首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Young meristematic plant cells contain a large number of small vacuoles, while the largest part of the vacuome in mature cells is composed by a large central vacuole, occupying 80% to 90% of the cell volume. Thus far, only a limited number of vacuolar membrane proteins have been identified and characterized. The proteomic approach is a powerful tool to identify new vacuolar membrane proteins. To analyze vacuoles from growing tissues we isolated vacuoles from cauliflower (Brassica oleracea) buds, which are constituted by a large amount of small cells but also contain cells in expansion as well as fully expanded cells. Here we show that using purified cauliflower vacuoles and different extraction procedures such as saline, NaOH, acetone, and chloroform/methanol and analyzing the data against the Arabidopsis (Arabidopsis thaliana) database 102 cauliflower integral proteins and 214 peripheral proteins could be identified. The vacuolar pyrophosphatase was the most prominent protein. From the 102 identified proteins 45 proteins were already described. Nine of these, corresponding to 46% of peptides detected, are known vacuolar proteins. We identified 57 proteins (55.9%) containing at least one membrane spanning domain with unknown subcellular localization. A comparison of the newly identified proteins with expression profiles from in silico data revealed that most of them are highly expressed in young, developing tissues. To verify whether the newly identified proteins were indeed localized in the vacuole we constructed and expressed green fluorescence protein fusion proteins for five putative vacuolar membrane proteins exhibiting three to 11 transmembrane domains. Four of them, a putative organic cation transporter, a nodulin N21 family protein, a membrane protein of unknown function, and a senescence related membrane protein were localized in the vacuolar membrane, while a white-brown ATP-binding cassette transporter homolog was shown to reside in the plasma membrane. These results demonstrate that proteomic analysis of highly purified vacuoles from specific tissues allows the identification of new vacuolar proteins and provides an additional view of tonoplastic proteins.  相似文献   

2.
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel tonoplast transporters, we used a proteomic approach, analyzing the tonoplast fraction of highly purified mesophyll vacuoles of the crop plant barley (Hordeum vulgare). We identified 101 proteins, including 88 vacuolar and putative vacuolar proteins. The Suc transporter (SUT) HvSUT2 was discovered among the 40 vacuolar proteins, which were previously not reported in Arabidopsis (Arabidopsis thaliana) vacuolar proteomic studies. To confirm the tonoplast localization of this Suc transporter, we constructed and expressed green fluorescent protein (GFP) fusion proteins with HvSUT2 and its closest Arabidopsis homolog, AtSUT4. Transient expression of HvSUT2-GFP and AtSUT4-GFP in Arabidopsis leaves and onion (Allium cepa) epidermal cells resulted in green fluorescence at the tonoplast, indicating that these Suc transporters are indeed located at the vacuolar membrane. Using a microcapillary, we selected mesophyll protoplasts from a leaf protoplast preparation and demonstrated unequivocally that, in contrast to the companion cell-specific AtSUC2, HvSUT2 and AtSUT4 are expressed in mesophyll protoplasts, suggesting that HvSUT2 and AtSUT4 are involved in transport and vacuolar storage of photosynthetically derived Suc.  相似文献   

3.
Transport processes of solutes across the vacuolar membrane of higher plants   总被引:23,自引:0,他引:23  
The central vacuole is the largest compartment of a mature plant cell and may occupy more than 80% of the total cell volume. However, recent results indicate that beside the large central vacuole, several small vacuoles may exist in a plant cell. These vacuoles often belong to different classes and can be distinguished either by their contents in soluble proteins or by different types of a major vacuolar membrane protein, the aquaporins. Two vacuolar proton pumps, an ATPase and a PPase energize vacuolar uptake of most solutes. The electrochemical gradient generated by these pumps can be utilized to accumulate cations by a proton antiport mechanism or anions due to the membrane potential difference. Uptake can be catalyzed by channels or by transporters. Growing evidence shows that for most ions more than one transporter/channel exist at the vacuolar membrane. Furthermore, plant secondary products may be accumulated by proton antiport mechanisms. The transport of some solutes such as sucrose is energized in some plants but occurs by facilitated diffusion in others. A new class of transporters has been discovered recently: the ABC type transporters are directly energized by MgATP and do not depend on the electrochemical force. Their substrates are organic anions formed by conjugation, e.g. to glutathione. In this review we discuss the different transport processes occurring at the vacuolar membrane and focus on some new results obtained in this field.  相似文献   

