首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the endoplasmic reticulum (ER), misfolded proteins are retrotranslocated to the cytosol and degraded by the proteasome in a process known as ER-associated degradation (ERAD). Early in this pathway, a proposed lumenal ER lectin, EDEM, recognizes misfolded glycoproteins in the ER, disengages the nascent molecules from the folding pathway, and facilitates their targeting for disposal. In humans there are a total of three EDEM homologs. The amino acid sequences of these proteins are different from other lectins but are closely related to the Class I mannosidases (family 47 glycosidases). In this study, we characterize one of the EDEM homologs from Homo sapiens, which we have termed EDEM2 (C20orf31). Using recombinantly generated EDEM2, no alpha-1,2 mannosidase activity was observed. In HEK293 cells, recombinant EDEM2 is localized to the ER where it can associate with misfolded alpha1-antitrypsin. Overexpression of EDEM2 accelerates the degradation of misfolded alpha1-antitrypsin, indicating that the protein is involved in ERAD.  相似文献   

2.
Quality control in the endoplasmic reticulum ensures that only properly folded proteins are retained in the cell through mechanisms that recognize and discard misfolded or unassembled proteins in a process called endoplasmic reticulum-associated degradation (ERAD). We previously cloned EDEM (ER degradation-enhancing alpha-mannosidase-like protein) and showed that it accelerates ERAD of misfolded glycoproteins. We now cloned mouse EDEM3, a soluble homolog of EDEM. EDEM3 consists of 931 amino acids and has all the signature motifs of Class I alpha-mannosidases (glycosyl hydrolase family 47) in its N-terminal domain and a protease-associated motif in its C-terminal region. EDEM3 accelerates glycoprotein ERAD in transfected HEK293 cells, as shown by increased degradation of misfolded alpha1-antitrypsin variant (null (Hong Kong)) and of TCRalpha. Overexpression of EDEM3 also greatly stimulates mannose trimming not only from misfolded alpha1-AT null (Hong Kong) but also from total glycoproteins, in contrast to EDEM, which has no apparent alpha1,2-mannosidase activity. Furthermore, overexpression of the E147Q EDEM3 mutant, which has the mutation in one of the conserved acidic residues essential for enzyme activity of alpha1,2-mannosidases, abolishes the stimulation of mannose trimming and greatly decreases the stimulation of ERAD by EDEM3. These results show that EDEM3 has alpha1,2-mannosidase activity in vivo, suggesting that the mechanism whereby EDEM3 accelerates glycoprotein ERAD is different from that of EDEM.  相似文献   

3.
During endoplasmic reticulum (ER)–associated degradation (ERAD), terminally misfolded proteins are retrotranslocated from the ER to the cytosol and degraded by the ubiquitin-proteasome system. Misfolded glycoproteins are recognized by calnexin and transferred to EDEM1, followed by the ER disulfide reductase ERdj5 and the BiP complex. The mechanisms involved in ERAD of nonglycoproteins, however, are poorly understood. Here we show that nonglycoprotein substrates are captured by BiP and then transferred to ERdj5 without going through the calnexin/EDEM1 pathway; after cleavage of disulfide bonds by ERdj5, the nonglycoproteins are transferred to the ERAD scaffold protein SEL1L by the aid of BiP for dislocation into the cytosol. When glucose trimming of the N-glycan groups of the substrates is inhibited, glycoproteins are also targeted to the nonglycoprotein ERAD pathway. These results indicate that two distinct pathways for ERAD of glycoproteins and nonglycoproteins exist in mammalian cells, and these pathways are interchangeable under ER stress conditions.  相似文献   

4.
Proteins that are unfolded or misfolded in the endoplasmic reticulum (ER) must be refolded or degraded to maintain the homeostasis of the ER. Components of both productive folding and ER-associated degradation (ERAD) mechanisms are known to be up-regulated by the unfolded protein response (UPR). We describe two novel components of mammalian ERAD, Derlin-2 and -3, which show weak homology to Der1p, a transmembrane protein involved in yeast ERAD. Both Derlin-2 and -3 are up-regulated by the UPR, and at least Derlin-2 is a target of the IRE1 branch of the response, which is known to up-regulate ER degradation enhancing alpha-mannosidase-like protein (EDEM) and EDEM2, receptor-like molecules for misfolded glycoprotein. Overexpression of Derlin-2 or -3 accelerated degradation of misfolded glycoprotein, whereas their knockdown blocked degradation. Derlin-2 and -3 are associated with EDEM and p97, a cytosolic ATPase responsible for extraction of ERAD substrates. These findings indicate that Derlin-2 and -3 provide the missing link between EDEM and p97 in the process of degrading misfolded glycoproteins.  相似文献   

