首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
alpha-Hemolysin (alphaHL) is secreted by Staphylococcus aureus as a water-soluble monomer that assembles into a heptamer to form a transmembrane pore on a target membrane. The crystal structures of the LukF water-soluble monomer and the membrane-bound alpha-hemolysin heptamer show that large conformational changes occur during assembly. However, the mechanism of assembly and pore formation is still unclear, primarily because of the difficulty in obtaining structural information on assembly intermediates. Our goal is to use disulfide bonds to selectively arrest and release alphaHL from intermediate stages of the assembly process and to use these mutants to test mechanistic hypotheses. To accomplish this, we created four double cysteine mutants, D108C/K154C (alphaHL-A), M113C/K147C (alphaHL-B), H48C/ N121C (alphaHL-C), I5C/G130C (alphaHL-D), in which disulfide bonds may form between the pre-stem domain and the beta-sandwich domain to prevent pre-stem rearrangement and membrane insertion. Among the four mutants, alphaHL-A is remarkably stable, is produced at a level at least 10-fold greater than that of the wild-type protein, is monomeric in aqueous solution, and has hemolytic activity that can be regulated by the presence or absence of reducing agents. Cross-linking analysis showed that alphaHL-A assembles on a membrane into an oligomer, which is likely to be a heptamer, in the absence of a reducing agent, suggesting that oxidized alphaHL-A is halted at a heptameric prepore state. Therefore, conformational rearrangements at positions 108 and 154 are critical for the completion of alphaHL assembly but are not essential for membrane binding or for formation of an oligomeric prepore intermediate.  相似文献   

2.
The staphylococcal alpha-toxin and bipartite leucotoxins belong to a single family of pore-forming toxins that are rich in beta-strands, although the stoichiometry and electrophysiological characteristics of their pores are different. The different known structures show a common beta-sandwich domain that plays a key role in subunit-subunit interactions, which could be targeted to inhibit oligomerization of these toxins. We used several cysteine mutants of both HlgA (gamma-haemolysin A) and HlgB (gamma-haemolysin B) to challenge 20 heterodimers linked by disulphide bridges. A new strategy was developed in order to obtain a good yield for S-S bond formation and dimer stabilization. Functions of the pores formed by 14 purified dimers were investigated on model membranes, i.e. planar lipid bilayers and large unilamellar vesicles, and on target cells, i.e. rabbit and human red blood cells and polymorphonuclear neutrophils. We observed that dimers HlgA T28C-HlgB N156C and HlgA T21C-HlgB T157C form pores with similar characteristics as the wild-type toxin, thus suggesting that the mutated residues are facing one another, allowing pore formation. Our results also confirm the octameric stoichiometry of the leucotoxin pores, as well as the parity of the two monomers in the pore. Correctly assembled heterodimers thus constitute the minimal functional unit of leucotoxins. We propose amino acids involved in interactions at one of the two interfaces for an assembled leucotoxin.  相似文献   

3.
Nguyen VT  Kamio Y  Higuchi H 《The EMBO journal》2003,22(19):4968-4979
Single-molecule fluorescence imaging was used to investigate assembly of Staphylococcus aureus LukF and HS monomers into pore-forming oligomers (gamma-hemolysin) on erythrocyte membranes. We distinguished the hetero-oligomers from the monomers, as indicated by fluorescence resonance energy transfer between different dyes attached to monomeric subunits. The stoichiometry of LukF (donor) and HS (acceptor) subunits in oligomers was deduced from the acceptor emission intensities during energy transfer and by direct acceptor excitation, respectively. Based on populations of monomeric and oligomeric intermediates, we estimated 11 sequential equilibrium constants for the assembly pathway, beginning with membrane binding of monomers, proceeding through single pore oligomerization, and culminating in the formation of clusters of pores. Several stages are highly cooperative, critically enhancing the efficiency of assembly.  相似文献   

4.
Staphylococcal alpha-hemolysin (alphaHL) is a beta barrel pore-forming toxin that is secreted by the bacterium as a water-soluble monomeric protein. Upon binding to susceptible cells, alphaHL assembles via an inactive prepore to form a water-filled homoheptameric transmembrane pore. The N terminus of alphaHL, which in the crystal structure of the fully assembled pore forms a latch between adjacent subunits, has been thought to play a vital role in the prepore to pore conversion. For example, the deletion of two N-terminal residues produced a completely inactive protein that was arrested in assembly at the prepore stage. In the present study, we have re-examined assembly with a comprehensive set of truncation mutants. Surprisingly, we found that after truncation of up to 17 amino acids, the ability of alphaHL to form functional pores was diminished, but still substantial. We then discovered that the mutation Ser(217) --> Asn, which was present in our original set of truncations but not in the new ones, promotes complete inactivation upon truncation of the N terminus. Therefore, the N terminus of alphaHL cannot be critical for the prepore to pore transformation as previously thought. Residue 217 is involved in the assembly process and must interact indirectly with the distant N terminus during the last step in pore formation. In addition, we provide evidence that an intact N terminus prevents the premature oligomerization of alphaHL monomers in solution.  相似文献   

