraction. It was demonstrated that structure and properties are very sensitive to the preparation state including stoichiometry and precursor concentration and less sensitive to the pH during cross-linking. For each network the concentration of elastically active chains (nu) was calculated from experimentally determined sol fractions using Miller-Macosko theory and compared to values obtained from swelling and rheometry studies and by calculation from Flory's classical network models. Hydrogels were also prepared with varying macromer structures, and their properties were shown to respond to both macromer functionality and molecular weight.  相似文献   

8.
A new series of peptidyl allyl sulfone inhibitors was discovered while trying to synthesize epoxy sulfone inhibitors from vinyl sulfones using basic oxidizing conditions. The various dipeptidyl allyl sulfones were evaluated with calpain I, papain, cathepsins B and L, cruzain and rhodesain and found to be potent inhibitors. In comparison to the previously developed class of vinyl sulfone inhibitors, the novel dipeptidyl allyl sulfones were more potent inhibitors than the corresponding dipeptidyl vinyl sulfones. It was observed that the stereochemistry of the vinyl sulfone precursor played a role in the potency of the dipeptidyl allyl sulfone inhibitor.  相似文献   

9.
Li L  Teller S  Clifton RJ  Jia X  Kiick KL 《Biomacromolecules》2011,12(6):2302-2310
Resilin, the highly elastomeric protein found in specialized compartments of most arthropods, possesses superior resilience and excellent high-frequency responsiveness. Enabled by biosynthetic strategies, we have designed and produced a modular, recombinant resilin-like polypeptide bearing both mechanically active and biologically active domains to create novel biomaterial microenvironments for engineering mechanically active tissues such as blood vessels, cardiovascular tissues, and vocal folds. Preliminary studies revealed that these recombinant materials exhibit promising mechanical properties and support the adhesion of NIH 3T3 fibroblasts. In this Article, we detail the characterization of the dynamic mechanical properties of these materials, as assessed via dynamic oscillatory shear rheology at various protein concentrations and cross-linking ratios. Simply by varying the polypeptide concentration and cross-linker ratios, the storage modulus G' can be easily tuned within the range of 500 Pa to 10 kPa. Strain-stress cycles and resilience measurements were probed via standard tensile testing methods and indicated the excellent resilience (>90%) of these materials, even when the mechanically active domains are intercepted by nonmechanically active biological cassettes. Further evaluation, at high frequencies, of the mechanical properties of these materials were assessed by a custom-designed torsional wave apparatus (TWA) at frequencies close to human phonation, indicating elastic modulus values from 200 to 2500 Pa, which is within the range of experimental data collected on excised porcine and human vocal fold tissues. The results validate the outstanding mechanical properties of the engineered materials, which are highly comparable to the mechanical properties of targeted vocal fold tissues. The ease of production of these biologically active materials, coupled to their outstanding mechanical properties over a range of compositions, suggests their potential in tissue regeneration applications.  相似文献   

10.
For tissue engineering applications, it is necessary to balance the need for specific biological interactions with the need to prevent unfavorable nonspecific interactions. For this purpose, novel poly[(organo)phosphazenes] were synthesized having galactose and/or poly(ethylene glycol) (PEG) side chains. The synthesis was described previously. Here, we investigate the human serum albumin (HSA) adhesion to these polymers using surface plasmon resonance (SPR). We could conclude that the incorporation of PEG reduced the protein adsorption. The influence of the galactose moieties was investigated using SPR and a sugar-lectin binding assay. The interaction between a lectin (Peanut agglutinin, PNA or Ricinus communis-agglutinin, RCA) and the polyphosphazene derivatives was evaluated. Type IIA polymers, having aminohexyl-galactose, phenylalanine ethyl ester, and glycine ethyl ester side chains, were capable of binding with the lectin. As the amount of galactose was increased, the extent of the galactose specific lectin binding was also increased (higher RU or absorbance). PEG containing polymers failed to bind specifically with the lectin. The presence of PEG, either as a spacer or as additional chains, interfered with the establishment of contact between the galactose and the binding site on the lectin. The adsorption of PNA or RCA to these types of polymers was attributed to nonspecific interactions. SPR was also used to determine rate and equilibrium constants. In addition the effect of the addition of water soluble polyphosphazenes on the enzymatic cleavage of o-nitrophenyl-beta-D-galactopyranoside was investigated. The galactose moieties were not available as inhibitors because of the presence of PEG.  相似文献   

