首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chan SI  Chen KH  Yu SS  Chen CL  Kuo SS 《Biochemistry》2004,43(15):4421-4430
The particulate methane monooxygenase (pMMO) is a complex membrane protein complex that has been difficult to isolate and purify for biochemical and biophysical characterization because of its instability in detergents used to solubilize the enzyme. In this perspective, we summarize the progress recently made toward obtaining a purified pMMO-detergent complex and characterizing the enzyme in pMMO-enriched membranes. The purified pMMO is a multi-copper protein, with ca. 15 copper ions sequestered into five trinuclear copper clusters: two for dioxygen chemistry and alkane hydroxylation (catalytic or C-clusters) and three to provide a buffer of reducing equivalents to re-reduce the C-clusters following turnover (electron transfer or E-clusters). The enzyme is functional when all the copper ions are reduced. When the protein is purified under ambient aerobic conditions in the absence of a hydrocarbon substrate, only the C-clusters are oxidized; there is an apparent kinetic barrier for electron transfer from the E-cluster copper ions to the C-clusters under these conditions. Evidence is provided in support of both C-clusters participating in the dioxygen chemistry, but only one C-cluster supporting alkane hydroxylation. Acetylene modification of the latter C-cluster in the hydrophobic pocket of the active site lowers or removes the kinetic barrier for electron transfer from the E-clusters to the C-clusters so that all the copper ions could be fully oxidized by dioxygen. A model for the hydroxylation chemistry when a hydrocarbon substrate is bound to the active site of the hydroxylation C-cluster is presented. Unlike soluble methane monooxygenase (sMMO), pMMO exhibits limited substrate specificity, but the hydroxylation chemistry is highly regioselective and stereoselective. In addition, the hydroxylation occurs with total retention of configuration of the carbon center that is oxidized. These results are consistent with a concerted mechanism involving direct side-on insertion of an active singlet "oxene" from the activated copper cluster across the "C-H" bond in the active site. Finally, in our hands, both the purified pMMO-detergent complex and pMMO-enriched membranes exhibit high NADH-sensitive as well as duroquinol-sensitive specific activity. A possible role for the two reductants in the turnover of the enzyme is proposed.  相似文献   

2.
A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual human erythrocytes is described. This staining method can be used for the rapid routine discrimination of patients with a deficiency of the enzyme in its homozygote or heterozygote form, but also for quantitative localization of its activity in individual erythrocytes. The staining procedure in its optimal form consists of a treatment of the erythrocytes with sodium nitrite, then a "fixation" in 0.025% glutaraldehyde (under NADP+ protection of the active site of the enzyme), followed by incubation of the cells in suspension in the presence of tetranitro BT, 1-methoxyphenazine methosulphate and polyvinyl alcohol. Using this new technique, a sharp localization is obtained of the glucose-6-phosphate dehydrogenase activity, which enables discrimination between red cells with different levels of enzyme activity, as a consequence of enzyme deficiencies or age changes.  相似文献   

3.
Latent human PMN leucocyte collagenase (enzyme-inhibitor complex) was shown to require zinc for the property of being activatable by various disulfides [see Macartney, H.W. and Tschesche, H. (1980) FEBS Lett. 119, 327--332]. The active enzyme also requires zinc for activity, indicating a possible participation in the enzyme's reaction mechanism and/or stabilization of the active site. The zinc in the latent enzyme may be removed by dialysis against EDTA, or cysteine. This produces a zinc-free latent enzyme which cannot be activated by any of the disulfide-containing activators. Readdition of zinc to the EDTA-inhibited latent enzyme, at the same concentration as the EDTA, produces an activatable latent enzyme once again. However, excessive zinc concentrations (more than three times the concentration of EDTA) exhibited an inhibitory effect on the activation process. Thereafter the inhibitor cannot be removed by disulfides from the enzyme-inhibitor complex of the latent enzyme. The zinc in the latent enzyme may be replaced by other double-positive metal ions such as cobalt, manganese, magnesium and copper.  相似文献   

