首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shoot apical meristem of higher plants consists of a population of stem cells at the tip of the plant body that continuously gives rise to organs such as leaves and flowers. Cells that leave the meristem differentiate and must be replaced to maintain the integrity of the meristem. The balance between differentiation and maintenance is governed both by the environment and the developmental status of the plant. In order to respond to these different stimuli, the meristem has to be plastic thus ensuring the stereotypic shape of the plant body. Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical cells are misspecified causing a variability of the meristems size and function. Using specific antibodies against ZLL, we show that the zll phenotype is due to the complete absence of the ZLL protein. In immunohistochemical experiments we confirm the observation that ZLL is solely localized in vascular tissue. For a better understanding of the role of ZLL in meristem stability, we analysed the genetic interactions of ZLL with WUSCHEL (WUS) and the CLAVATA1, 2 and 3 (CLV) genes that are involved in size regulation of the meristem. In a zll loss-of-function background wus has a negative effect whereas clv mutations have a positive effect on meristem size. We propose that ZLL buffers meristem stability non-cell-autonomously by ensuring the critical number of apical cells required for proper meristem function.Edited by G. JürgensAn erratum to this article can be found at  相似文献   

2.
We have identified a mutant slowmotion phenotype in first instar larval peristaltic behaviour of Drosophila. By the end of embryogenesis and during early first instar phases, slowmo mutant animals show a marked decrease in locomotory behaviour, resulting from both a reduction in number and rate of peristaltic contractions. Inhibition of neurotransmitter release, using targeted expression of tetanus toxin light chain (TeTxLC), in the slowmo neurons marked by an enhancer-trap results in a similar phenotype of largely absent or uncoordinated contractions. Cloning of the slowmo gene identifies a product related to a family of proteins of unknown function. We show that Slowmo is associated with mitochondria, indicative of it being a mitochondrial protein, and that during embryogenesis and early larval development is restricted to the nervous system in a subset of cells. The enhancer-trap marks a cellular component of the CNS that is seemingly required to regulate peristaltic movement.  相似文献   

3.
Phenotypic switching between white and opaque cells is important for adaptation to different host environments and for mating in the opportunistic fungal pathogen Candida albicans. Genes that are specifically activated in one of the two cell types are likely to be important for their phenotypic characteristics. The WH11 gene is a white-phase-specific gene that has been suggested to be involved in the maintenance of the white-phase phenotype. To elucidate the role of WH11 in white-opaque switching, we constructed mutants of the C. albicans strain WO-1 in which the WH11 gene was deleted. The wh11 mutants were still able to form both white and opaque cells whose cellular and colony phenotypes were indistinguishable from those of the wild type. Deletion of WH11 also did not affect the activation and deactivation of the white-phase-specific WH11 promoter and the opaque-phase-specific OP4 and SAP1 promoters in the appropriate cell type. Finally, switching from the white to the opaque phase and vice versa occurred with the same frequency in wild-type and wh11 mutants. Therefore, the WH11 gene is not required for phenotypic switching, and its protein product seems to have other roles in white cells, which are dispensable after the switch to the opaque phase.Communicated by E. Cerdá-Olmedo  相似文献   

4.
The Drosophila melanogaster broad locus is essential for normal metamorphic development. Broad encodes three genetically distinct functions (rbp, br, and 2Bc) and a family of four zinc-finger DNA-binding proteins (Z1-Z4). The Z1, Z2, and Z3 protein isoforms are primarily associated with the rbp, br, and 2Bc genetic functions respectively. The Z4 protein isoform also provides some rbp genetic function, however an essential function for the Z4 isoform in metamorphosis has not been identified. To determine the degree of conservation of Z4 function between the tobacco hornworm Manduca sexta and Drosophila we generated transgenic Drosophila expressing the Manduca broad Z4 isoform and used this transgene to rescue rbp mutant lethality during Drosophila metamorphosis. We find that the Manduca Z4 protein has significant biological activity in Drosophila with respect to rescue of rbp-associated lethality. There was also some overlap in effects on cuticle gene expression between the Manduca Z4 and Drosophila Z1 isoforms that was not shared with the Drosophila Z4 isoform. Our findings show that Z4 function has been conserved over the 260-million-year period since the divergence of Diptera and Lepidoptera, and are consistent with the hypothesis that the Drosophila Z4 and Manduca Z4 isoforms have essential roles in metamorphosis.Edited by M. Akam  相似文献   

