首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Similarity Plot (S-plot) is a Windows-based application for large-scale comparisons and 2-dimensional visualization of compositional similarities between genomic sequences. This application combines 2 approaches widely used in genomics: window analysis of statistical characteristics along genomes and dot-plot visual representation. S-plot is effective in identifying highly similar regions between genomes as well as regions with unusual compositional properties (RUCPs) within a single genome, which may be indicative of horizontal gene transfer or of locus-specific selective forces. We use S-plot to identify regions that may have originated through horizontal gene transfer through a 2-step approach, by first comparing a genomic sequence to itself and, subsequently, comparing it to the genomic sequence of a closely related taxon. Moreover, by comparing these suspect sequences to one another, we can estimate a minimum number of sources for these putative xenologous sequences. We illustrate the uses of S-plot in a comparison involving Escherichia coli K12 and E. coli O157:H7. In O157:H7, we found 145 regions that have most probably originated through horizontal gene transfer. By using S-plot to compare each of these regions with 277 completely sequenced prokaryotic genomes, 1 sequence was found to have similar compositional properties to the Yersinia pseudotuberculosis genome, indicating a transfer from a Yersinia or Yersinia relative. Based upon our analysis of RUCPs in O157:H7, we infer that there were at least 53 sources of horizontally transferred sequences.  相似文献   

2.
Microsatellites physically linked to expressed sequence tags (EST-SSRs) are an important resource for linkage mapping and comparative genomics, and data mining in publicly available EST databases is a common strategy for EST-SSR discovery. At present, many species lack species-specific EST sequence data needed for the efficient characterization of EST-SSRs. This paper describes the discovery and development of EST-SSRs for red drum (Sciaenops ocellatus), an estuarine-dependent sciaenid species of economic importance in the USA and elsewhere, using a phylogenetically informed, comparative genomics approach to primer design. The approach entailed comparing existing genomic resources from species closely allied phylogenetically to red drum, with resources from more distantly related outgroup species. By taking into account the degree to which flanking regions are conserved across taxa, the efficiency of PCR primer design was increased greatly. The amplification success rate for primers designed for red drum was 100?% when using EST libraries from confamilial species and 92?% when using an EST library from a species in the same suborder. The primers developed also amplified EST-SSRs in a wide range of perciform fishes, suggesting potential use in comparative genomics. This study demonstrates that EST-SSRs can be efficiently developed for an organism when limited species-specific data are available by exploiting genomic resources from well-studied species, even those at extended phylogenetic distances.  相似文献   

3.
4.
Comparative genomics is a powerful tool of genome functional specificity predictions and investigation of evolution specificity. Background of a large field of bioinformatics investigations is a computation of different scores of sequences and comparing them with a threshold. Comparative genomic analysis involves scores comparing for orthological groups of genetic objects. In this paper we represent a statistical approach to comparative genomic analysis, that based on investigation of diffusion in sequence space determined by neutral evolution of sequences. Using this approach we represent several statistics for selection pressure estimation and analyze statistics for several biological problems. We formulate technology of statistics applying to obtain new biological information. This approach is represented as Java-class library.  相似文献   

5.
6.
An integrated genome database is essential for future studies of functional genomics. In this study, we update cDNA and genomic resources of the ascidian, Ciona intestinalis, and provide an integrated database of the genomic and cDNA data by extending a database published previously. The updated resources include over 190,000 ESTs (672,396 in total together with the previous ESTs) and over 1,000 full-insert sequences (6,773 in total). In addition, results of mapping information of the determined scaffolds onto chromosomes, ESTs from a full-length enriched cDNA library for indication of precise 5'-ends of genes, and comparisons of SNPs and indels among different individuals are integrated into this database, all of these results being reported recently. These advances continue to increase the utility of Ciona intestinalis as a model organism whilst the integrated database will be useful for researchers in comparative and evolutionary genomics.  相似文献   

7.
Li Y  Dai E  Cui Y  Li M  Zhang Y  Wu M  Zhou D  Guo Z  Dai X  Cui B  Qi Z  Wang Z  Wang H  Dong X  Song Z  Zhai J  Song Y  Yang R 《PloS one》2008,3(5):e2166

Background

DFR (different region) analysis has been developed for typing Yesinia pestis in our previous study, and in this study, we extended this method by using 23 DFRs to investigate 909 Chinese Y. pestis strains for validating DFR-based genotyping method and better understanding adaptive microevolution of Y. pestis.

Methodology/Principal Findings

On the basis of PCR and Bionumerics data analysis, 909 Y. pestis strains were genotyped into 32 genomovars according to their DFR profiles. New terms, Major genomovar and Minor genomovar, were coined for illustrating evolutionary relationship between Y. pestis strains from different plague foci and different hosts. In silico DFR profiling of the completed or draft genomes shed lights on the evolutionary scenario of Y. pestis from Y. pseudotuberculosis. Notably, several sequenced Y. pestis strains share the same DFR profiles with Chinese strains, providing data for revealing the global plague foci expansion.

