首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We showed previously that upon insulin stimulation of an insulin receptor overexpressing cell line, most of the p21ras was rapidly converted into the GTP bound state (Burgering, B. M. T., Medema, R. H., Maassen, J. A., Van de Wetering, M. L., Van der Eb, A. J., McCormick, F., and Bos, J. L. (1991) EMBO J. 10, 1103-1109). To determine whether this process also occurs in cells expressing physiologically relevant numbers of insulin receptors, insulin stimulated Ras.GTP formation was quantitated in Chinese hamster ovary (CHO)-derived cell lines expressing varying numbers of insulin receptors. In the parental CHO9 cells, expressing only 5.10(3) insulin receptors, insulin stimulation for 3 min increased Ras.GTP levels with 10%. Upon increasing the number of insulin receptors in these cells, Ras.GTP levels increased almost proportionally until a plateau value of 60% is reached at high receptor numbers. These data show that receptor overexpression is not a prerequisite for insulin-stimulated Ras.GTP formation. The yield of Ras.GTP generated is 0.2-1.0 mol/mol autophosphorylated insulin receptor in CHO9- and NIH3T3-derived cell lines, respectively. These values argue against signal-amplifying processes between the insulin receptor and p21ras. To determine whether receptor autophosphorylation is required for Ras.GTP formation, NIH3T3 cells overexpressing insulin receptors were stimulated with a monoclonal antibody which activates the receptor and subsequent glucose transport without inducing detectable autophosphorylation. Also, CHO cells expressing the mutant Ser1200 receptor, which has markedly impaired tyrosyl autophosphorylation but is capable of mediating insulin-stimulated metabolic effects in CHO cells, were used. In both cases, no Ras.GTP formation was observed. Furthermore, Rat-1-derived cell lines expressing mutant p21ras, which is permanently in the active GTP-bound form, still responded to insulin by increasing the glucose uptake. These results support our hypothesis that Ras.GTP formation is activated by the tyrosyl-phosphorylated insulin receptor and suggest that an active Ras.GTP complex does not mediate metabolic signaling.  相似文献   

2.
Insulin internalization and degradation, insulin receptor internalization and recycling, as well as long term receptor down-regulation were comparatively studied in Chinese hamster ovary (CHO) cell lines, either parental or expressing the wild-type human insulin receptor (CHO.R) or a mutated receptor in which the tyrosine residues in positions 1162 and 1163 were replaced by phenylalanines (CHO.Y2). The two transfected cell lines presented very similar binding characteristics, and their pulse labeling with [35S]methionine revealed that the receptors were processed normally. As expected, the mutation of these twin tyrosines resulted in a defective insulin stimulation of both receptor kinase activity and glycogen synthesis. We now present evidence that compared to CHO.R cells, which efficiently internalized and degraded insulin, CHO.Y2 cells exhibited a marked defect in hormone internalization, leading to impaired insulin degradation. Moreover, the mutated receptors were found to be less effective than the wild-type receptors in transducing the hormone signal for receptor internalization, whereas the process of receptor recycling after internalization seemed not to be altered. In parental CHO cells, insulin induced long term receptor down-regulation, but was totally ineffective in both transfected cell lines. These results reveal that the tyrosines 1162 and 1163 in the kinase regulatory domain of the receptor beta-subunit play a pivotal role in insulin and receptor internalization.  相似文献   