5.
During mitosis, the nuclear envelope merges with the endoplasmic reticulum (ER), and nuclear pore complexes are disassembled. In a current model for reassembly after mitosis, the nuclear envelope forms by a reshaping of ER tubules. For the assembly of pores, two major models have been proposed. In the insertion model, nuclear pore complexes are embedded in the nuclear envelope after their formation. In the prepore model, nucleoporins assemble on the chromatin as an intermediate nuclear pore complex before nuclear envelope formation. Using live-cell imaging and electron microscope tomography, we find that the mitotic assembly of the nuclear envelope primarily originates from ER cisternae. Moreover, the nuclear pore complexes assemble only on the already formed nuclear envelope. Indeed, all the chromatin-associated Nup107-160 complexes are in single units instead of assembled prepores. We therefore propose that the postmitotic nuclear envelope assembles directly from ER cisternae followed by membrane-dependent insertion of nuclear pore complexes.  相似文献   

6.
Staphylococcal leukocidin (Luk) and alpha-hemolysin (alphaHL) are members of the same family of beta barrel pore-forming toxins (betaPFTs). Although the alphaHL pore is a homoheptamer, the Luk pore is formed by the co-assembly of four copies each of the two distantly related polypeptides, LukF and LukS, to form an octamer. Here, we examine N- and C-terminal truncation mutants of LukF and LukS. LukF subunits missing up to nineteen N-terminal amino acids are capable of producing stable, functional hetero-oligomers with WT LukS. LukS subunits missing up to fourteen N-terminal amino acids perform similarly in combination with WT LukF. Further, the simultaneous truncation of both LukF and LukS is tolerated. Both Luk subunits are vulnerable to short deletions at the C terminus. Interestingly, the N terminus of the LukS polypeptide becomes resistant to proteolytic digestion in the fully assembled Luk pore while the N terminus of LukF remains in an exposed conformation. The results from this work and related experiments on alphaHL suggest that, although the N termini of betaPFTs may undergo reorganization during assembly, they are dispensable for the formation of functional pores.  相似文献   

7.
Three short hydrophobic loops and a conserved undecapeptide at the tip of domain 4 (D4) of the cholesterol-dependent cytolysins (CDCs) mediate the binding of the CDC monomers to cholesterol-rich cell membranes. But intermedilysin (ILY), from Streptococcus intermedius, does not bind to cholesterol-rich membranes unless they contain the human protein CD59. This observation suggested that the D4 loops, which include loops L1-L3 and the undecapeptide, of ILY were no longer required for its cell binding. However, we show here that membrane insertion of the D4 loops is required for the cytolysis by ILY. Receptor binding triggers changes in the structure of ILY that are necessary for oligomerization, but membrane insertion of the D4 loops is critical for oligomer assembly and pore formation. Defects that prevent membrane insertion of the undecapeptide also block assembly of the prepore oligomer, while defects in the membrane insertion of the L1-L3 loops prevent the conversion of the prepore oligomer to the pore complex. These studies reveal that pore formation by ILY, and probably other CDCs, is affected by an intricate and coupled sequence of interactions between domain 4 and the membrane.  相似文献   

8.
Cholesterol-dependent cytolysins are a family of poreforming proteins that have been shown to be virulence factors for a large number of pathogenic bacteria. The mechanism of pore formation for these toxins involves a complex series of events that are known to include binding, oligomerization, and insertion of a transmembrane beta-barrel. Several features of this mechanism remain poorly understood and controversial. Whereas a prepore mechanism has been proposed for perfringolysin O, a very different mechanism has been proposed for the homologous member of the family, streptolysin O. To distinguish between the two models, a novel approach that directly measures the dimension of transmembranes pores was used. Pore formation itself was examined for both cytolysins by encapsulating fluorescein-labeled peptides and proteins of different sizes into liposomes. When these liposomes were re-suspended in a solution containing anti-fluorescein antibodies, toxin-mediated pore formation was monitored directly by the quenching of fluorescein emission as the encapsulated molecules were released, and the dyes were bound by the antibodies. The analysis of pore formation determined using this approach reveals that only large pores are produced by perfringolysin O and streptolysin O during insertion (and not small pores that grow in size). These results are consistent only with the formation of a prepore complex intermediate prior to insertion of the transmembrane beta-barrel into the bilayer. Fluorescence quenching experiments also revealed that PFO in the prepore complex contacts the membrane via domain 4, and that the individual transmembrane beta-hairpins in domain 3 are not exposed to the nonpolar core of the bilayer at this intermediate stage.  相似文献   