5.
Misfolded glycoproteins synthesized in the endoplasmic reticulum (ER) are degraded by cytoplasmic proteasomes, a mechanism known as ERAD (ER-associated degradation). In the present study, we demonstrate that ERAD of the misfolded genetic variant-null Hong Kong alpha1-antitrypsin is enhanced by overexpression of the ER processing alpha1,2-mannosidase (ER ManI) in HEK 293 cells, indicating the importance of ER ManI in glycoprotein quality control. We showed previously that EDEM, an enzymatically inactive mannosidase homolog, interacts with misfolded alpha1-antitrypsin and accelerates its degradation (Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., and Nagata, K. (2001) EMBO Rep. 2, 415-422). Herein we demonstrate a combined effect of ER ManI and EDEM on ERAD of misfolded alpha1-antitrypsin. We also show that misfolded alpha1-antitrypsin NHK contains labeled Glc1Man9GlcNAc and Man5-9GlcNAc released by endo-beta-N-acetylglucosaminidase H in pulse-chase experiments with [2-3H]mannose. Overexpression of ER ManI greatly increases the formation of Man8GlcNAc, induces the formation of Glc1Man8GlcNAc and increases trimming to Man5-7GlcNAc. We propose a model whereby the misfolded glycoprotein interacts with ER ManI and with EDEM, before being recognized by downstream ERAD components. This detailed characterization of oligosaccharides associated with a misfolded glycoprotein raises the possibility that the carbohydrate recognition determinant triggering ERAD may not be restricted to Man8GlcNAc2 isomer B as previous studies have suggested.  相似文献   

6.
The plant toxin ricin is transported retrogradely from the cell surface to the endoplasmic reticulum (ER) from where the enzymatically active part is retrotranslocated to the cytosol, presumably by the same mechanism as used by misfolded proteins. The ER degradation enhancing alpha-mannosidase I-like protein, EDEM, is responsible for directing aberrant proteins for ER-associated protein degradation. In this study, we have investigated whether EDEM is involved in ricin retrotranslocation. Overexpression of EDEM strongly protects against ricin. However, when the interaction between EDEM and misfolded proteins is inhibited by kifunensin, EDEM promotes retrotranslocation of ricin from the ER to the cytosol. Furthermore, puromycin, which inhibits synthesis and thereby transport of proteins into the ER, counteracted the protection seen in EDEM-transfected cells. Coimmunoprecipitation studies revealed that ricin can interact with EDEM and with Sec61alpha, and both kifunensin and puromycin increase these interactions. Importantly, vector-based RNA interference against EDEM, which leads to reduction of the cellular level of EDEM, decreased retrotranslocation of ricin A-chain to the cytosol. In conclusion, our results indicate that EDEM is involved in retrotranslocation of ricin from the ER to the cytosol.  相似文献   

7.
8.
ER-associated degradation (ERAD) is an ER quality-control process that eliminates terminally misfolded proteins. ERdj5 was recently discovered to be a key ER-resident PDI family member protein that accelerates ERAD by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. We here solved the crystal structure of full-length ERdj5, thereby revealing that ERdj5 contains the N-terminal J domain and six tandem thioredoxin domains that can be divided into the N- and C-terminal clusters. Our systematic biochemical analyses indicated that two thioredoxin domains that constitute the C-terminal cluster form the highly reducing platform that interacts with EDEM1 and reduces EDEM1-recruited substrates, leading to their facilitated degradation. The pulse-chase experiment further provided direct evidence for the sequential movement of an ERAD substrate from calnexin to the downstream EDEM1-ERdj5 complex, and then to the retrotranslocation channel, probably through BiP. We present a detailed molecular view of how ERdj5 mediates ERAD in concert with EDEM1.  相似文献   