Conclusions/significance

Distribution of Y. pestis genomovars is plague focus-specific. Microevolution of biovar Orientalis was deduced according to DFR profiles. DFR analysis turns to be an efficient and inexpensive method to portrait the genome plasticity of Y. pestis based on horizontal gene transfer (HGT). DFR analysis can also be used as a tool in comparative and evolutionary genomic research for other bacteria with similar genome plasticity.  相似文献   

8.
Comparative genetics, genomics and cytogenetics provide tools to trace the evolutionary history of extant genomes. Yet, the interpretation of rapidly increasing genomic data is not always done in agreement with constraints determined by chromosome structural features and by insights obtained from chromosome mutagenesis. The terms 'non-reciprocal chromosome translocation', 'chromosome fusion' and 'centromere shift' used to explain genomic differences among organisms are misleading and often do not correctly reflect the mechanisms of chromosome rearrangements underlying the evolutionary karyotypic variation. Here, we (re)interpret evolutionary genome alterations in a parsimonious way and demonstrate that results of comparative genomics and comparative chromosome painting can be explained on the basis of known primary and secondary chromosome rearrangements. Therefore, some widespread terms used in comparative and evolutionary genomics should be either avoided (e.g. non-reciprocal translocation) or redefined (e.g. chromosome fusion and centromere shift).  相似文献   

9.
SUMMARY: The Arthropodan Mitochondrial Genomes Accessible database (AMiGA) is a relational database developed to help in managing access to the increasing amount of data arising from developments in arthropodan mitochondrial genomics (136 mitochondrial genomes as of September 2005). The strengths of AMiGA include (1) a more accessible and up-to-date database containing a more comprehensive set of mitochondrial genomes for this phylum, (2) the provision of flexible search options for retrieving detailed information such as bibliographical data, genomic graphics, FASTA sequences and taxonomical status, (3) the possibility of enhanced comparative analyses by multiple alignment of single or concatenated sets of genes, (4) more accurate and updated information resulting from a specific curation process called AMiGA Notes and (5) the possibility of including unpublished sequences in a password-restricted area for comparative analysis with the other sequences stored in the database. AVAILABILITY: http://amiga.cbmeg.unicamp.br CONTACT: lessinger@amiga.cbmeg.unicamp.br SUPPLEMENTARY INFORMATION: Detailed information, including an illustrated tutorial, is available from the above URL.  相似文献   

10.
Comparative genomics has become a real tantalizing challenge in the postgenomic era. This fact has been mostly magnified by the plethora of new genomes becoming available in a daily bases. The overwhelming list of new genomes to compare has pushed the field of bioinformatics and computational biology forward toward the design and development of methods capable of identifying patterns in a sea of swamping data noise. Despite many advances made in such endeavor, the ever-lasting annoying exceptions to the general patterns remain to pose difficulties in generalizing methods for comparative genomics. In this review, we discuss the different tools devised to undertake the challenge of comparative genomics and some of the exceptions that compromise the generality of such methods. We focus on endosymbiotic bacteria of insects because of their genomic dynamics peculiarities when compared to free-living organisms.  相似文献   

11.
The ultimate goal of functional genomics is to define the function of all the genes in the genome of an organism. A large body of information of the biological roles of genes has been accumulated and aggregated in the past decades of research, both from traditional experiments detailing the role of individual genes and proteins, and from newer experimental strategies that aim to characterize gene function on a genomic scale.It is clear that the goal of functional genomics can only be achieved by integrating information and data sources from the variety of these different experiments. Integration of different data is thus an important challenge for bioinformatics.The integration of different data sources often helps to uncover non-obvious relationships between genes, but there are also two further benefits. First, it is likely that whenever information from multiple independent sources agrees, it should be more valid and reliable. Secondly, by looking at the union of multiple sources, one can cover larger parts of the genome. This is obvious for integrating results from multiple single gene or protein experiments, but also necessary for many of the results from genome-wide experiments since they are often confined to certain (although sizable) subsets of the genome.In this paper, we explore an example of such a data integration procedure. We focus on the prediction of membership in protein complexes for individual genes. For this, we recruit six different data sources that include expression profiles, interaction data, essentiality and localization information. Each of these data sources individually contains some weakly predictive information with respect to protein complexes, but we show how this prediction can be improved by combining all of them. Supplementary information is available at http://bioinfo.mbb.yale.edu/integrate/interactions/.Abbreviations: TP: true possitive; TN: true negative; FP: false positive; FN: false negative; Y2H: yeast two-hybrid.  相似文献   

12.
Genome-wide protein interaction maps using two-hybrid systems   总被引:16,自引:0,他引:16  
Legrain P  Selig L 《FEBS letters》2000,480(1):32-36
  相似文献   

13.
A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes). Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention), built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html.  相似文献   