9.
Self-assembling, pore-forming toxins from Staphylococcus aureus are illustrative molecules for the study of the assembly and membrane insertion of oligomeric transmembrane proteins. On the basis of previous studies, we have shown that the two-component gamma-hemolysin assembles from LukF (or Hlg1, 34 kDa) and Hlg2 (32 kDa) to form ring-shaped transmembrane pores of ca. 200 kDa. Here we show that LukF and Hlg2 assemble in a stochastic manner to form alternate complexes with subunit stoichiometries of 3:4 and 4:3. High-resolution electron microscopic images of negatively stained pore complexes clearly revealed a heptameric structure. When adjacent monomers in the pore complexes were randomly cross-linked by using glutaraldehyde, LukF-LukF, LukF-Hlg2, and Hlg2-Hlg2 dimers were detected in an approximate ratio of 1:12:1, suggesting that LukF and Hlg2 were alternately arranged in the pore complex in molar ratios of 3:4 and 4:3. The alternate arrangements of LukF and Hlg2 in molar ratios of 3:4 and 4:3 were also visualized under electron microscope with the pore complexes consisting of glutathione S-transferase fusion protein of LukF or Hlg2 and wild-type protein of Hlg2 or LukF, respectively.  相似文献   

10.
Cholesterol Dependent Cytolysins (CDCs) are important bacterial virulence factors that form large (200–300 Å) membrane embedded pores in target cells. Currently, insights from X-ray crystallography, biophysical and single particle cryo-Electron Microscopy (cryo-EM) experiments suggest that soluble monomers first interact with the membrane surface via a C-terminal Immunoglobulin-like domain (Ig; Domain 4). Membrane bound oligomers then assemble into a prepore oligomeric form, following which the prepore assembly collapses towards the membrane surface, with concomitant release and insertion of the membrane spanning subunits. During this rearrangement it is proposed that Domain 2, a region comprising three β-strands that links the pore forming region (Domains 1 and 3) and the Ig domain, must undergo a significant yet currently undetermined, conformational change. Here we address this problem through a systematic molecular modeling and structural bioinformatics approach. Our work shows that simple rigid body rotations may account for the observed collapse of the prepore towards the membrane surface. Support for this idea comes from analysis of published cryo-EM maps of the pneumolysin pore, available crystal structures and molecular dynamics simulations. The latter data in particular reveal that Domains 1, 2 and 4 are able to undergo significant rotational movements with respect to each other. Together, our data provide new and testable insights into the mechanism of pore formation by CDCs.  相似文献   

11.
Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.  相似文献   

12.
Heptameric pores formed by the protective antigen (PA) moiety of anthrax toxin translocate the intracellular effector moieties of the toxin across the endosomal membrane to the cytosol of mammalian cells. We devised a protocol to characterize the effects of individual mutations in a single subunit of heptameric PA prepores (pore precursors) or pores. We prepared monomeric PA containing a test mutation plus an innocuous Cys‐replacement mutation at a second residue (Lys563, located on the external surface of the prepore). The introduced Cys was biotinylated, and the protein was allowed to cooligomerize with a 20‐fold excess of wild‐type PA. Finally, biotinylated prepores were freed from wild‐type prepores by avidin affinity chromatography. For the proof of principle, we examined single‐subunit mutations of Asp425 and Phe427, two residues where Ala replacements have been shown to cause strong inhibitory effects. The single‐subunit D425A mutation inhibited pore formation by >104 and abrogated activity of PA almost completely in our standard cytotoxicity assay. The single‐subunit F427A mutation caused ~100‐fold inhibition in the cytotoxicity assay, and this effect was shown to result from a combination of strong inhibition of translocation and smaller effects on pore formation and ligand affinity. Our results show definitively that replacing a single residue in one subunit of the heptameric PA prepore can inhibit the transport activity of the oligomer almost completely—and by different mechanisms, depending on the specific residue mutated.  相似文献   