3.
Internalization, degradation, and insulin-induced down-regulation of insulin receptors were studied comparatively in transformed Chinese hamster ovary (CHO) cell lines, CHO.T and CHO.IR.ros, respectively expressing either the wild-type human insulin receptor (hIR) or a mutated hybrid receptor in which the transmembrane and cytoplasmic domains of hIR were replaced by corresponding domains of the transforming protein p68gag-ros (v-ros) of avian sarcoma virus UR2. At 37 degrees C, degradation of insulin receptors photoaffinity labeled on the cell surface (440 kDa) was most rapid for the hybrid hIR.ros (t1/2 1.0 +/- 0.1 h), intermediate for the wild-type hIR (t1/2 2.7 +/- 0.5 h), and slowest for the endogenous CHO insulin receptors (t1/2 3.7 +/- 0.7 h). Initial intracellular accumulation of the hIR.ros hybrid was also most rapid, reaching maximal amounts in 20 min following which the receptors disappeared rapidly from the intracellular compartment. In contrast, intracellular accumulation of the receptors in the CHO.T and CHO cells was slower, reaching maximal amounts in 60 min, and rapid disappearance of the receptors from the intracellular compartment did not occur. Chloroquine, a lysosomotropic agent, inhibited degradation of both the wild-type hIR and the chimeric hIR.ros and increased their intracellular accumulation. However, the chloroquine effect was much more marked for the hIR.ros receptors whose intracellular accumulation was increased by greater than 300% (in comparison with approximately 60% increase for the wild-type hIR), demonstrating marked intracellular degradation of the hybrid hIR.ros at chloroquine-sensitive sites. Insulin-induced down-regulation of the cell surface hIR.ros (52% loss in 3 h) was also more marked than the wild-type hIR (approximately 30% loss in 3 h). Thus, in the hybrid hIR.ros receptor, which was shown previously to exhibit insulin-stimulated autophosphorylation and kinase activity but not insulin-stimulated metabolic function, the capacity for internalization and down-regulation is not only preserved but is also markedly accelerated. These findings suggest that 1) the postreceptor coupling mechanisms mediating insulin-induced receptor internalization, degradation, and down-regulation are different from those mediating metabolic functions; and 2) v-ros may contain the structural information directing accelerated receptor catabolism.  相似文献   

4.
The effects of species-specific monoclonal antibodies to the human insulin receptor on ribosomal protein S6 phosphorylation were studied in rodent cell lines transfected with human insulin receptors. First, Swiss mouse 3T3 fibroblasts expressing normal human insulin receptors (3T3/HIR cells) were studied. Three monoclonal antibodies, MA-5, MA-20, and MA-51, activated S6 kinase in these cells but had no effects in untransfected 3T3 cells. Both insulin and MA-5, the most potent antibody, activated S6 kinase in a similar time- and dose-dependent manner. To measure S6 phosphorylation in vivo, 3T3/HIR cells were preincubated with [32P]Pi and treated with insulin and MA-5. Both agents increased S6 phosphorylation, and their tryptic phosphopeptide maps were similar. MA-5 and the other monoclonal antibodies, unlike insulin, failed to stimulate insulin receptor tyrosine kinase activity either in vitro or in vivo. Moreover, unlike insulin, they failed to increase the tyrosine phosphorylation of the endogenous cytoplasmic protein, pp 185. Next, HTC rat hepatoma cells, expressing a human insulin receptor mutant that had three key tyrosine autophosphorylation sites in the beta-subunit changed to phenylalanines (HTC-IR-F3 cells), were studied. In this cell line but not in untransfected HTC cells, monoclonal antibodies activated S6 kinase without stimulating either insulin receptor autophosphorylation or the tyrosine phosphorylation of pp 185. These data indicate, therefore, that monoclonal antibodies can activate S6 kinase and then increase S6 phosphorylation. Moreover, they suggest that activation of receptor tyrosine kinase and subsequent tyrosine phosphorylation of cellular proteins may not be crucial for activation of S6 kinase by the insulin receptor.  相似文献   