5.
The Caenorhabditis elegans ryanodine receptor is encoded by the unc-68 gene, and functions as a Ca2+-induced Ca2+ release channel during muscle contraction. To investigate the factors that suppress calcium release and identify molecules that interact with the ryanodine receptor, we isolated revertants from two unc-68 mutants. Three of the revertants obtained from the null allele unc-68(e540), which displayed normal motility, had intragenic mutations that resulted in failure to splice out intron 21. The other two, kh53 and kh55, had amino acid insertions in the third of the four RyR domains. The brood size and the egg laying rate remain abnormal in these revertants. This suggests the third RyR domain may be required for egg laying and embryogenesis, although we can not determine a molecular mechanism. Five ketamine sensitive revertants recovered from the missense mutant unc-68(kh30) showed altered responses to caffeine, ryanodine, levamisole and ouabain relative to those of the unc-68(kh30) animals. These may carry second-site suppressor mutations, which may define genes for proteins that regulate the Ca2+ concentration in body-wall muscle. One of these mutants, kh52 , shows lower motility and higher sensitivity to drugs, and this mutation was mapped to chromosome X. These observations provide a basis for the study of ryanodine receptor functions in embryogenesis and in calcium-mediated regulation of muscle contraction in C. elegans. This is the first study to show that the conserved RyR domain of the receptor acts in egg laying and embryogenesis.Communicated by C. P. Hollenberg  相似文献   

6.
The soluble periplasmic subunit of the formate dehydrogenase FdhA of the tetrachloroethene-reducing anaerobe Sulfurospirillum multivorans was purified to apparent homogeneity and the gene (fdhA) was identified and sequenced. The purified enzyme catalyzed the oxidation of formate with oxidized methyl viologen as electron acceptor at a specific activity of 1683 nkat/mg protein. The apparent molecular mass of the native enzyme was determined by gel filtration to be about 100 kDa, which was confirmed by the fdhA nucleotide sequence. fdhA encodes for a pre-protein that differs from the truncated mature protein by an N-terminal 35-amino-acid signal peptide containing a twin arginine motif. The amino acid sequence of FdhA revealed high sequence similarities to the larger subunits of the formate dehydrogenases of Campylobacter jejuni, Wolinella succinogenes, Escherichia coli (FdhN, FdhH, FdhO), and Methanobacterium formicicum. According to the nucleotide sequence, FdhA harbors one Fe4/S4 cluster and a selenocysteine residue as well as conserved amino acids thought to be involved in the binding of a molybdopterin guanidine dinucleotide cofactor.Abbreviations Fdh Formate dehydrogenase - PCE Tetrachloroethene  相似文献   

7.
The 16-kDa diheme cytochrome c from the bacterium Shewanella baltica OS155 (Sb-DHC) was cloned and expressed in Escherichia coli and investigated through UV–vis, magnetic circular dichroism, and 1H NMR spectroscopies and protein voltammetry. The model structure was obtained by means of comparative modeling using the X-ray structure of Rhodobacter sphaeroides diheme cytochrome c (Rs-DHC) (with a 37% pairwise sequence identity) as a template. Sb-DHC folds into two distinct domains, each containing one heme center with a bis-His axial ligation. Both secondary and tertiary structures of the N-terminal domain resemble those of class I cytochrome c, displaying three α-helices and a compact overall folding. The C-terminal domain is less helical than the corresponding domain of Rs-DHC. The two heme groups are bridged by Tyr26 in correspondence with the shortest edge-to-edge distance, a feature which would facilitate fast internal electron transfer. The electronic properties of the two prosthetic centers are equivalent and sensitive to two acid–base equilibria with pK a values of approximately 2.4 and 5, likely corresponding to protonation and detachment of the axial His ligands from the heme iron and a pH-linked conformational change of the protein, respectively. Reduction potentials of −0.144 and −0.257 V (vs. the standard hydrogen electrode), were determined for the C- and N-terminal heme groups, respectively. An approach based on the extended Debye–Hückel equation was applied for the first time to a two-centered metalloprotein and was found to reproduce successfully the ionic strength dependence of E°′.  相似文献   