4.
Carter C  Pan S  Zouhar J  Avila EL  Girke T  Raikhel NV 《The Plant cell》2004,16(12):3285-3303
Vacuoles play central roles in plant growth, development, and stress responses. To better understand vacuole function and biogenesis we have characterized the vegetative vacuolar proteome from Arabidopsis thaliana. Vacuoles were isolated from protoplasts derived from rosette leaf tissue. Total purified vacuolar proteins were then subjected either to multidimensional liquid chromatography/tandem mass spectrometry or to one-dimensional SDS-PAGE coupled with nano-liquid chromatography/tandem mass spectrometry (nano-LC MS/MS). To ensure maximum coverage of the proteome, a tonoplast-enriched fraction was also analyzed separately by one-dimensional SDS-PAGE followed by nano-LC MS/MS. Cumulatively, 402 proteins were identified. The sensitivity of our analyses is indicated by the high coverage of membrane proteins. Eleven of the twelve known vacuolar-ATPase subunits were identified. Here, we present evidence of four tonoplast-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), representing each of the four groups of SNARE proteins necessary for membrane fusion. In addition, potential cargo of the N- and C-terminal propeptide sorting pathways, association of the vacuole with the cytoskeleton, and the vacuolar localization of 89 proteins of unknown function are identified. A detailed analysis of these proteins and their roles in vacuole function and biogenesis is presented.  相似文献   

5.
Proteomics is a very powerful approach to link the information contained in sequenced genomes, like Arabidopsis, to the functional knowledge provided by studies of plant cell compartments, such as chloroplast envelope membranes. This review summarizes the present state of proteomic analyses of highly purified spinach and Arabidopsis envelope membranes. Methods targeted towards the hydrophobic core of the envelope allow identifying new proteins, and especially new transport systems. Common features were identified among the known and newly identified putative envelope inner membrane transporters and were used to mine the complete Arabidopsis genome to establish a virtual plastid envelope integral protein database. Arabidopsis envelope membrane proteins were extracted using different methods, that is, chloroform/methanol extraction, alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to the less hydrophobic ones. Mass spectrometry analyses lead to the identification of more than 100 proteins. More than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are (a) involved in ion and metabolite transport, (b) components of the protein import machinery and (c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism or in responses to oxidative stress, were associated with envelope membranes. Almost one third of the newly identified proteins have no known function. The present stage of the work demonstrates that a combination of different proteomics approaches together with bioinformatics and the use of different biological models indeed provide a better understanding of chloroplast envelope biochemical machinery at the molecular level.  相似文献   

6.
Potato tuber storage proteins were obtained from vacuoles isolated from field-grown starch potato tubers cv. Kuras. Vacuole sap proteins fractionated by gel filtration were studied by mass spectrometric analyses of trypsin and chymotrypsin digestions. The tuber vacuole appears to be a typical protein storage vacuole absent of proteolytic and glycolytic enzymes. The major soluble storage proteins included 28 Kunitz protease inhibitors, nine protease inhibitors 1, eight protease inhibitors 2, two carboxypeptidase inhibitors, eight patatins and five lipoxygenases (lox), which all showed cultivar-specific sequence variations. These proteins, except for lox, have typical endoplasmic reticulum (ER) signal peptides and putative vacuolar sorting determinants of either the sequence or structure specific type or the C-terminal type, or both. Unexpectedly, sap protein variants imported via the ER showed multiple molecular forms because of extensive and unspecific proteolytic cleavage of exposed N- and C-terminal propeptides and surface loops, in spite of the abundance of protease inhibitors. Some propeptides are potential novel vacuolar targeting peptides. In the insoluble vacuole fraction two variants of phytepsin (aspartate protease) were identified. These are most probably the processing enzymes of potato tuber vacuolar proteins. Database Proteome data have been submitted to the PRIDE database under accession number 17707.  相似文献   

7.
The vacuolar membrane is involved in solute uptake into and release from the vacuole, which is the largest plant organelle. In addition to inorganic ions and metabolites, large quantities of protons and sugars are shuttled across this membrane. Current models suggest that the proton gradient across the membrane drives the accumulation and/or release of sugars. Recent studies have associated AtSUC4 with the vacuolar membrane. Some members of the SUC family are plasma membrane proton/sucrose symporters. In addition, the sugar transporters TMT1 and TMT2, which are localized to the vacuolar membrane, have been suggested to function in proton-driven glucose antiport. Here we used the patch-clamp technique to monitor carrier-mediated sucrose transport by AtSUC4 and AtTMTs in intact Arabidopsis thaliana mesophyll vacuoles. In the whole-vacuole configuration with wild-type material, cytosolic sucrose-induced proton currents were associated with a proton/sucrose antiport mechanism. To identify the related transporter on one hand, and to enable the recording of symporter-mediated currents on the other hand, we electrophysiologically characterized vacuolar proteins recognized by Arabidopsis mutants of partially impaired sugar compartmentation. To our surprise, the intrinsic sucrose/proton antiporter activity was greatly reduced when vacuoles were isolated from plants lacking the monosaccharide transporter AtTMT1/TMT2. Transient expression of AtSUC4 in this mutant background resulted in proton/sucrose symport activity. From these studies, we conclude that, in the natural environment within the Arabidopsis cell, AtSUC4 most likely catalyses proton-coupled sucrose export from the vacuole. However, TMT1/2 probably represents a proton-coupled antiporter capable of high-capacity loading of glucose and sucrose into the vacuole.  相似文献   