5.
M J Quon  A Cama  S I Taylor 《Biochemistry》1992,31(41):9947-9954
Some patients with extreme insulin resistance have mutations in their insulin receptor gene. We previously identified five such mutations located in the extracellular domain of the insulin receptor (Asn-->Lys15, His-->Arg209, Phe-->Val382, Lys-->Glu460, and Asn-->Ser462) and studied the effects of these mutations upon posttranslational processing, insulin binding, and tyrosine autophosphorylation. We now characterize the ability of these mutant receptors to mediate biological actions of insulin in transfected NIH-3T3 fibroblasts. All cell lines expressing mutant receptors showed marked impairment in insulin-stimulated c-jun expression and thymidine incorporation when compared with cells expressing wild-type human insulin receptors. The most severe impairment was seen in cells expressing the Val382 mutant (a mutation which causes an intrinsic defect in receptor autophosphorylation). These cells had insulin responses similar to the untransfected cells (used as a negative control). In contrast, cells expressing the Lys15 mutant have the ability to achieve a normal level of maximal autophosphorylation but require an abnormally high concentration of insulin to do so (as the result of decreased insulin binding affinity). These cells show a higher basal rate and much lower insulin stimulation of both c-jun expression and thymidine incorporation when compared with the cells expressing the wild-type human insulin receptors. This pattern is also seen in the cells expressing the other mutants with normal autophosphorylation (Arg209, Glu460, and Ser462). Although the most severe defects in insulin action are seen with the mutation which has an intrinsic defect in receptor autophosphorylation, the ability to undergo normal autophosphorylation does not seem to preclude mutations from impairing the ability of receptors to mediate some of the actions of insulin.  相似文献   

6.
Insulin stimulated autophosphorylation of the beta-subunit of the insulin receptor purified from Fao hepatoma cells or purified from Chinese hamster ovary (CHO/HIRC) or Swiss 3T3 (3T3/HIRC) cells transfected with the wild-type human insulin receptor cDNA. Autophosphorylation of the purified receptor occurred in at least two regions of the beta-subunit: the regulatory region containing Tyr-1146, Tyr-1150, and Tyr-1151, and the C-terminus containing Tyr-1316 and Tyr-1322. In the presence of antiphosphotyrosine antibody (alpha-PY), autophosphorylation of the purified receptor was inhibited nearly 80% during insulin stimulation. Tryptic peptide mapping showed that alpha-PY inhibited autophosphorylation of both tyrosyl residues in the C-terminus and one tyrosyl residue in the regulatory region, either Tyr-1150 or Tyr-1151. Thus, a bis-phosphorylated form of the regulatory region accumulated in the presence of alpha-PY, which contained Tyr(P)-1146 and either Tyr(P)-1150 or 1151. In intact Fao, CHO/HIRC, and 3T3/HIRC cells, insulin stimulated tyrosyl phosphorylation of the beta-subunit of the insulin receptor. Tryptic peptide mapping indicated that the regulatory region of the beta-subunit was mainly (greater than 80%) bis-phosphorylated; however, all three tyrosyl residues of the regulatory region were phosphorylated in about 20% of the receptors. As the phosphotransferase was activated by tris-phosphorylation but not bis-phosphorylation of the regulatory region of the beta-subunit (White et al.: Journal of Biological Chemistry 263:2969-2980, 1988), the extent of autophosphorylation in the regulatory region may play an important regulatory role during signal transmission in the intact cell.  相似文献   