9.
The mechanism, in molecular terms of protein quality control, specifically of how the cell recognizes and discriminates misfolded proteins, remains a challenge. In the secretory pathway the folding status of glycoproteins passing through the endoplasmic reticulum is marked by the composition of the N-glycan. The different glycoforms are recognized by specialized lectins. The folding sensor UGGT acts as an unusual molecular chaperone and covalently modifies the Man9 N-glycan of a misfolded protein by adding a glucose moiety and converts it to Glc1Man9 that rebinds the lectin calnexin. However, further links between the folding status of a glycoprotein and the composition of the N-glycan are unclear. There is little unequivocal evidence for other proteins in the ER recognizing the N-glycan and also acting as molecular chaperones. Nevertheless, based upon a few examples, we suggest that this function is carried out by individual proteins in several different complexes. Thus, calnexin binds the protein disulfide isomerase ERp57, that acts upon Glc1Man9 glycoproteins. In another example the protein disulfide isomerase ERdj5 binds specifically to EDEM (which is probably a mannosidase) and a lectin OS9, and reduces the disulfide bonds of bound glycoproteins destined for ERAD. Thus the glycan recognition is performed by a lectin and the chaperone function performed by a specific partner protein that can recognize misfolded proteins. We predict that this will be a common arrangement of proteins in the ER and that members of protein foldase families such as PDI and PPI will bind specifically to lectins in the ER. Molecular chaperones BiP and GRp94 will assist in the folding of proteins bound in these complexes as well as in the folding of non-glycoproteins.  相似文献   

10.
Hepatitis B virus (HBV) belongs to the Hepadnaviridae family of enveloped DNA viruses. It was previously shown that HBV can induce endoplasmic reticulum (ER) stress and activate the IRE1-XBP1 pathway of the unfolded protein response (UPR), through the expression of the viral regulatory protein X (HBx). However, it remained obscure whether or not this activation had any functional consequences on the target genes of the UPR pathway. Of these targets, the ER degradation-enhancing, mannosidase-like proteins (EDEMs) are thought to play an important role in relieving the ER stress during UPR, by recognizing terminally misfolded glycoproteins and delivering them to the ER-associated degradation (ERAD). In this study, we investigated the role of EDEMs in the HBV life-cycle. We found that synthesis of EDEMs (EDEM1 and its homologues, EDEM2 and EDEM3) is significantly up-regulated in cells with persistent or transient HBV replication. Co-expression of the wild-type HBV envelope proteins with EDEM1 resulted in their massive degradation, a process reversed by EDEM1 silencing. Surprisingly, the autophagy/lysosomes, rather than the proteasome were involved in disposal of the HBV envelope proteins. Importantly, inhibition of the endogenous EDEM1 expression in HBV replicating cells significantly increased secretion of both, enveloped virus and subviral particles. This is the first report showing that HBV activates the ERAD pathway, which, in turn, reduces the amount of envelope proteins, possibly as a mechanism to control the level of virus particles in infected cells and facilitate the establishment of chronic infections.  相似文献   

11.
Proteins expressed in the endoplasmic reticulum (ER) are covalently modified by co-translational addition of pre-assembled core glycans (glucose(3)-mannose(9)-N-acetylglucosamine(2)) to asparagines in Asn-X-Ser/Thr motifs. N-Glycan processing is essential for protein quality control in the ER. Cleavages and re-additions of the innermost glucose residue prolong folding attempts in the calnexin cycle. Progressive loss of mannoses is a symptom of long retention in the ER and elicits preparation of terminally misfolded polypeptides for dislocation into the cytosol and proteasome-mediated degradation. The ER stress-induced protein EDEM1 regulates disposal of folding-defective glycoproteins and has been described as a mannose-binding lectin. Here we show that elevation of the intralumenal concentration of EDEM1 accelerates ER-associated degradation (ERAD) by accelerating de-mannosylation of terminally misfolded glycoproteins and by inhibiting formation of covalent aggregates upon release of terminally misfolded ERAD candidates from calnexin. Acceleration of Man(9) or Man(5)N-glycans dismantling upon overexpression was fully blocked by substitution in EDEM1 of one catalytic residue conserved amongst alpha1,2-mannosidases, thus suggesting that EDEM1 is an active mannosidase. This mutation did not affect the chaperone function of EDEM1.  相似文献   