4.
Saccharomyces cerevisiae, brewer's yeast, produces a microsomal benzo(a)pyrene hydroxylase when grown at high glucose concentrations of which the haemoprotein, cytochrome P-450 (RH, reduced-flavoprotein:oxygen oxidoreductase (RH-hydroxylating) EC 1.14.14.1) is a component. We report here kinetic data derived from Lineweaver-Burk plots of benzo(a)pyrene hydroxylation. The Michaelis constant was decreased by growth of the yeast in the presence of benzo(a)pyrene showing the induction of a form of the enzyme more specific for this compound. NADPH or cumene hydroperoxide could be used as cofactors by this enzyme, although with different Km and V values for benzo(a)pyrene. A solubilised and a solubilised, immobilised enzyme preparation were capable of benzo(a)pyrene hydroxylation, using cumene hydroperoxide but not NADPH as the cofactor. Benzo(a)pyrene was found to produce a modified type I spectral change with yeast and rat liver microsomes. The interaction of benzo(a)pyrene with cytochrome P-450 was investigated further by means of an equilibrium gel filtration technique. There appeared to be 20 binding sites per mol ofcytochrome P-450 for benz(a)pyrene, in both yeast and rat liver microsomes.  相似文献   

5.
1. Under defined conditions, the hydroxylation of p-coumaric acid catalysed by a phenolase from leaves of spinach beet (Beta vulgaris L.) was observed to develop its maximum rate only after a lag period. 2. By decreasing the reaction rate with lower enzyme concentrations or by increasing it with higher concentrations of reductants, the length of the lag period was inversely related to the maximum rate subsequently developed. 3. Low concentrations of caffeic acid or other o-dihydric phenols abolished this lag period. With caffeic acid, the rate of hydroxylation was independent of the reductant employed. 4. Hydroxylation was inhibited by diethyldithiocarbamate, but with low inhibitor concentrations hydroxylation recovered after a lag period. This lag could again be abolished by the addition of high concentrations of caffeic acid or other o-dihydric phenols. 5. Catechol oxidase activity showed no lag period, and did not recover from diethyldithiocarbamate inhibition. 6. The purified enzyme contained 0.17-0.33% copper; preparations with the highest specific activity were found to have the highest copper content. 7. The results are interpreted to suggest that the oxidation of o-dihydric phenols converts the enzymic copper into a species catalytically active in hydroxylation. This may represent the primary function for the catechol oxidase activity of the phenolase complex. The electron donors are concerned mainly, but not entirely, in the reduction of o-quinones produced in this reaction.  相似文献   

6.
Selenium (Se) deficiency produced up to a 14-fold decrease in hepatic tri-iodothyronine (T3) production from thyroxine (T4) in vitro. The T3 production rate could not be restored by the addition of a variety of cofactors, nor by the addition of control homogenate. The impairment in hepatic T3 production observed in Se deficiency was reflected in the concentrations of thyroid hormones circulating in plasma, T4 being increased approx. 40% and T3 being decreased by 30%. However, the fall in plasma T3 concentrations was smaller than might be expected in view of the marked decreased in T3 production. Se deficiency had no measurable effect on plasma reverse-tri-iodothyronine concentrations. The data suggest that Se deficiency produces an inhibition of both 5- and 5'-deiodination, consistent with the widely held view that these reactions are catalysed by the same enzyme complex. The mechanism of inhibition appears not be mediated by changes in thiol levels, but a direct role of Se in the activity of the deiodinase complex cannot be excluded.  相似文献   

7.
An improved procedure was developed to extract prolyl hydroxylase from tendon cells of chick embryos with detergent, and improved assays were developed for both the activity of the enzyme and the amount of enzyme protein. Freshly isolated tendon cells were found to contain approx. 100 mug of enzyme protein per 10(8) cells and 40-50% of the enzyme protein was active. When the cells were cultured, they were found to contain the same amount of enzyme protein but only 15-20% of the enzyme protein was active. Gel filtration of cell extracts indicated that the active form of prolyl hydroxylase in freshly isolated tendon cells and incultured tendon cells had the same apparent size and the same activity per mug of immunoreactive protein as enzyme which was shown to be a tetramer. The inactive form was found to have about the same apparent size as subunits of the enzyme. When freshly isolated cells were incubated for 2 h in the presence of 40 mug per ml of ascorbate, there was a slight increase in the rate of hydroxyproline synthesis. In cultured cells, ascorbate at a concentration of 40 mug per ml caused a 2-fold increase in the rate of hydroxyproline synthesis within 30 min. However, ascorbate did not icrease the activity of prolyl hydroxylase in extracts from either cell system. Therefore it appears that the influence of ascorbate on synthesis of procollagen hydroxyproline by the cells studied here must be ascribed to a cofactor effect on the hydroxylation reaction similar to that observed with purified enzyme, and it does not involve "activation" of inactive enzyme protein to active enzyme as has been observed in cultures of L-929 and 3T6 mouse fibroblasts.  相似文献   