8.
We generated fusions between three Arabidopsis (Arabidopsis thaliana) tonoplast intrinsic proteins (TIPs; alpha-, gamma-, and delta-TIP) and yellow fluorescent protein (YFP). We also produced soluble reporters consisting of the monomeric red fluorescent protein (RFP) and either the C-terminal vacuolar sorting signal of phaseolin or the sequence-specific sorting signal of proricin. In transgenic Arabidopsis leaves, mature roots, and root tips, all TIP fusions localized to the tonoplast of the central vacuole and both of the lumenal RFP reporters were found within TIP-delimited vacuoles. In embryos from developing, mature, and germinating seeds, all three TIPs localized to the tonoplast of protein storage vacuoles. To determine the temporal TIP expression patterns and to rule out mistargeting due to overexpression, we generated plants expressing YFP fused to the complete genomic sequences of the three TIP isoforms. In transgenic Arabidopsis, gamma-TIP expression was limited to vegetative tissues, but specifically excluded from root tips, whereas alpha-TIP was exclusively expressed during seed maturation. delta-TIP was expressed in vegetative tissues, but not root tips, at a later stage than gamma-TIP. Our findings indicate that, in the Arabidopsis tissues analyzed, two different vacuolar sorting signals target soluble proteins to a single vacuolar location. Moreover, TIP isoform distribution is tissue and development specific, rather than organelle specific.  相似文献   

9.
Proteins synthesized on membrane-bound ribosomes are sorted at the Golgi apparatus level for delivery to various cellular destinations: the plasma membrane or the extracellular space, and the lytic vacuole or lysosome. Sorting involves the assembly of vesicles, which preferentially package soluble proteins with a common destination. The selection of proteins for a particular vesicle type involves the recognition of proteins by specific receptors, such as the vacuolar sorting receptors for vacuolar targeting. Most eukaryotic organisms have one or two receptors to target proteins to the lytic vacuole. Surprisingly, plants have several members of the same family, seven in Arabidopsis thaliana. Why do plants have so many proteins to sort soluble proteins to their respective destinations? The presence of at least two types of vacuoles, lytic and storage, seems to be a partial answer. In this review we analyze the last experimental evidence supporting the presence of different subfamilies of plant vacuolar sorting receptors.  相似文献   

10.
A proteomic approach was developed for the identification of membrane-bound proteins of Arabidopsis thaliana. A subcellular fraction enriched in vacuolar membranes was prepared from 4-week-old plants and was washed with various agents to remove peripheral membrane proteins and contaminating soluble proteins. The remaining membrane-bound proteins were then subjected to proteomic analysis. Given that these proteins were resolved poorly by standard two-dimensional gel electrophoresis, we subjected them instead to SDS-polyacrylamide gel electrophoresis and to protein digestion within gel slices with lysylendopeptidase. The resulting peptides were separated by reverse-phase high-performance liquid chromatography and subjected to Edman sequencing. From the 163 peptide peaks analyzed, 69 peptide sequences were obtained, 64 of which were informative. The proteins corresponding to these peptide sequences were identified as belonging to 42 families, including two subfamilies, by comparison with the protein sequences predicted from annotation of the A. thaliana genome. A total of 34 proteins was identified definitively with protein-specific peptide sequences. Transmembrane proteins detected in the membrane fraction included transporters, channels, receptors, and unknown molecules, whereas the remaining proteins, categorized as membrane-anchored proteins, included small GTPases, GTPase binding proteins, heat shock protein 70-like proteins, ribosomal proteins, and unknown proteins. These membrane-anchored proteins are likely attached to membranes by hydrophobic anchor molecules or through tight association with other membrane-bound proteins. This proteomic approach has thus proved effective for the identification of membrane-bound proteins.  相似文献   