7.
The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system.  相似文献   

8.
We have studied the phosphatidylinositol 3-kinase (PtdIns 3-kinase) in insulin-stimulated Chinese hamster ovary (CHO) cells expressing normal (CHO/IR) and mutant human insulin receptors. Insulin stimulation of CHO/IR cells results in an increase in PtdIns 3-kinase activity associated with anti-phosphotyrosine (alpha PY) immunoprecipitates, which has been previously shown to correlate with the in vivo production of PtdIns(3,4)P2, and PtdIns(3,4,5)P3 (Ruderman, N., Kapeller, R., White, M.F., and Cantley, L.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1411-1415). Stimulation was maximal within 1 min and showed a dose response identical to that of insulin receptor autophosphorylation. The PtdIns 3-kinase also associated with the insulin receptor in an insulin-stimulated manner, as approximately 50% of the total alpha PY-precipitable activity could be specifically immunoprecipitated with anti-insulin receptor antibody. Mutant insulin receptors displayed variable ability to stimulate the PtdIns 3-kinase, but in all cases the presence of PtdIns 3-kinase in alpha PY immunoprecipitates correlated closely with the tyrosyl phosphorylation of the endogenous substrate pp185. In CHO cells expressing a kinase-deficient mutant (IRA1018), there was no observable insulin stimulation of PtdIns 3-kinase activity in alpha PY immunoprecipitates and no tyrosyl phosphorylation of pp185. Substitution of Tyr1146 in the insulin receptor regulatory region with phenylalanine partially impaired receptor autophosphorylation, pp185 phosphorylation, and insulin-stimulated increases in alpha PY-precipitable PtdIns 3-kinase activity. In contrast, a deletion mutant lacking 12 amino acids from the juxtamembrane region (IR delta 960) displayed normal in vivo autophosphorylation but failed to stimulate the PtdIns 3-kinase or phosphorylate pp185. Finally, a mutant receptor from which the C-terminal 43 amino acids had been deleted (IR delta CT) exhibited normal insulin-stimulated autophosphorylation, pp185 phosphorylation, and stimulation of the PtdIns 3-kinase activity in alpha PY immunoprecipitates. These data suggest that the PtdIns 3-kinase is itself a substrate of the insulin receptor kinase or associates preferentially with a substrate. A comparison of the biological activities of the mutant receptors with their activation of the PtdIns 3-kinase furthermore suggests that the PtdIns 3-kinase may be linked to insulin's ability to regulate DNA synthesis and cell growth.  相似文献   

9.
We investigated the effects of MA-5, a human-specific monoclonal antibody to the insulin receptor alpha-subunit, on transmembrane signaling in cell lines transfected with and expressing both normal human insulin receptors and receptors mutated in their beta-subunit tyrosine kinase domains. In cell lines expressing normal human insulin receptors, MA-5 stimulated three biological functions: aminoisobutyric acid (AIB) uptake, thymidine incorporation, and S6 kinase activation. Under conditions where these biological functions were stimulated, there was no detectable stimulation of receptor tyrosine kinase. We then combined the use of this monoclonal antibody with cells expressing insulin receptors with mutations in the beta-subunit tyrosine kinase domain; two of ATP binding site mutants V1008 (Gly----Val) and M1030 (Lys----Met) and one triple-tyrosine autophosphorylation site mutant F3 (Tyr----Phe at 1158, 1162, and 1163). In cells expressing V1008 receptors, none of the three biological functions of insulin was stimulated. In cells expressing M1030 receptors, AIB uptake was stimulated to a small, but significant, extent whereas the other two functions were not. In cells expressing F3 receptors, AIB uptake and S6 kinase activation, but not thymidine incorporation, were fully stimulated. The data suggest, therefore, that (1) activation of insulin receptor tyrosine kinase may not be a prerequisite for signaling of all the actions of insulin and (2) there may be multiple signal transduction pathways to account for the biological actions of insulin.  相似文献   

10.
The juxtamembrane region of the insulin receptor (IR) beta-subunit contains an unphosphorylated tyrosyl residue (Tyr960) that is essential for insulin-stimulated tyrosyl phosphorylation of some endogenous substrates and certain biological responses (White, M.F., Livingston, J.N., Backer, J.M., Lauris, V., Dull, T.J., Ullrich, A., and Kahn, C.R. (1988) Cell 54, 641-649). Tyrosyl residues in the juxtamembrane region of some plasma membrane receptors have been shown to be required for their internalization. In addition, a juxtamembrane tyrosine in the context of the sequence NPXY [corrected] is required for the coated pit-mediated internalization of the low density lipoprotein receptor. To examine the role of the juxtamembrane region of the insulin receptor during receptor-mediated endocytosis, we have studied the internalization of insulin by Chinese hamster ovary (CHO) cells expressing two mutant receptors: IRF960, in which Tyr960 has been substituted with phenylalanine, and IR delta 960, in which 12 amino acids (Ala954-Asp965), including the putative consensus sequence NPXY [corrected], were deleted. Although the in vivo autophosphorylation of IRF960 and IR delta 960 was similar to wild type, neither mutant could phosphorylate the endogenous substrate pp185. CHO/IRF960 cells internalized insulin normally whereas the intracellular accumulation of insulin by CHO/IR delta 960 cells was 20-30% of wild-type. However, insulin internalization in the CHO/IR delta 960 cells was consistently more rapid than that occurring in CHO cells expressing kinase-deficient receptors (CHO/IRA1018). The degradation of insulin was equally impaired in CHO/IR delta 960 and CHO/IRA1018 cells. These data show that the juxtamembrane region of the insulin receptor contains residues essential for insulin-stimulated internalization and suggest that the sequence NPXY [corrected] may play a general role in directing the internalization of cell surface receptors.  相似文献   