8.
Phytanoyl-CoA hydroxylase is a peroxisomal alpha-oxidation enzyme that catalyzes the 2-hydroxylation of 3-methyl-branched acyl-CoAs. A polyhistidine-tagged human phytanoyl-CoA hydroxylase was expressed in E. coli and subsequently purified as an active protein. The recombinant enzyme required GTP or ATP and Mg(2+), in addition to its known cofactors Fe(2+), 2-oxoglutarate, and ascorbate. The enzyme was active towards phytanoyl-CoA and 3-methylhexadecanoyl-CoA, but not towards 3-methylhexadecanoic acid. Racemic, R- and S-3-methylhexadecanoyl-CoA were equally well hydroxylated. Hydroxylation of R- and S-3-methylhexadecanoyl-CoA yielded the (2S, 3R) and (2R,3S) isomers of 2-hydroxy-3-methylhexadecanoyl-CoA, respectively. Human phytanoyl-CoA hydroxylase did not show any activity towards 2-methyl- and 4-methyl-branched acyl-CoAs or towards long and very long straight chain acyl-CoAs, excluding a possible role for the enzyme in the formation of 2-hydroxylated and odd-numbered straight chain fatty acids, which are abundantly present in brain. In conclusion, we report the unexpected requirement for ATP or GTP and Mg(2+) of phytanoyl-CoA hydroxylase in addition to the known hydroxylation cofactors. Due to the fact that straight chain fatty acyl-CoAs are not a substrate for phytanoyl-CoA hydroxylase, 2-hydroxylation of fatty acids in brain can be allocated to a different enzyme/pathway.  相似文献   

9.
In vitro hydroxylation of the norlignan agatharesinol to sequirin C and metasequirin C was demonstrated for the first time. After incubating agatharesinol with a microsomal preparation from the heartwood side of the intermediate wood of Cryptomeria japonica in the presence of cofactors, the aromatic ring-monohydroxylated derivatives of agatharesinol, sequirin C and metasequirin C, were formed. Although hydroxylation hardly occurred in the absence of cofactors, it could be initiated by adding NADPH or NADH, and was enhanced by further adding FAD or FMN. When microsomal preparations from the sapwood or from the sapwood side of the intermediate wood were used, hydroxylation did not occur. This in vitro conversion of the norlignans indicates that the hydroxylation of agatharesinol to sequirin C and metasequirin C is part of the in vivo biosynthetic pathway of norlignans. Another C. japonica norlignan, sugiresinol, which is a side chain-cyclized isomer of agatharesinol, does not seem to be accepted as a substrate, because hardly any hydroxysugireinol was formed after similar incubation with the enzyme.  相似文献   

10.
Summary A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual human erythrocytes is described. This staining method can be used for the rapid routine discrimination of patients with a deficiency of the enzyme in its homozygote or heterozygote form, but also for quantitative localization of its activity in individual erythrocytes. The staining procedure in its optimal form consists of a treatment of the erythrocytes with sodium nitrite, then a fixation in 0.025% glutaraldehyde (under NADP+ protection of the active site of the enzyme), followed by incubation of the cells in suspension in the presence of tetranitro BT, 1-methoxyphenazine methosulphate and polyvinyl alcohol. Using this new technique, a sharp localization is obtained of the glucose-6-phosphate dehydrogenase activity, which enables discrimination between red cells with different levels of enzyme activity, as a consequence of enzyme deficiencies or age changes.  相似文献   