11.
Plant vacuoles are organelles bound by a single membrane, and involved in various functions such as intracellular digestion, metabolite storage, and secretion. To understand their evolution and fundamental mechanisms, characterization of vacuoles in primitive plants would be invaluable. Algal cells often contain polyphosphate‐rich compartments, which are thought to be the counterparts of seed plant vacuoles. Here, we developed a method for isolating these vacuoles from Cyanidioschyzon merolae, and identified their proteins by MALDI TOF‐MS. The vacuoles were of unexpectedly high density, and were highly enriched at the boundary between 62 and 80% w/v iodixanol by density‐gradient ultracentrifugation. The vacuole‐containing fraction was subjected to SDS–PAGE, and a total of 46 proteins were identified, including six lytic enzymes, 13 transporters, six proteins for membrane fusion or vesicle trafficking, five non‐lytic enzymes, 13 proteins of unknown function, and three miscellaneous proteins. Fourteen proteins were homologous to known vacuolar or lysosomal proteins from seed plants, yeasts or mammals, suggesting functional and evolutionary relationships between C. merolae vacuoles and these compartments. The vacuolar localization of four novel proteins, namely CMP249C (metallopeptidase), CMJ260C (prenylated Rab receptor), CMS401C (ABC transporter) and CMT369C (o‐methyltransferase), was confirmed by labeling with specific antibodies or transient expression of hemagglutinin‐tagged proteins. The results presented here provide insights into the proteome of C. merolae vacuoles and shed light on their functions, as well as indicating new features.  相似文献   

12.
Plant vacuoles are essential multifunctional organelles largely distinct from similar organelles in other eukaryotes. Embryo protein storage vacuoles and the lytic vacuoles that perform a general degradation function are the best characterized, but little is known about the biogenesis and transition between these vacuolar types. Here, we designed a fluorescent marker–based forward genetic screen in Arabidopsis thaliana and identified a protein affected trafficking2 (pat2) mutant, whose lytic vacuoles display altered morphology and accumulation of proteins. Unlike other mutants affecting the vacuole, pat2 is specifically defective in the biogenesis, identity, and function of lytic vacuoles but shows normal sorting of proteins to storage vacuoles. PAT2 encodes a putative β-subunit of adaptor protein complex 3 (AP-3) that can partially complement the corresponding yeast mutant. Manipulations of the putative AP-3 β adaptin functions suggest a plant-specific role for the evolutionarily conserved AP-3 β in mediating lytic vacuole performance and transition of storage into the lytic vacuoles independently of the main prevacuolar compartment-based trafficking route.  相似文献   

13.
14.
Despite its large size and the numerous processes in which it is implicated, neither the identity nor the functions of the proteins targeted to the yeast vacuole have been defined comprehensively. In order to establish a methodological platform and protein inventory to address this shortfall, we refined techniques for the purification of 'proteomics-grade' intact vacuoles. As confirmed by retention of the preloaded fluorescent conjugate glutathione-bimane throughout the fractionation procedure, the resistance of soluble proteins that copurify with this fraction to digestion by exogenous extravacuolar proteinase K, and the results of flow cytometric, western and marker enzyme activity analyses, vacuoles prepared in this way retain most of their protein content and are of high purity and integrity. Using this material, 360 polypeptides species associated with the soluble fraction of the vacuolar isolates were resolved reproducibly by 2D gel electrophoresis. Of these, 260 were identified by peptide mass fingerprinting and peptide sequencing by MALDI-MS and liquid chromatography coupled to ion trap or quadrupole TOF tandem MS, respectively. The polypeptides identified in this way, many of which correspond to alternate size and charge states of the same parent translation product, can be assigned to 117 unique ORFs. Most of the proteins identified are canonical vacuolar proteases, glycosidases, phosphohydrolases, lipid-binding proteins or established vacuolar proteins of unknown function, or other proteases, glycosidases, lipid-binding proteins, regulatory proteins or proteins involved in intermediary metabolism, protein synthesis, folding or targeting, or the alleviation of oxidative stress. On the basis of the high purity of the vacuolar preparations, the electrophoretic properties of the proteins identified and the results of quantitative proteinase K protection measurements, many of the noncanonical vacuolar proteins identified are concluded to have entered this compartment for breakdown, processing and/or salvage purposes.  相似文献   