11.
Anti-insulin receptor monoclonal antibody MA-10 inhibits insulin receptor autophosphorylation of purified rat liver insulin receptors without affecting insulin binding (Cordera, R., Andraghetti, G., Gherzi, R., Adezati, L., Montemurro, A., Lauro, R., Goldfine, I. D., and De Pirro, R. (1987) Endocrinology 121, 2007-2010). The effect of MA-10 on insulin receptor autophosphorylation and on two insulin actions (thymidine incorporation into DNA and receptor down-regulation) was investigated in rat hepatoma Fao cells. MA-10 inhibits insulin-stimulated receptor autophosphorylation, thymidine incorporation into DNA, and insulin-induced receptor down-regulation without affecting insulin receptor binding. We show that MA-10 binds to a site of rat insulin receptors different from the insulin binding site in intact Fao cells. Insulin does not inhibit MA-10 binding, and MA-10 does not inhibit insulin binding to rat Fao cells. Moreover, MA-10 binding to down-regulated cells is reduced to the same extent as insulin binding. In rat insulin receptors the MA-10 binding site has been tentatively localized in the extracellular part of the insulin receptor beta-subunit based on the following evidence: (i) MA-10 binds to insulin receptor in intact rat cells; (ii) MA-10 immunoprecipitates isolated insulin receptor beta-subunits labeled with both [35S]methionine and 32P; (iii) MA-10 reacts with rat insulin receptor beta-subunits by the method of immunoblotting, similar to an antipeptide antibody directed against the carboxyl terminus of the insulin receptor beta-subunit. Moreover, MA-10 inhibits autophosphorylation and protein-tyrosine kinase activity of reduced and purified insulin receptor beta-subunits. The finding that MA-10 inhibits insulin-stimulated receptor autophosphorylation and reduces insulin-stimulated thymidine incorporation into DNA and receptor down-regulation suggests that the extracellular part of the insulin receptor beta-subunit plays a role in the regulation of insulin receptor protein-tyrosine kinase activity.  相似文献   

12.
Insulin stimulates the autophosphorylation of the partially purified insulin receptor initially on tyrosine residues 1146, 1150 and 1151. This is followed by increased autophosphorylation of tyrosine residues 1316, 1322 and two further residues, possibly tyrosine residues 953 and 960 or 972 [Tavaré & Denton (1988) Biochem. J. 252, 607-615]. In the present paper we have used two cell lines transfected with insulin-receptor cDNA (CHO.T and NIH 3T3 HIR3.5 cells) to assess which tyrosine residues are phosphorylated on the insulin receptor within intact cells. We show that: (1) insulin causes a rapid increase in phosphorylation of tyrosine residues 1146, 1150 and 1151 in both cell types; tyrosine residues 1316 and 1322 are also phosphorylated, but apparently to a lesser extent in NIH 3T3 HIR3.5 cells; (2) the sites that may correspond to tyrosine residues 953 and 960 or 972 appear to be very poorly phosphorylated in both intact cell types; (3) insulin also promotes a substantial and rapid increase in the phosphorylation of serine and threonine residues on insulin receptors on CHO.T cells; this results in the appearance of two phosphopeptides not evident in the maps of the solubilized receptor preparations autophosphorylated in vitro.  相似文献   