12.
Terminally misfolded or unassembled proteins are degraded by the cytoplasmic ubiquitin-proteasome pathway in a process known as ERAD (endoplasmic reticulum-associated protein degradation). Overexpression of ER alpha1,2-mannosidase I and EDEMs target misfolded glycoproteins for ERAD, most likely due to trimming of N-glycans. Here we demonstrate that overexpression of Golgi alpha1,2-mannosidase IA, IB, and IC also accelerates ERAD of terminally misfolded human alpha1-antitrypsin variant null (Hong Kong) (NHK), and mannose trimming from the N-glycans on NHK in 293 cells. Although transfected NHK is primarily localized in the ER, some NHK also co-localizes with Golgi markers, suggesting that mannose trimming by Golgi alpha1,2-mannosidases can also contribute to NHK degradation.  相似文献   

13.
The endoplasmic reticulum (ER) has an elaborate quality control system, which retains misfolded proteins and targets them to ER-associated protein degradation (ERAD). To analyze sorting between ER retention and ER exit to the secretory pathway, we constructed fusion proteins containing both folded carboxypeptidase Y (CPY) and misfolded mutant CPY (CPY*) units. Although the luminal Hsp70 chaperone BiP interacts with the fusion proteins containing CPY* with similar efficiency, a lectin-like ERAD factor Yos9p binds to them with different efficiency. Correlation between efficiency of Yos9p interactions and ERAD of these fusion proteins indicates that Yos9p but not BiP functions in the retention of misfolded proteins for ERAD. Yos9p targets a CPY*-containing ERAD substrate to Hrd1p E3 ligase, thereby causing ER retention of the misfolded protein. This ER retention is independent of the glycan degradation signal on the misfolded protein and operates even when proteasomal degradation is inhibited. These results collectively indicate that Yos9p and Hrd1p mediate ER retention of misfolded proteins in the early stage of ERAD, which constitutes a process separable from the later degradation step.  相似文献   

14.
EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD) pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID) and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.  相似文献   

15.
EDEM-1, EDEM-2 and EDEM-3 are key players for the quality control of newly synthesized proteins in the endoplasmic reticulum (ER) by accelerating disposal and degradation of misfolded proteins through ER Associated Degradation (ERAD). Although many previous studies reported the role of individual ERAD components especially in cell-based systems, still little is known about the consequences of ERAD dysfunction under physiological and ER stress conditions in the context of a multicellular organism. Here we report the first individual and combined characterization and functional interplay of EDEM proteins in Caenorhabditis elegans using single, double, and triple mutant combinations. We found that EDEM-2 has a major role in the clearance of misfolded proteins from ER under physiological conditions, whereas EDEM-1 and EDEM-3 roles become prominent under acute ER stress. In contrast to SEL-1 loss, the loss of EDEMs in an intact organism induces only a modest ER stress under physiological conditions. In addition, chronic impairment of EDEM functioning attenuated both XBP-1 activation and up-regulation of the stress chaperone GRP78/BiP, in response to acute ER stress. We also show that pre-conditioning to EDEM loss in acute ER stress restores ER homeostasis and promotes survival by activating ER hormesis. We propose a novel role for EDEM in fine-tuning the ER stress responsiveness that affects ER homeostasis and survival.  相似文献   

16.
Viral infections frequently cause endoplasmic reticulum (ER) stress in host cells leading to stimulation of the ER-associated degradation (ERAD) pathway, which subsequently targets unassembled glycoproteins for ubiquitylation and proteasomal degradation. However, the role of the ERAD pathway in the viral life cycle is poorly defined. In this paper, we demonstrate that hepatitis C virus (HCV) infection activates the ERAD pathway, which in turn controls the fate of viral glycoproteins and modulates virus production. ERAD proteins, such as EDEM1 and EDEM3, were found to increase ubiquitylation of HCV envelope proteins via direct physical interaction. Knocking down of EDEM1 and EDEM3 increased the half-life of HCV E2, as well as virus production, whereas exogenous expression of these proteins reduced the production of infectious virus particles. Further investigation revealed that only EDEM1 and EDEM3 bind with SEL1L, an ER membrane adaptor protein involved in translocation of ERAD substrates from the ER to the cytoplasm. When HCV-infected cells were treated with kifunensine, a potent inhibitor of the ERAD pathway, the half-life of HCV E2 increased and so did virus production. Kifunensine inhibited the binding of EDEM1 and EDEM3 with SEL1L, thus blocking the ubiquitylation of HCV E2 protein. Chemical inhibition of the ERAD pathway neither affected production of the Japanese encephalitis virus (JEV) nor stability of the JEV envelope protein. A co-immunoprecipitation assay showed that EDEM orthologs do not bind with JEV envelope protein. These findings highlight the crucial role of the ERAD pathway in the life cycle of specific viruses.  相似文献   