13.
CD59 is a glycosylphosphatidylinositol-anchored protein that inhibits the assembly of the terminal complement membrane attack complex (MAC) pore, whereas Streptococcus intermedius intermedilysin (ILY), a pore forming cholesterol-dependent cytolysin (CDC), specifically binds to human CD59 (hCD59) to initiate the formation of its pore. The identification of the residues of ILY and hCD59 that form their binding interface revealed a remarkably deep correspondence between the hCD59 binding site for ILY and that for the MAC proteins C8α and C9. ILY disengages from hCD59 during the prepore to pore transition, suggesting that loss of this interaction is necessary to accommodate specific structural changes associated with this transition. Consistent with this scenario, mutants of hCD59 or ILY that increased the affinity of this interaction decreased the cytolytic activity by slowing the transition of the prepore to pore but not the assembly of the prepore oligomer. A signature motif was also identified in the hCD59 binding CDCs that revealed a new hCD59-binding member of the CDC family. Although the binding site on hCD59 for ILY, C8α, and C9 exhibits significant homology, no similarity exists in their binding sites for hCD59. Hence, ILY and the MAC proteins interact with common amino acids of hCD59 but lack detectable conservation in their binding sites for hCD59.  相似文献   

14.
Nguyen AH  Nguyen VT  Kamio Y  Higuchi H 《Biochemistry》2006,45(8):2570-2576
Single-molecule imaging of the entrance of a protein into the hydrophobic environment of a cell membrane was investigated. The pre-stem of LukF, one of the two components of the pore-forming toxin staphylococcal gamma-hemolysin, was specifically labeled with 6-bromoacetyl-2-dimethylaminonaphthalene (Badan), an environment-sensitive fluorophore. Incubation of this derivative with erythrocyte ghost membranes resulted in a pronounced increase in fluorescence indicating insertion of Badan into the hydrophobic interior of the lipid bilayers. However, the increase in fluorescence was completely dependent on the interaction of Badan-labeled LukF with the gamma-hemolysin second component. Individual spots of Badan fluorescence on erythrocyte membranes were visualized that were associated with single pores. Analyses of the intensities of these fluorescent spots and their photobleaching independently showed that a single pore contained 3-4 LukF molecules. Thus, environment-sensitive fluorophore signals can be used to study the insertion of specific protein domains into cell membranes at the single-molecule lever, and the use of this approach in the present study revealed that a single gamma-hemolysin pore opening contains at least three LukF molecules.  相似文献   

15.
Perfringolysin O (PFO), a soluble toxin secreted by the pathogenic Clostridium perfringens, forms large homo-oligomeric pore complexes comprising up to 50 PFO molecules in cholesterol-containing membranes. In this study, electron microscopy (EM) and single-particle image analysis were used to reconstruct two-dimensional (2D) projection maps from images of oligomeric PFO prepore and pore complexes formed on cholesterol-rich lipid layers. The projection maps are characterized by an outer and an inner ring of density peaks. The outer rings of the prepore and pore complexes are very similar; however, the protein densities that make up the inner ring of the pore complex are more intense and discretely resolved than they are for the prepore complex. The change in inner-ring protein density is consistent with a mechanism in which the monomers within the prepore complex make a transition from a partially disordered state to a more ordered transmembrane beta-barrel in the pore complex. Finally, the orientation of the monomers within the oligomeric complexes was determined by visualization of streptavidin (SA) molecules bound to biotinylated cysteine-substituted residues predicted to face either the inner or outer surface of the oligomeric pore complex. This study provides an unprecedented view of the conversion of the PFO prepore to pore complex.  相似文献   

16.
Perfringolysin O (PFO), a member of the cholesterol-dependent cytolysin family of pore-forming toxins, forms large oligomeric complexes comprising up to 50 monomers. In the present study, a disulfide bridge was introduced between cysteine-substituted serine 190 of transmembrane hairpin 1 (TMH1) and cysteine-substituted glycine 57 of domain 2 of PFO. The resulting disulfide-trapped mutant (PFO(C190-C57)) was devoid of hemolytic activity and could not insert either of its transmembrane beta-hairpins (TMHs) into the membrane unless the disulfide was reduced. Both the size of the oligomer formed on the membrane and its rate of formation were unaffected by the oxidation state of the Cys(190)-Cys(57) disulfide bond; thus, the disulfide-trapped PFO was assembled into a prepore complex on the membrane. The conversion of this prepore to the pore complex was achieved by reducing the C190-C57 disulfide bond. PFO(C190-C57) that was allowed to form the prepore prior to the reduction of the disulfide exhibited a dramatic increase in the rate of PFO-dependent hemolysis and the membrane insertion of its TMHs when compared with toxin that had the disulfide reduced prior mixing the toxin with membranes. Therefore, the rate-limiting step in pore formation is prepore assembly, not TMH insertion. These data demonstrate that the prepore is a legitimate intermediate during the insertion of the large transmembrane beta-sheet of the PFO oligomer. Finally, the PFO TMHs do not appear to insert independently, but instead their insertion is coupled.  相似文献   