14.
Diversity arrays technology (DArT) genomic libraries were developed from H. chilense accessions to support robust genotyping of this species and a novel crop comprising H. chilense genome (e.g., tritordeums). Over 11,000 DArT clones were obtained using two complexity reduction methods. A subset of 2,209 DArT markers was identified on the arrays containing these clones as polymorphic between parents and segregating in a population of 92 recombinant inbred lines (RIL) developed from the cross between H. chilense accessions H1 and H7. Using the segregation data a high-density map of 1,503 cM was constructed with average inter-bin density of 2.33 cM. A subset of DArT markers was also mapped physically using a set of wheat-H. chilense chromosome addition lines. It allowed the unambiguous assignment of linkage groups to chromosomes. Four segregation distortion regions (SDRs) were found on the chromosomes 2H(ch), 3H(ch) and 5H(ch) in agreement with previous findings in barley. The new map improves the genome coverage of previous H. chilense maps. H. chilense-derived DArT markers will enable further genetic studies in ongoing projects on hybrid wheat, seed carotenoid content improvement or tritordeum breeding program. Besides, the genetic map reported here will be very useful as the basis to develop comparative genomics studies with barley and model species.  相似文献   

15.
The genome of stallion (Spanish breed) and donkey (Spanish endemic Zamorano-Leonés) were compared using whole comparative genomic in situ hybridization (W-CGH) technique, with special reference to the variability observed in the Y chromosome. Results show that these diverging genomes still share some highly repetitive DNA families localized in pericentromeric regions and, in the particular case of the Y chromosome, a sub-family of highly repeated DNA sequences, greatly expanded in the donkey genome, accounts for a large part of the chromatin in the stallion Y chromosome.Key words: mammalian genome, mammalian cytogenetics, genome evolution, comparative genomics.  相似文献   

16.
Despite the wide acceptance of yeast two-hybrid (Y2H) system for protein-protein interaction analysis and discovery, conventional Y2H assays are not well suited for high-throughput screening of the protein interaction network (“interactome”) on a genomic scale due to several limitations, including labor-intensive agar plating and colony selection methods associated with the use of nutrient selection markers, complicated reporter analysis methods associated with the use of LacZ enzyme reporters, and incompatibility of the liquid handling robots. We recently reported a robust liquid culture Y2H system based on quantitative analysis of yeast-enhanced green fluorescent protein (yEGFP) reporters that greatly increased the analysis throughput and compatibility with liquid handling robots. To further advance its utility in high-throughput complementary DNA (cDNA) library screening, we report the development of a novel surface display Y2H (sdY2H) library screening system with uniquely integrated surface display hemagglutination (sdHA) antigen and yEGFP reporters. By introduction of a surface reporter sdHA into the yEGFP-based Y2H system, positive Y2H targets are quickly isolated from library cells by a simple magnetic separation without a large plating effort. Moreover, the simultaneous scoring of multiple reporters, including sdHA, yEGFP, and conventional nutrient markers, greatly increased the specificity of the Y2H assay. The feasibility of the sdY2H assay on large cDNA library screening was demonstrated by the successful recovery of positive P53/T interaction pairs at a target-to-background ratio of 1:1,000,000. Together with the massive parallel DNA sequencing technology, it may provide a powerful proteomic tool for high-throughput interactome mapping on a genomic scale.  相似文献   

17.
Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics.  相似文献   

18.
Crop plants not only have economic significance, but also comprise important botanical models for evolution and development. This is reflected by the recent increase in the percentage of publicly available sequence data that are derived from angiosperms. Further genome sequencing of the major crop plants will offer new learning opportunities, but their large, repetitive, and often polyploid genomes present challenges. Reduced-representation approaches - such as EST sequencing, methyl filtration and Cot-based cloning and sequencing - provide increased efficiency in extracting key information from crop genomes without full-genome sequencing. Combining these methods with phylogenetically stratified sampling to allow comparative genomic approaches has the potential to further accelerate progress in angiosperm genomics.  相似文献   

19.

Background

Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods.

Principal Findings

The study revealed oscillations of gene exchange in enterobacteria, which originated from marine γ-Proteobacteria. These mobile genetic elements have become recombination hotspots and effective ‘vehicles’ ensuring a wide distribution of successful combinations of fitness and virulence genes among enterobacteria. Two remarkable peculiarities of the strain TY-2482 and its relatives were observed: i) retaining the genetic primitiveness by these strains as they somehow avoided the main fluxes of horizontal gene transfer which effectively penetrated other enetrobacteria; ii) acquisition of antibiotic resistance genes in a plasmid genomic island of β-Proteobacteria origin which ontologically is unrelated to the predominant genomic islands of enterobacteria.

Conclusions

Oscillations of horizontal gene exchange activity were reported which result from a counterbalance between the acquired resistance of bacteria towards existing mobile vectors and the generation of new vectors in the environmental microflora. We hypothesized that TY-2482 may originate from a genetically primitive lineage of E. coli that has evolved in confined geographical areas and brought by human migration or cattle trade onto an intersection of several independent streams of horizontal gene exchange. Development of a system for monitoring the new and most active gene exchange events was proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号