13.
A model of insulin-receptor down-regulation and desensitization has been developed and described. In this model, both insulin-receptor down-regulation and functional desensitization are induced in the human HepG2 cell line by a 16 h exposure of the cells to 0.1 microM-insulin. Insulin-receptor affinity is unchanged, but receptor number is decreased by 50%, as determined both by 125I-insulin binding and by protein immunoblotting with an antibody to the beta-subunit of the receptor. This down-regulation is accompanied by a disproportionate loss of insulin-stimulated glycogen synthesis, yielding a population of cell-surface insulin receptors which bind insulin normally but which are unable to mediate insulin-stimulated glycogen synthesis within the cell. Upon binding of insulin, the desensitized receptors are internalized rapidly, with characteristics indistinguishable from those of control cells. In contrast, this desensitization is accompanied by a loss of the insulin-sensitive tyrosine kinase activity of insulin receptors isolated from these cells. Receptors isolated from control cells show a 5-25-fold enhancement of autophosphorylation of the beta-subunit by insulin; this insulin-responsive autophosphorylation is severely attenuated after desensitization to a maximum of 0-2-fold stimulation by insulin. Likewise, the receptor-mediated phosphorylation of exogenous angiotensin II, which is stimulated 2-10-fold by insulin in receptors from control cells, is completely unresponsive to insulin in desensitized cells. These data provide evidence that the insulin-receptor tyrosine kinase activity correlates with insulin stimulation of an intracellular metabolic event. The data suggest that receptor endocytosis is not sufficient to mediate insulin's effects, and thereby argue for a role of the receptor tyrosine kinase activity in the mediation of insulin action.  相似文献   

14.
Stable transfectants of Chinese hamster ovary (CHO) cells were developed that expressed the protein encoded by a human insulin-like growth factor I (IGF-I) receptor cDNA. The transfected cells expressed approximately 25,000 high affinity receptors for IGF-I (apparent Kd of 1.5 X 10(-9) M), whereas the parental CHO cells expressed only 5,000 receptors per cell (apparent Kd of 1.3 X 10(-9) M). A monoclonal antibody specific for the human IGF-I receptor inhibited IGF-I binding to the expressed receptor and immunoprecipitated polypeptides of apparent Mr values approximately 135,000 and 95,000 from metabolically labeled lysates of the transfected cells but not control cells. The expressed receptor was also capable of binding IGF-II with high affinity (Kd approximately 3 nM) and weakly recognized insulin (with about 1% the potency of IGF-I). The human IGF-I receptor expressed in these cells was capable of IGF-I-stimulated autophosphorylation and phosphorylation of endogenous substrates in the intact cell. This receptor also mediated IGF-I-stimulated glucose uptake, glycogen synthesis, and DNA synthesis. The extent of these responses was comparable to the stimulation by insulin of the same biological responses in CHO cells expressing the human insulin receptor. These results indicate that the isolated cDNA encodes a functional IGF-I receptor and that there are no inherent differences in the abilities of the insulin and IGF-I receptors to mediate rapid and long term biological responses when expressed in the same cell type. The high affinity of this receptor for IGF-II also suggests that it may be important in mediating biological responses to IGF-II as well as IGF-I.  相似文献   

15.
In a previous report we described the properties of a rabbit anti-insulin receptor antibody (RAIR-IgG) and its effects on the autophosphorylation and kinase activity of human insulin receptors. The present study was carried out on the hepatoma cell line Fao. We tested the mimetic effects of RAIR-IgG on different biological parameters known to be stimulated by insulin, receptor autophosphorylation and kinase activity. RAIR-IgG stimulated the metabolic effects (glucose and amino acid transport) but, unlike insulin, was unable to promote cell proliferation. These data clearly demonstrated the existence of two distinctly controlled pathways in the mediation of the hormonal response. When we investigated the effects of this antibody at the molecular level we found that in a cell-free system RAIR-IgG weakly stimulated receptor autophosphorylation on non-regulatory sites and failed to stimulate tyrosine kinase activity toward exogenous substrates. Accordingly, RAIR-IgG did not stimulate receptor autophosphorylation in 32P-labelled intact cells. Interestingly, under similar conditions RAIR-IgG elicited ribosomal S6 protein phosphorylation, as did insulin. The possibility that RAIR-IgG activated a cryptic tyrosine kinase activity is discussed.  相似文献   