8.
Cytochromes c were found in the cells of the bacterium Geobacter sulfurreducens AM-1 grown on acetate and methacrylate. The periplasmic extract of G. sulfurreducens AM-1 contained about 88% of the total content of cytochromes c of intact cells. The analysis of cytochromes c from the native cells of G. sulfurreducens AM-1, from the periplasmic extract and from the cells treated by an alkaline solution showed the presence of nine proteins containing heme c. The molecular masses of cytochromes c from G. sulfurreducens AM-1 were 12.5, 15.5, 25.7, 29.5, 34.7, 41.7, 50.1, 63.1, and 67.6 kDa; localization of each cytochrome c was determined. Three heme-containing proteins (15.5 kDa, 25.7 kDa, and 29.5 kDa with the most intensive staining) were present mainly in the periplasm of the bacterium. The other two (50.1 and 67.6 kDa) were supposedly localized in the cell membrane. Cytochromes c with the molecular masses of 12.5, 15.5, and 67.6 kDa are considered as possible components of the methacrylate redox system of G. sulfurreducens AM-1.  相似文献   

9.
Selective pressures from polluted environments have led to the development of resistance systems in aquatic organisms. Using different techniques, this study examined a cadmium defense mechanism of the freshwater unicellular protozoa Euglena gracilis, and found it to be an efflux pump similar to the multidrug resistance P-glycoprotein. Cd2+-treated E. gracilis were able to extrude Rhodamine 123 at 21 °C, but not at 4 °C. Furthermore, verapamil, a P-glycoprotein modulator, partially blocked the efflux process (at 21 °C), and enhanced the Cd2+ toxic effects on these cells. Western immunoblots of cell lysates, using the anti-P-glycoprotein antibody JSB-1, revealed a 120-KDa protein, which was expressed, in high amounts on Cd2+-exposed cells (74% above the control values). Moreover, cells treated with JSB-1 became more sensitive to the harmful effects of cadmium, showing a decreased survival rate. Taken together, these results suggest that a MDR phenotype has evolved in Euglena as one of the mechanisms for cadmium detoxification.Abbreviations DTT dithiothreitol - mAb JSB-1 anti-human P-gp monoclonal antibody JSB-1 - MDR multidrug resistance - MRP MDR-associated protein - PBS phosphate buffered saline - P-gp P-glycoproteinCommunicated by G. HeldmaierA.J.F.O. and F.L.S.S. are undergraduate students under a CNPq special program for research training  相似文献   

10.
Cao X  Li K  Suh SG  Guo T  Becraft PW 《Planta》2005,220(5):645-657
The maize (Zea mays L.) CRINKLY4 (CR4) gene encodes a serine/threonine receptor-like kinase that controls an array of developmental processes in the plant and endosperm. The Arabidopsis thaliana (L.) Heynh. genome encodes an ortholog of CR4, ACR4, and four CRINKLY4-RELATED (CRR) proteins: AtCRR1, AtCRR2, AtCRR3 and AtCRK1. The available genome sequence of rice (Oryza sativa L.) encodes a CR4 ortholog, OsCR4, and four CRR proteins: OsCRR1, OsCRR2, OsCRR3 and OsCRR4, not necessarily orthologous to the Arabidopsis CRRs. A phylogenetic study showed that AtCRR1 and AtCRR2 form a clade closest to the CR4 group while all the other CRRs form a separate cluster. The five Arabidopsis genes are differentially expressed in various tissues. A construct formed by fusion of the ACR4 promoter and the GUS reporter, ACR4::GUS, is expressed primarily in developing tissues of the shoot. The ACR4 cytoplasmic domain functions in vitro as a serine/threonine kinase, while the AtCRR1 and AtCRR2 kinases are not active. The ability of ACR4 to phosphorylate AtCRR2 suggests that they might function in the same signal transduction pathway. T-DNA insertions were obtained in ACR4, AtCRR1, AtCRR2, AtCRR3 and AtCRK1. Mutations in acr4 show a phenotype restricted to the integuments and seed coat, suggesting that Arabidopsis might contain a redundant function that is lacking in maize. The lack of obvious mutant phenotypes in the crr mutants indicates they are not required for the hypothetical redundant function.  相似文献   