11.
Phenyl vinyl sulfone is a synthetic inhibitor of cysteine protease and has antihelminthic and antiprotozoal properties. Phenyl vinyl sulfone was assayed in vitro for antifasciola activity against adult Fasciola gigantica worms using a well-established culture medium. Worms were treated with phenyl vinyl sulfone for incubation periods ranging from 0 to 12h and its activity was assessed in terms of viability, motility and death of worms. Phenyl vinyl sulfone exhibited a minimum effective concentration of 50 ppm after 12h. Three hundred parts per million concentrations were most potent causing immediate death of adult flukes in vitro. Histopathological studies showed that there was tegumental flattening, rupture of vesicles, and spine loss. Marked reduction in size and number of ova and sperms in the convoluted tubules of the reproductive organs was observed in comparison to the untreated control group. In conclusion, phenyl vinyl sulfone shows potent activity against F. gigantica in vitro, and the authors recommend carrying out more studies to detect its efficacy in vivo.  相似文献   

12.
A novel hydrogel was obtained by reticulation of chitosan with dextrin enzymatically linked to vinyl acrylate (dextrin-VA), without cross-linking agents. The hydrogel had a solid-like behaviour with G′ (storage modulus) >> G″ (loss modulus). Glucose diffusion coefficients of 3.9 × 10−6 ± 1.3 × 10−6 cm2/s and 2.9 × 10−6 ± 0.5 × 10−6 cm2/s were obtained for different substitution degrees of the dextrin-VA (20% and 70% respectively). SEM observation revealed a porous structure, with pores ranging from 50 μm to 150 μm.  相似文献   

13.
An overview of different applications of polymer interactions with ion-exchange and dye-affinity chromatographic matrices is presented here. The strength of interaction between the ligand and the polymer plays a crucial role in deciding the mode of chromatographic application. Charged, non-ionic and thermosensitive polymers such as poly(ethylene imine), poly(N-vinyl pyrrolidone) and poly(vinyl caprolactam) respectively, show different degrees of interaction with the dye molecules in dye ligand chromatography. Polymers, with their ability of multipoint and hence strong attachment to the chromatographic matrices, were used as efficient displacers in displacement chromatography. The polymer displacement resulted in better recoveries and sharper elution profiles than traditional salt elutions. The globule–coil transition of the thermosensitive reversible soluble–insoluble polymer, poly(vinyl caprolactam), can be exploited in dye-affinity columns for the temperature induced displacement of the bound protein. In another situation, prior to the column chromatography of crude protein extract, polymers formed complexes with the dye matrix and “shielded” the column. The polymer shielding decreased the nonspecific interactions without affecting the specific interactions of the target protein to the dye matrix.  相似文献   

14.
He XH  Shaw PC  Xu LH  Tam SC 《Life sciences》1999,64(14):1163-1175
Trichosanthin (TCS), a type I ribosome-inactivating protein (RIP), was modified with polyethylene glycol (PEG) in order to reduce its antigenicity and prolong its half-life. Computer modeling identified three potential antigenic sites namely Q219, K173 and S7. By site-directed mutagenesis, these sites were changed into cysteine through which PEG can be covalently attached. The resulting TCS had a PEG coupled directly above one of its potential antigenic determinants, hence masking the antigenic region and prevent binding of antibodies specific to this site. In general, mutation did not bring about significant changes in ribosome-inactivating activity, cytotoxicity, and abortifacient activity of TCS. However, the in vitro activities of PEG modified (PEGylated) TCS muteins were 3-20 folds lower and the in vivo activity 50% less than that of nTCS. Pharmacokinetics study indicated that all three PEGylated TCS muteins showed 6-fold increase in mean residence time as compared to unmodified muteins. The binding affinity of an IgE monoclonal antibody (TE1) to TCS was greatly reduced after PEG modification (PEGylation) at position Q219, suggesting that TE1 recognized an epitope very near to residue Q219. PEGylated TCS muteins induced similar IgG response but 4-16 fold lower IgE response in mice compared with nTCS.  相似文献   