16.
In order to test the contribution of the insulin receptor COOH terminus to insulin action, a truncation of 43 COOH-terminal amino acids was engineered by cDNA-based deletion mutagenesis. This cDNA (HIR delta CT), as well as cDNA encoding the complete receptor (HIRc) was transfected into Rat 1 fibroblasts. Cells expressing 6.4 X 10(3) and 1.25 X 10(6) normal receptors and 2.5 X 10(5) HIR delta CT receptors, as well as control Rat 1 fibroblasts were selected for further analysis. All cell lines exhibited insulin binding of similar affinity. Partial tryptic digestion and immunoprecipitation by region-specific antibodies verified that the HIR delta CT receptors were truncated at the COOH terminus. Purified HIRc and HIR delta CT receptors underwent autophosphorylation with similar insulin and ATP sensitivity, although the HIR delta CT receptors were slightly more active in the absence of insulin. Transfected HIRc and HIR delta CT receptors undergo endocytosis in a normal fashion. Insulin internalization and degradation in both HIRc and HIR delta CT cells is increased in proportion to receptor number. Intracellular insulin processing, degradation, and release were qualitatively comparable among the transfected cell lines. Complete and truncated receptors internalize, recycle, and down-regulate normally. We conclude the following: 1) the COOH-terminal portion of the insulin receptor is not necessary for partial autophosphorylation or endocytosis; 2) following internalization the intracellular itinerary of the receptor and ligand appear normal with the truncated receptor; and 3) truncation of the COOH terminus does not impair recycling of the receptor or retroendocytosis of internalized ligand.  相似文献   

17.
Internalization of the human insulin receptor requires the activation by insulin of the intrinsic kinase of the receptor. However, even in the absence of kinase activation, insulin receptors slowly enter the cells. In the present study, we addressed the question of this insulin-independent pathway of internalization. To that end, we traced insulin receptor internalization with a monoclonal antibody (mAb 83-14) directed against the alpha-subunit of the human insulin receptor. Internalization of this antibody was followed in Chinese hamster ovary (CHO) cells transfected with either normal (CHO.HIRC2) or kinase-deficient (CHO.A1018) human insulin receptors. The internalization rate of 125I-mAb 83-14 was comparable in CHO cells expressing kinase-active or kinase-inactive receptors and was similar to that observed for 125I-insulin in CHO.A1018 cells. Moreover, in CHO.HIRC2 cells, the internalization of 125I-mAb 83-14 was identical with that of its 125I-Fab fragments. Thus, mAb 83-14 represents an appropriate tool to study the constitutive internalization of the insulin receptor. Internalization of insulin receptors tagged with 125I-mAb 83-14 was unaffected by cytochalasin B, which excluded a macropinocytotic process. By contrast, internalization was sensitive to hypertonia, which abrogates clathrin-coated pits-mediated endocytosis. The implication of clathrin-coated pits in this internalization process was directly demonstrated by quantitative electron microscopic autoradiography, which showed that 125I-mAb 83-14 present on the nonvillous domain of the cell surface preferentially associate with clathrin-coated pits at all time points.  相似文献   