11.
Successful cell division requires proper assembly, placement and functioning of the spindle apparatus that segregates the chromosomes. The Caenorhabditis elegans gene lin-5 encodes a novel coiled-coil component of the spindle required for spindle positioning and chromosome segregation. To gain further insights into lin-5 function, we screened for dominant suppressors of the partial loss-of-function phenotype associated with the mutation lin-5(ev571ts), and isolated 68 suppressing mutations. Eight out of the ten suppressors sequenced contained intragenic missense mutations immediately upstream of the lesion in lin-5(ev571ts). These probably help to stabilize protein-protein interactions mediated by the coiled-coil domain. This domain was found to be required for binding to several putative LIN-5 interacting (LFI) proteins identified in yeast two-hybrid screens. Interestingly, interaction with the coiled-coil protein LFI-1 was specifically reduced by the lin-5(ev571ts) mutation and restored by a representative intragenic suppressor mutation. Immunostaining experiments showed that LIN-5 and LFI-1 may co-localize around the kinetochore microtubules during metaphase, indicating potential interaction in vivo. The coiled-coil domain of LIN-5 was also found to mediate homodimerization, while the C-terminal region of LIN-5 was sufficient for interaction with GPR-1, a recently identified component of a LIN-5 spindle-regulatory complex. A single amino-acid substitution in the N-terminal region of LIN-5, encoded by the e1457 allele, abolished all LIN-5 interactions. Taken together, our results indicate that the spindle functions of LIN-5 depend on interactions with multiple protein partners, and that these interactions are mediated through several different domains of LIN-5.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by C. P. Hollenberg  相似文献   

12.
The gene SFB encodes an F-box protein that has appropriate S-haplotype-specific variation to be the pollen determinant in the S-RNase-based gametophytic self-incompatibility (GSI) reaction in Prunus (Rosaceae). To further characterize Prunus SFB, we cloned and sequenced four additional alleles from sweet cherry (P. avium), SFB 1 , SFB 2 , SFB 4 , and SFB 5 . These four alleles showed haplotype-specific sequence diversity similar to the other nine SFB alleles that have been cloned. In an amino acid alignment of Prunus SFBs, including the four newly cloned alleles, 121 out of the 384 sites were conserved and an additional 65 sites had only conservative replacements. Amino acid identity among the SFBs ranged from 66.0% to 82.5%. Based on normed variability indices (NVI), 34 of the non-conserved sites were considered to be highly variable. Most of the variable sites were located at the C-terminal region. A window-averaged plot of NVI indicated that there were two variable and two hypervariable regions. These variable and hypervariable regions appeared to be hydrophilic or at least not strongly hydrophobic, which suggests that these regions may be exposed on the surface and function in the allele specificity of the GSI reaction. Evidence of positive selection was detected using maximum likelihood methods with sites under positive selection concentrated in the variable and hypervariable regions.K. Ikeda and B. Igic contributed equally to this paperNucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ nucleotide sequence databases under the accession numbers AB111518, AB111519, AB111520, and AB111521, for SFB 1, SFB 2, SFB 5, and SFB 4, respectively  相似文献   

13.
Bacillus thuringiensis subsp. kurstaki BUPM255 secretes a chitobiosidase Chi255 having an expected molecular weight of 70.665 kDa. When the corresponding gene, chi255, was expressed in E. coli, the active form, extracted from the periplasmic fraction of E. coli/pBADchi255, was of about 54 kDa, which suggested that Chi255 was excessively degraded by the action of E. coli proteases. Therefore, in vitro progressive C-terminal Chi255 deleted derivatives were constructed in order to study their stability and their activity in E. coli. Interestingly, when the chitin binding domain (CBD) was deleted from Chi255, an active form (Chi2555Δ5) of expected size of about 60 kDa was extracted from the E. coli periplasmic fraction, without the observation of any proteolytic degradation. Compared to Chi255, Chi255Δ5 exhibited a higher chitinase activity on colloidal chitin. Both of the enzymes exhibit activities at broad pH and temperature ranges with maximal enzyme activities at pH 5 and pH 6 and at temperatures 50°C and 40°C, respectively for Chi255 and Chi255Δ5. Thus, it was concluded that the C-terminal deletion of Chi255 CBD might be a nice tool for avoiding the excessive chitinase degradation, observed in the native chitinase, and for improving its activity.  相似文献   