15.
The biological response of interferon gamma is mediated by binding to a specific cell-surface receptor. We investigated the stoichiometry of this binding using soluble receptors produced in prokaryotic and eukaryotic expression systems comprising the extracellular ligand-binding domain of the native protein. The ligand-receptor complexes were analyzed by cross-linking, chromatography, analytical ultracentrifugation and laser-light scattering. Cross-linking and chromatography showed that the stoichiometry of the interaction between ligand and receptor depends on the molar ratios of the two components mixed. All approaches confirmed that mixtures of ligand-receptor complexes are formed with one interferon-gamma dimer bound by one or two receptors. The soluble receptor produced in Escherichia coli mainly showed a ligand/receptor stoichiometry of 1:1, while the receptors produced in eukaryotic cells showed a stoichiometry of binding of 1:2. This apparent discrepancy is most likely due to the conformational heterogeneity of the Escherichia-coli-derived protein.  相似文献   

16.
The synthesis of novel dipeptidyl alpha-fluorovinyl sulfones using a Horner-Wadsworth-Emmons approach on N-Boc-l-phenylalaninal is described. Inhibitory assays against a Leishmania mexicana cysteine protease (CPB2.8DeltaCTE) revealed low biological activity. Relative rates of Michael additions of 2'-(phenethyl)thiol with vinyl sulfone and alpha-fluorovinyl sulfone were determined, and ab initio calculations on several Michael acceptor model structures were performed; both were in agreement with the biological testing results.  相似文献   

17.
For the first time the pro-form of a recombinant cysteine proteinase has been expressed at a high level in Escherichia coli. This inactive precursor can subsequently be processed to yield active enzyme. Sufficient protein can be produced using this system for X-ray crystallographic structure studies of engineered proteinases. A cDNA clone encoding propapain, a precursor of the papaya proteinase, papain, was expressed in E. coli using a T7 polymerase expression system. Insoluble recombinant protein was solubilized in 6 M guanidine hydrochloride and 10 mM dithiothreitol, at pH 8.6. A protein-glutathione mixed disulphide was formed by dilution into oxidized glutathione and 6 M GuHCl, also at pH 8.6. Final refolding and disulphide bond formation was induced by dilution into 3 mM cysteine at pH 8.6. Renatured propapain was processed to active papain at pH 4.0 in the presence of excess cysteine. Final processing could be inhibited by the specific cysteine proteinase inhibitors E64 and leupeptin, but not by pepstatin, PMSF or EDTA. This indicates that final processing was due to a cysteine proteinase and suggests that an autocatalytic event is required for papain maturation.  相似文献   

18.
集成干扰素突变体Ⅱ的分子构建、表达及提纯   总被引:2,自引:2,他引:0  
目的:通过定点突变,构建集成干扰素突变体Ⅱ(IFN-Con-m2),以期获得兼具高效作用和可定点聚乙二醇(PEG)修饰的新型药物分子。 方法:采用PCR体外定点突变技术,使集成干扰素突变体Ⅰ(IFN-Con-m1)基因的第86位密码子由TAC突变为TGC。将扩增片段克隆入pET-23b表达载体,重组质粒转化大肠杆菌BL21(DE3)。IPTG诱导后,表达的IFN-Con-m2经包含体变复性、疏水层析、DEAE层析和凝胶过滤层析等纯化后,用WISH-VSV系统进行生物活性测定。 结果:IFN-Con-m2以包涵体形式表达,表达量占菌体总蛋白的30%以上。纯化后,IFN-Con-m2的纯度大于95%,比活性大于5.0×108IU/mg。 结论:构建了IFN-Con-m2的表达载体,并成功地在大肠杆菌中表达,获得了高活性突变分子IFN-Con-m2,建立了IFN-Con-m2的纯化工艺。  相似文献   