17.
Most misfolded secretory proteins remain in the endoplasmic reticulum (ER) and are degraded by ER-associated degradation (ERAD). However, some misfolded proteins exit the ER and traffic to the Golgi before degradation. Using model misfolded substrates, with or without defined ER exit signals, we found misfolded proteins can depart the ER by continuing to exhibit the functional export signals present in the corresponding correctly folded proteins. Anterograde transport of misfolded proteins utilizes the same machinery responsible for exporting correctly folded proteins. Passive ER retention, in which misfolded proteins fail to exit the ER due to the absence of exit signals or the inability to functionally present them, likely contributes to the retention of nonnative proteins in the ER. Intriguingly, compromising ERAD resulted in increased anterograde trafficking of a misfolded protein with an ER exit signal, suggesting that ERAD and ER exit machinery can compete for binding of misfolded proteins. Disabling ERAD did not result in transport of an ERAD substrate lacking an export signal. This is an important distinction for those seeking possible therapeutic approaches involving inactivating ERAD in anticipation of exporting a partially active protein.  相似文献   

18.
ER-associated protein degradation (ERAD) is a protein quality control system of ER, which eliminates misfolded proteins by proteasome-dependent degradation and ensures export of only properly folded proteins from ER. Herp, an ER membrane protein upregulated by ER stress, is implicated in regulation of ERAD. In the present study, we show that Herp interacts with members of the ubiquilin family, which function as a shuttle factor to deliver ubiquitinated substrates to the proteasome for degradation. Knockdown of ubiquilin expression by small interfering RNA stabilized the ERAD substrate CD3δ, whereas it did not alter or increased degradation of non-ERAD substrates tested. CD3δ was stabilized by overexpressed Herp mutants which were capable of binding to ubiquilins but were impaired in ER membrane targeting by deletion of the transmembrane domain. Our data suggest that Herp binding to ubiquilin proteins plays an important role in the ERAD pathway and that ubiquilins are specifically involved in degradation of only a subset of ubiquitinated targets, including Herp-dependent ERAD substrates.  相似文献   

19.
A stringent quality control process selects misfolded polypeptides generated in the endoplasmic reticulum (ER) for ER-associated degradation (ERAD). Here we assessed the maintenance of efficient glycoprotein folding in cells with defective ERAD caused by lack of adaptation of the intralumenal level of ER degradation-enhancing alpha-mannosidase-like protein (EDEM) to an increase in the ER cargo load. When these cells were converted into factories for production of high levels of human beta-secretase, maturation of this N-glycosylated aspartic protease progressed as in wild-type cells initially to gradually become less efficient. Up-regulation of EDEM to strengthen the ERAD machinery (but not up-regulation of calnexin to reinforce the folding machinery) was instrumental in maintaining folding efficiency and secretory capacity. Our data underscore the important role that the degradation machinery plays in maintaining a functional folding environment in the ER.  相似文献   

20.
Benitez EM  Stolz A  Wolf DH 《FEBS letters》2011,585(19):3015-3019
The endoplasmic reticulum (ER) is responsible for folding and delivery of secretory proteins to their site of action. One major modification proteins undergo in this organelle is N-glycosylation. Proteins that cannot fold properly will be directed to a process known as endoplasmic reticulum associated degradation (ERAD). Processing of N-glycans generates a signal for ERAD. The lectin Yos9 recognizes the N-glycan signal of misfolded proteins and acts as a gatekeeper for the delivery of these substrates to the cytoplasm for degradation. Presence of Yos9 accelerates degradation of the glycosylated model ERAD substrate CPY?. Here we show that Yos9 has also a control function in degradation of the unglycosylated ERAD substrate CPY?0000. It decelerates its degradation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号