11.
Thioredoxin reductase and thioredoxin constitute the cellular thioredoxin system, which provides reducing equivalents to numerous intracellular target disulfides. Mammalian thioredoxin reductase contains the rare amino acid selenocysteine. Known as the "21st" amino acid, selenocysteine is inserted into proteins by recoding UGA stop codons. Some model eukaryotic organisms lack the ability to insert selenocysteine, and prokaryotes have a recoding apparatus different from that of eukaryotes, thus making heterologous expression of mammalian selenoproteins difficult. Here, we present a semisynthetic method for preparing mammalian thioredoxin reductase. This method produces the first 487 amino acids of mouse thioredoxin reductase-3 as an intein fusion protein in Escherichia coli cells. The missing C-terminal tripeptide containing selenocysteine is then ligated to the thioester-tagged protein by expressed protein ligation. The semisynthetic version of thioredoxin reductase that we produce in this manner has k(cat) values ranging from 1500 to 2220 min(-)(1) toward thioredoxin and has strong peroxidase activity, indicating a functional form of the enzyme. We produced the semisynthetic thioredoxin reductase with a total yield of 24 mg from 6 L of E. coli culture (4 mg/L). This method allows production of a fully functional, semisynthetic selenoenzyme that is amenable to structure-function studies. A second semisynthetic system is also reported that makes use of peptide complementation to produce a partially active enzyme. The results of our peptide complementation studies reveal that a tetrapeptide that cannot ligate to the enzyme (Ac-Gly-Cys-Sec-Gly) can form a noncovalent complex with the truncated enzyme to form a weak complex. This noncovalent peptide-enzyme complex has 350-500-fold lower activity than the semisynthetic enzyme produced by peptide ligation.  相似文献   

12.
Total trehalose 6-phosphate synthase activity increased in cell-free extracts from Candida utilis following short-term preincubation of the enzyme samples at 37 degrees C. This endogenous activation was prevented by the inhibitors of serine-type proteases, phenylmethylsulfonyl fluoride, antipain or chymostatin, but not by other protease inhibitors such as pepstatin. Fractionation of the cell extracts by Sephadex G-200 gel filtration revealed that the activity of one of the two synthase enzymes present in these cells was enhanced after the activation treatment. These observations indicate the existence of a proteolytically activatable enzyme form in the trehalose 6-phosphate synthase complex of this yeast in addition to the previously characterized enzyme, whose activity appears to be inactivated by reversible phosphorylation.  相似文献   

13.
Ten minutes after inhibition of protein synthesis with chloramphenicol (CAP) the ability of cells of Streptococcus faecalis (ATCC 9790) to autolyze decreased to less than 20% of the rate for exponential-phase cells. After threonine exhaustion, the time for a 50% drop in the rate of cellular autolysis was about 20 min. These rapid increases in resistance to cellular autolysis could not be accounted for by: (i) the relatively slow and small overall decrease in susceptibility of isolated cell walls to added autolysin, or (ii) a decreased content of either the active or latent (proteinase activatable) form of the autolysin in the wall fraction. Continued wall synthesis resulted in dilution of preexisting autolysin in the isolated wall fraction. The release of labeled "old" relative to "new" wall from CAP-treated cultures showed that wall synthesis shifted away from the areas of wall previously shown to be associated with wall synthesis (extension) in exponential-phase cells. A corresponding dispersal of active autolysin activity was not observed. By using actinomycin D and CAP, a requirement for ribonucleic acid and protein synthesis early in the recovery of cells from amino acid starvation was demonstrated for the recovery in the ability of cells to autolyze. Evidence was obtained which suggests that a protein is involved in the conversion of latent to active autolysin. During recovery from amino acid starvation, increase in wall synthesis and content of active autolysin was delayed (25 to 35 min), whereas an increase in turbidity and latent enzyme content began within 10 min. After treatment with CAP at 22 or 52 min of recovery, a further increase in levels of both active and latent autolysin was severely inhibited; however, the increase in rate of wall synthesis was indistinguishable from that of an untreated control. This suggests that an increase in rate of wall synthesis does not depend on an increase in level of active autolysin.  相似文献   

14.
Szebenyi DM  Liu X  Kriksunov IA  Stover PJ  Thiel DJ 《Biochemistry》2000,39(44):13313-13323
Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate-dependent enzyme that catalyzes the reversible conversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. This reaction generates single carbon units for purine, thymidine, and methionine biosynthesis. The enzyme is a homotetramer comprising two obligate dimers and four pyridoxal phosphate-bound active sites. The mammalian enzyme is present in cells in both catalytically active and inactive forms. The inactive form is a ternary complex that results from the binding of glycine and 5-formyltetrahydrofolate polyglutamate, a slow tight-binding inhibitor. The crystal structure of a close analogue of the inactive form of murine cytoplasmic SHMT (cSHMT), lacking only the polyglutamate tail of the inhibitor, has been determined to 2.9 A resolution. This first structure of a ligand-bound mammalian SHMT allows identification of amino acid residues involved in substrate binding and catalysis. It also reveals that the two obligate dimers making up a tetramer are not equivalent; one can be described as "tight-binding" and the other as "loose-binding" for folate. Both active sites of the tight-binding dimer are occupied by 5-formyltetrahydrofolate (5-formylTHF), whose N5-formyl carbon is within 4 A of the glycine alpha-carbon of the glycine-pyridoxal phosphate complex; the complex appears to be primarily in its quinonoid form. In the loose-binding dimer, 5-formylTHF is present in only one of the active sites, and its N5-formyl carbon is 5 A from the glycine alpha-carbon. The pyridoxal phosphates appear to be primarily present as geminal diamine complexes, with bonds to both glycine and the active site lysine. This structure suggests that only two of the four catalytic sites on SHMT are catalytically competent and that the cSHMT-glycine-5-formylTHF ternary complex is an intermediate state analogue of the catalytic complex associated with serine and glycine interconversion.  相似文献   