17.
Staphylococcal gamma-hemolysin (Hlg), leukocidin (Luk), and Panton-Valentine leukocidin (PVL) are two-component and hetero-oligomeric pore-forming cytolytic toxins (or cytolysin), that were first identified in bacteria. No information on the existence of hetero-oligomeric pore-forming cytolytic toxins in bacteria except for staphylococcal strains is available so far. Hlg (Hlg1 of 34 kDa/Hlg2 of 32 kDa) effectively lyses erythrocytes from human and other mammalian species. Luk (LukF of 34 kDa/LukS of 33 kDa) is cytolytic toward human and rabbit polymorphonuclear leukocytes and rabbit erythrocytes, and PVL (LukF-PV of 34 kDa/LukS-PV of 33 kDa) reveals cytolytic activity with a high cell specificity to leukocytes. Hlg1 is identical to LukF and that the cell specificities of the cytolysins are determined by Hlg2 and LukS. Based on the primary and 3-dimensional structures of the toxin components, Hlg, Luk, and PVL are thought to form a family of proteins. In the first chapter of this article, we describe the molecular basis of the membrane pore-forming nature of Hlg, Luk, and PVL. We also describe a requirement of the phosphorylation of LukS and LukS-PV by protein kinase for their leukocytolytic activity besides their pore formation on human leukocytes.Recently, the assembly mechanism of the LukF and Hlg2 monomers into pore-forming hetero-oligomers of Hlg on human erythrocyte membranes has been clarified for the first time by our study using a single-molecular fluorescence imaging technique. We estimated 11 sequential equilibrium constants for the assembly pathway which includes the beginning with membrane binding of monomers, proceeds through single pore oligomerization, and culminates in the formation of clusters of the pores. In the second chapter of this article, we refer to an assembly mechanism of LukF and Hlg2 on human erythrocytes as well as the roles of the membranes of the target cells in pore formation by Hlg.The LukF, LukS, and Hlg2 proteins are derived from the Hlg locus (hlg), and have been found in 99% of clinical isolates of Staphylococcus aureus. In contrast, LukF-PV and LukS-PV are derived from the PVL locus (pvl) which is distinct from the hlg locus, and only a small percentage of clinically isolated S. aureus strains carries pvl. Recently, we discovered pvl on the genome of lysogenic bacteriophages, psiPVL, and determined the entire gene of the phage. We also demonstrated the phage conversion of S. aureus leading to the production of PVL through the discovery of a PVL-carrying temperate phage, psiSLT, from a clinical isolate of S. aureus. In the third chapter of this article, we discuss genetic analyses of the Hlg, Luk, and PVL genes. We also discuss the current status of knowledge of the genetic organization of PVL-converting phages in order to achieve an understanding of their molecular evolution.  相似文献   

18.
C J Miller  J L Elliott  R J Collier 《Biochemistry》1999,38(32):10432-10441
PA(63), the active 63 kDa form of anthrax protective antigen, forms a heptameric ring-shaped oligomer that is believed to represent a precursor of the membrane pore formed by this protein. When maintained at pH >/=8.0, this "prepore" dissociated to monomeric subunits upon treatment with SDS at room temperature, but treatment at pH 相似文献   

19.
Perfringolysin O (PFO) is a member of the cholesterol-dependent cytolysin (CDC) family of membrane-penetrating toxins. The CDCs form large homooligomers (estimated to be comprised of up to 50 CDC monomers) that are responsible for generating a large pore in cholesterol-containing membranes of eukaryotic cells. The assembly of the PFO cytolytic complex was examined to determine whether it forms an oligomeric prepore complex on the membrane prior to the insertion of its membrane-spanning beta-sheet. A PFO oligomeric complex was formed on liposomes at both 4 degrees C and 37 degrees C and shown by SDS-agarose gel electrophoresis to be comprised of a large, comparatively homogeneous complex instead of a distribution of oligomer sizes. At low temperature, the processes of oligomerization and membrane insertion could be resolved, and PFO was found to form an oligomer without significant membrane insertion of its beta-hairpins. Furthermore, PFO was found to increase the ion conductivity through a planar bilayer by large and discrete stepwise changes in conductance that are consistent with the insertion of a preassembled pore complex into the bilayer. The combined results of these analyses strongly support the hypothesis that PFO forms a large oligomeric prepore complex on the membrane surface prior to the insertion of its transmembrane beta-sheet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号