19.
Unique combinations of hard and soft components found in biological tissues have inspired researchers to design and develop synthetic nanocomposite gels and hydrogels with elastomeric properties. These elastic materials can potentially be used as synthetic mimics for diverse tissue engineering applications. Here we present a set of elastomeric nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and hydroxyapatite nanoparticles (nHAp). The aqueous nanocomposite PEG-nHAp precursor solutions can be injected and then covalently cross-linked via photopolymerization. The resulting PEG-nHAp hydrogels have interconnected pore sizes ranging from 100 to 300 nm. They have higher extensibilities, fracture stresses, compressive strengths, and toughness when compared with conventional PEO hydrogels. The enhanced mechanical properties are a result of polymer nanoparticle interactions that interfere with the permanent cross-linking of PEG during photopolymerization. The effect of nHAp concentration and temperature on hydrogel swelling kinetics was evaluated under physiological conditions. An increase in nHAp concentration decreased the hydrogel saturated swelling degree. The combination of PEG and nHAp nanoparticles significantly improved the physical and chemical hydrogel properties as well as some biological characteristics such as osteoblast cell adhesion. Further development of these elastomeric materials can potentially lead to use as a matrix for drug delivery and tissue repair especially for orthopedic applications.  相似文献   

20.
The quinone-tanning hypothesis for insect cuticle sclerotization proposes that N-acylcatecholamines are oxidized by a phenoloxidase to quinones and quinone methides, which serve as electrophilic cross-linking agents to form covalent cross-links between cuticular proteins. We investigated model reactions for protein cross-linking that occurs during insect cuticle sclerotization using recombinant pupal cuticular proteins from the tobacco hornworm, Manduca sexta, fungal or recombinant hornworm laccase-type phenoloxidase, and the cross-linking agent precursor N-acylcatecholamines, N-beta-alanydopamine (NBAD) or N-acetyldopamine (NADA). Recombinant M. sexta pupal cuticular proteins MsCP36, MsCP20, and MsCP27 were expressed and purified to near homogeneity. Polyclonal antisera to these recombinant proteins recognized the native proteins in crude pharate brown-colored pupal cuticle homogenates. Furthermore, antisera to MsCP36, which contains a type-1 Rebers and Riddiford (RR-1) consensus sequence, also recognized an immunoreactive protein in homogenates of larval head capsule exuviae, indicating the presence of an RR-1 cuticular protein in a very hard, sclerotized and nonpigmented cuticle. All three of the proteins formed small and large oligomers stable to boiling SDS treatment under reducing conditions after reaction with laccase and the N-acylcatecholamines. The optimal reaction conditions for MsCP36 polymerization were 0.3mM MsCP36, 7.4mM NBAD and 1.0U/mul fungal laccase. Approximately 5-10% of the monomer reacted to yield insoluble oligomers and polymers during the reaction, and the monomer also became increasingly insoluble in SDS solution after reaction with the oxidized NBAD. When NADA was used instead of NBAD, less oligomer formation occurred, and most of the protein remained soluble. Radiolabeled NADA became covalently bound to the MsCP36 monomer and oligomers during cross-linking. Recombinant Manduca laccase (MsLac2) also catalyzed the polymerization of MsCP36. These results support the hypothesis that during sclerotization, insect cuticular proteins are oxidatively conjugated with catechols, a posttranslational process termed catecholation, and then become cross-linked, forming oligomers and subsequently polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号