15.
Tyrosine hydroxylase has been purified to homogeneity from cultured PC-12 cells. The protein migrates as a single band with a molecular weight of 60,000 on sodium dodecyl sulfate polyacrylamide electrophoresis. Two-dimensional electrophoresis of the pure enzyme resolves three spots (each with molecular weights of 60,000) with isoelectric points of 5.4, 5.8 and 5.9. This charge heterogeneity cannot be explained by the presence of sugar or lipid moieties on the enzyme. Amino acid analysis indicates a relatively high content of hydrophobic amino acids and a lower serine content than other preparations of tyrosine hydroxylase. The enzyme hydroxylates tryptophan at approximately 1% of its rate of tyrosine hydroxylation but will not catalyze the hydroxylation of phenylalanine. Polyclonal antibodies were produced in rabbits against pure tyrosine hydroxylase and were judged to be monospecific by Western blot analysis. The IgG fraction was isolated from serum, and when coupled to cyanogen bromide activated Sepharose, could be used to purify tyrosine hydroxylase from crude extracts in a single step. The antiserum proved to be very useful in immunoprecipitation and immunocytochemical experiments with tyrosine hydroxylase.  相似文献   

16.
Reductant used as cofactor for the prolyl hydroxylase reaction, was measured by a tritium release assay modified from an enzyme assay by making all components of the assay system saturating except for the reductant, but including prolyl hydroxylase. Reduced glutathione (6 mm), which had little activity as a cofactor, and thymol (0.1 mm), an antioxidant which exhibited no cofactor activity at all, were required for optimal proline hydroxylation dependent on reducing cofactor, with thymol fulfilling the previously described requirement for catalase. Ascorbate, cysteine and 6,7-dimethyltetrahydropterin were active as cofactors, in descending order of activity at equimolar concentrations, and activity was concentration dependent for all of these compounds. Sonicates of stationary phase L-929 cells which exhibit ascorbate-independent proline hydroxylation in culture contained reducing cofactor which could replace ascorbate in the cofactor assay, while sonicates of log phase cells which exhibit an ascorbate requirement in culture contained about one-third or less of that amount. NADH and NADPH, which themselves have little or no activity as cofactor, increased the cofactor activity of log phase cell sonicates but had relatively little effect on the activity of stationary cell sonicates suggesting that the cofactor is in a more reduced state in stationary phase. Within 24 h after replating dense, stationary phase cell cultures at low density, conditions where cells return to ascorbate dependence, prolyl hydroxylase activity had decreased to one-fifth the original activity while the concentration of functional reducing cofactor had decreased to less than 1% of its original concentration, largely as a result of oxidation. Ascorbate was not present in L-929 cells sonicates and the levels of tetrahydropterin and cysteine in sonicates could not account for the amount of cofactor activity exhibited by the sonicates in the assay system. Treatment of L-929 cultures with aminopterin did not decrease ascorbate independence, suggesting that tetrahydrofolate did not contribute significantly to cellular proline hydroxylation. These results suggest that an unidentified reductant present in L-929 cells can account for ascorbate-independent proline hydroxylation and also regulate prolyl hydroxylase activity in these cells and that cellular levels of reduced pyridine nucleotides may regulate the reduction state of this substance.  相似文献   