18.
We have studied insulin receptor-mediated signaling in Chinese hamster ovary (CHO) cell transfectants that expressed either of two naturally occurring mutant human insulin receptors: Trp1200----Ser1200 and Ala1134----Thr1134. Compared with overexpressed normal human insulin receptors, both mutant receptors displayed normal processing and normal binding affinity; however, neither was capable of detectable insulin-stimulated autophosphorylation or tyrosine kinase activity toward endogenous (pp185) or exogenous substrates. Several biologic actions of insulin were evaluated in transfected cells. Compared with neomycin-only transfected CHO cells (CHO-NEO), cells expressing normal receptors demonstrated increased insulin sensitivity for 2-deoxyglucose uptake, [14C]glucose incorporation into glycogen, [3H]thymidine incorporation into DNA, and specific gene expression (accumulation of glucose transporter GLUT-1 mRNA). Cells expressing either Ser1200 or Thr1134 receptors showed no increase in insulin-stimulated thymidine incorporation or GLUT-1 mRNA accumulation compared with CHO-NEO. Surprisingly, cells expressing Ser1200 receptors showed increased insulin stimulation of 2-deoxyglucose uptake and glucose incorporation into glycogen compared with CHO-NEO, whereas Thr1134 receptors failed to signal these metabolic responses. We conclude that 1) transfected kinase-deficient insulin receptor mutants derived from insulin-resistant patients have distinct defects in the ability to mediate insulin action in vitro; 2) divergence of insulin signaling pathways may occur at the level of the receptor; and 3) normal activation of the receptor tyrosine kinase by insulin is not necessarily required for signaling of certain important biologic actions.  相似文献   

19.
1246-3A cell line is an insulin-independent variant isolated from the adipogenic cell line 1246 which can proliferate in the absence of insulin, has lost the ability to differentiate, and secretes an insulin-related factor called IRF similar to pancreatic insulin and different from IGFs. In contrast, the parent adipogenic cell line 1246 is dependent on the presence of insulin to proliferate and differentiate in defined medium. In the present paper, we examined if the loss of response to insulin observed for 1246-3A cells was accompanied by alterations in the insulin receptor properties. Insulin binding and tyrosine kinase activity of insulin receptors isolated from 1246-3A cells and from the parent cell line 1246 were measured; 125I-insulin binding to intact cells was 75% lower for the 1246-3A cells than for the 1246 cells. This was due to a decrease in receptor number without major change in receptor affinity. However, when the cells were solubilized in 1% Triton X-100 and the insulin receptor was partially purified by chromatography on wheat germ agglutinin-agarose, a similar pattern of binding was observed for both cell lines. Down regulation of insulin receptors by insulin occurred in a dose-dependent fashion, which was similar for both cell lines. Phosphorylation experiments were performed by incubation of the partially purified insulin receptor with insulin and [gamma-32P]ATP. They indicated that insulin stimulated phosphorylation of the 95-kDa molecular weight beta subunit of the receptor, in a similar fashion for both cell types. These data suggest that the insulin-independent cell line 1246-3A does not possess a specific defect in the insulin receptor which alters both its binding and autophosphorylation properties and that the loss of response to insulin can be attributed to the fact the 1246-3A cells secrete IRF which bind to cell surface receptors and stimulate their proliferation.  相似文献   

20.
We have previously shown that a homozygous mutation encoding a substitution of proline for leucine at position 233 in the insulin receptor is linked with the syndrome of leprechaunism, being a lethal form of insulin resistance in newborn children. Specific binding of insulin and insulin-stimulated autophosphorylation of the insulin receptor are nearly absent in fibroblasts from the leprechaun patient. To examine the molecular basis of the observed insulin receptor abnormalities, CHO cell lines overexpressing mutant insulin receptors were made by transfection. The results show that the mutation inhibits cleavage and transport of the proreceptor from intracellular sites to the cell surface. As the mutant receptor is poorly precipitated by two different monoclonal antibodies recognizing epitopes on undenatured wild-type alpha-subunits, the mutation probably affects overall folding of the alpha-subunit. The mutant proreceptor is unable to bind insulin and exhibits no insulin-stimulated autophosphorylation. These data explain the abnormalities seen in the patient's fibroblasts. Pulse-chase labeling experiments on transfected cells show that the mutant precursor has an extended half-life (approximately 5 h) compared to the precursor of wild-type insulin receptors (approximately 2 h). This mutation is the first example of a naturally occurring mutation in the insulin receptor which completely blocks cleavage of the proreceptor and transport to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号