15.
A large number of proteins in the tonoplast, including pumps, carriers, ion channels and receptors support the various functions of the plant vacuole. To date, few proteins involved in these activities have been identified at the molecular level. In this study, proteomic analysis was used to identify new tonoplast proteins. A primary requirement of any organelle analysis by proteomics is that the purity of the isolated organelle needs to be high. Using suspension-cultured Arabidopsis cells (Arabidopsis Col-0 cell suspension), a method was developed for the isolation of intact highly purified vacuoles. No plasma membrane proteins were detected in Western blots of the isolated vacuole fraction, and only a few proteins from the Golgi and endoplasmic reticulum. The proteomic analysis of the purified tonoplast involved fractionation of the proteins by SDS-PAGE and analysis by LC-MS/MS. Using this approach, it was possible to identify 163 proteins. These included well-characterized tonoplast proteins such as V-type H+ -ATPases and V-type H+ -PPases, and others with functions reasonably expected to be related to the tonoplast. There were also a number of proteins for which a function has not yet been deduced.  相似文献   

16.
17.
Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.  相似文献   

18.
The cargo in vacuolar storage protein transport vesicles is stratified   总被引:2,自引:2,他引:0  
Developing pea seeds contain two functionally distinct vacuoles--lytic vacuoles and protein storage vacuoles (PSV). The Golgi apparatus of these cells has to discriminate between proteins destined for these vacuolar compartments. Whereas it is known that sorting into the lytic vacuole is performed via the conserved clathrin-coated vesicle pathway, sorting of proteins into the protein storage vacuole remains enigmatic. In developing pea cotyledons, the major storage proteins are sorted via 'dense vesicles'. In this report we examined the sorting of a minor protein of the protein storage vacuole, the sucrose-binding-protein homolog (SBP), along the secretory pathway employing immunoelectron microscopy on cryosectioned pea cotyledons. SBP follows the same vesicular route into the PSV as the main storage proteins legumin and vicilin, via the dense-vesicles. Furthermore, legumin and SBP are sorted together into the same dense vesicle population at the stack. Although soluble cargo proteins of the dense vesicles, they show a stratified distribution in the lumen of the dense vesicles. Whereas the legumin label is equally distributed across the lumen, the SBP label is concentrated at the membrane of the vesicle. This observation is discussed with respect to a putative receptor-mediated sorting of the proteins into the dense vesicles.  相似文献   

19.
The plant vacuole is a multifunctional organelle which is essential for growth and development. To visualize the dynamics of plant vacuolar membranes, gamma-TIP (tonoplast intrinsic protein) was fused to GFP and expressed in Arabidopsis thaliana. The marker molecule was targeted to the vacuolar membranes in most tissues, as expected. In rapidly expanding cells, some additional spherical structures were often observed within the lumen of vacuoles, which emitted strong fluorescence. To confirm their normal presence, we examined wild-type Arabidopsis cotyledons by transmission electron microscopy. The metal-contact rapid-freezing method revealed that the vacuolar lumen of epidermal cells contained many cytoplasmic projections, which often formed spherical structures (1-3 microm diameter) consisting of double membranes. Thus we concluded that these structures are authentic and named them 'bulbs'. Three-dimensional reconstruction from serial electron microscopic images demonstrates that bulbs are very intricately folded, but are continuous with the limiting vacuolar membrane. The fluorescence intensity of bulbs is about threefold higher than that of vacuolar membrane. GFP-AtRab75c, another marker of the vacuole, did not give fluorescent signals of bulbs in transgenic plants, but the existence of bulbs was still confirmed by electron microscopy. These results suggest that bulbs define a subregion in the continuous vacuolar membrane, where some proteins are concentrated and others segregated.  相似文献   

20.
ATP-binding cassette (ABC) transporters are well known for their roles as multidrug resistance determinants but also play important roles in regulation of lipid levels. In the yeast Saccharomyces cerevisiae, the plasma membrane ABC transporter proteins Pdr5 and Yor1 are required for normal rates of transport of phosphatidyethanolamine to the surface of the cell. Loss of these ABC transporters causes a defect in phospholipid asymmetry across the plasma membrane and has been linked with slowed rates of trafficking of other membrane proteins. Four ABC transporter proteins are found on the limiting membrane of the yeast vacuole and loss of one of these vacuolar ABC transporters, Ybt1, caused a major defect in the normal delivery of the phosphatidylcholine (PC) analog NBD-PC (7-nitro-2,1,3-benzoxadiazol-PC) to the lumen of the vacuole. NBD-PC accumulates on cytosolic membranes in an ybt1Δ strain. We demonstrated that Ybt1 is required to import NBD-PC into vacuoles in the presence of ATP in vitro. Loss of Ybt1 prevented vacuolar remodeling of PC analogs. Turnover of Ybt1 was reduced under conditions in which function of this vacuolar remodeling pathway was required. Our data describe a novel vacuolar route for lipid remodeling and reutilization in addition to previously described enzymatic avenues in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号