17.
18.
A recently described new form of hyperphenylalaninemia is characterized by the excretion of 7-substituted isomers of biopterin and neopterin and 7-oxo-biopterin in the urine of patients. It has been shown that the 7-substituted isomers of biopterin and neopterin derive from L-tetrahydrobiopterin and D-tetrahydroneopterin and are formed during hydroxylation of phenylalanine to tyrosine with rat liver dehydratase-free phenylalanine hydroxylase. We have now obtained identical results using human phenylalanine hydroxylase. The identity of the pterin formed in vitro and derived from L-tetrahydrobiopterin as 7-(1',2'-dihydroxypropyl)pterin was proven by gas-chromatography mass spectrometry. Tetrahydroneopterin and 6-hydroxymethyltetrahydropterin also are converted to their corresponding 7-substituted isomers and serve as cofactors in the phenylalanine hydroxylase reaction. Dihydroneopterin is converted by dihydrofolate reductase to the tetrahydro form which is biologically active as a cofactor for the aromatic amino acid monooxygenases. The 6-substituted pterin to 7-substituted pterin conversion occurs in the absence of pterin-4a-carbinolamine dehydratase and is shown to be a nonenzymatic process. 7-Tetrahydrobiopterin is both a substrate (cofactor) and a competitive inhibitor with 6-tetrahydrobiopterin (Ki approximately 8 microM) in the phenylalanine hydroxylase reaction. For the first time, the formation of 7-substituted pterins from their 6-substituted isomers has been demonstrated with tyrosine hydroxylase, another important mammalian enzyme which functions in the hydroxylation of phenylalanine and tyrosine.  相似文献   

19.
L H Hurley  C Gairola  N V Das 《Biochemistry》1976,15(17):3760-3769
11-Demethyltomaymycin, an antitumor antibiotic produced by Streptomyces achromogenes, and its biologically inactive metabolite oxotomaymycin are biosynthesized from L-tyrosine, DL-tryptophan, and L-methionine. The anthranilate part of 11-demethyltomaymycin is derived from tryptophan probably via the kynurenine pathway. The predominant loss of tritium from DL-[5-3H]tryptophan, during its conversion to 11-demethyltomaymycin and oxotomaymycin is interpreted to mean by NIH shift rules, that the main pathway to the 5-methoxy-4-hydroxy anthranilate moiety is through hydroxylation at C-8 prior to hydroxylation at C-7. The methoxy carbon is derived from the S-methyl group of methionine by transfer of an intact methyl group. The ethylideneproline moiety of 11-demethyltomaymycin is biosynthesized from tyrosine, without a 1-carbon unit from methionine. The results of biosynthetic feeding experiments with L-[1-14C, 3- or 5-3H]tyrosine are consistent with a "meta" or extradiol cleavage of 6,7-dihydroxycyclodopa as has also been demonstrated previously for anthramycin and lincomycin A. An experiment in which L-[1-14C, Ala-2,3-3H]tyrosine was fed showed that both the beta hydrogens of this amino acids are retained in 11-demethyltomaymycin. It has been demonstrated in cultures and washed cell preparations that 11-demethyltomaymycin is enzymatically converted to oxotomaymycin by an intracellular constitutive enzyme. Conversion of oxotomaymycin to 11-demethyltomaymycin by these same preparations could not be demonstrated. The enzymatic activity associated with the conversion of 11-demethyltomaymycin to oxotomaymycin is not limited to the 11-demethyltomaymycin to oxotomaymycin is not limited to the 11-demethyltomaymycin production phase, since trophophase cells and even cells from 11-demethyltomaymycin nonproducing cultures of S. achromogenes were equally active in converting 11-demethyltomaymycin to oxotomaymycin.  相似文献   

20.
The properties of alpha-ketoglutarate dehydrogenase with non-interacting active sites were investigated. The substrate and coenzyme saturation curves are found to be hyperbolic, which is consistent with the absence of cooperativity between the active sites of the enzyme. The peculiarities of KGD of this form, determining its functional properties, were revealed. Thus, 6 cysteine residues of the enzyme possess different properties in comparison with the form of the enzyme with interacting active sites. 3 Sulfhydryl groups of the "non-cooperative" enzyme form were rapidly oxidized in the process of the enzyme isolation and storage; thereafter they could not be reduced by dithiols. Three other cysteine residues are probably involved in the formation of disulfide bonds. Two of them are supposed to form intramolecular disulfide, whereas the third one is thought to be modified by some low molecular weight disulfide. The reduction of these sulfhydryl groups by dithiols is shown to be accompanied by the appearance of the kinetic cooperativity with respect to the substrate. It is suggested that the thiol/disulfide exchange in vivo can regulate a reversible conversion of the "non-cooperative" KGD form into one with interacting sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号