14.
The major satellite DNAs of the dioecious plant Silene latifolia are represented by the repetitive sequences X43.1, RMY1 and members of the SacI family, which are located at the distal ends of chromosomes. To characterize the satellite DNAs at the distal ends of the chromosomes in S. latifolia (Sl-distal-satDNA), we isolated a bacterial artificial chromosome clone (number 15B12) that contained multiple repeat sequences with KpnI restriction sites, and subcloned a portion of this sequence into a plasmid vector. Sequencing analysis confirmed that recognition or degenerate sites for KpnI were repeated 26 times at intervals of 310–324 bp in the inserted DNA. The phylogenetic tree that was constructed with the 26 KpnI repeat units contained clustered branches that were independent of the SacI family. It is clear that the KpnI repeat belongs to an Sl-distal-satDNA family that is distinct from the SacI family. We designated this family as "KpnI" after the restriction enzyme that does not have a site in the SacI family. Multi-colored fluorescent in situ hybridization was performed with the KpnI family and RMY1 probes under high stringency conditions. The results suggest that chromosome 7 is unique and that it carries the KpnI family at only one end.  相似文献   

15.
Poynton CY  Huang JW  Blaylock MJ  Kochian LV  Elless MP 《Planta》2004,219(6):1080-1088
Several species of fern from the Pteris genus are able to accumulate extremely high concentrations of arsenic (As) in the fronds. We have conducted short-term unidirectional As influx and translocation experiments with 73As-radiolabeled arsenate, and found that the concentration-dependent influx of arsenate into roots was significantly larger in two of these As-hyperaccumulating species, Pteris vittata (L.) and Pteris cretica cv. Mayii (L.), than in Nephrolepis exaltata (L.), a non-accumulating fern. The arsenate influx could be described by Michaelis-Menten kinetics and the kinetic parameter K m was found to be lower in the Pteris species, indicating higher affinity of the transport protein for arsenate. Quantitative analysis of kinetic parameters showed that phosphate inhibited arsenate influx in a directly competitive manner, consistent with the hypothesis that arsenate enters plant roots on a phosphate-transport protein. The significantly augmented translocation of arsenic to the shoots that was seen in these As hyperaccumulator species is proposed to be due to a combination of the increased root influx and also decreased sequestration of As in the roots, as a larger fraction of As could be extracted from roots of the Pteris species than from roots of N. exaltata. This leaves a larger pool of mobile As available for translocation to the shoot, probably predominantly as arsenite.Abbreviations As V Arsenate - As III Arsenite - K m Michaelis-Menten constant - P i Phosphate - V max Maximum rate of an enzyme-catalyzed reaction  相似文献   

16.
Pseudomonas putida KT2440, a root-colonizing fluorescent pseudomonad, is capable of utilizing acidic amino acids (Asp and Glu) and their amides (Asn and Gln) as its sole source of carbon and nitrogen. The uptake of Gln and Asn is facilitated by a periplasmic glutaminase/asparaginase (PGA), which hydrolyses Asn and Gln to the respective dicarboxylates. Here, we describe transposon mutagenesis of P. putida KT2440 with a self-cloning promoter probe vector, Tn5-OT182. Transconjugants defective in Glu-mediated PGA induction were selected for further studies. In most clones the transposon was found to have integrated into the gltB gene, which encodes the major subunit of the glutamate synthase (GOGAT). The transconjugants were nonmotile, no longer showed a chemotactic response towards amino acids, and could not survive prolonged periods of starvation. The acidic amino acids and their amides supported growth of the transconjugants only when supplied together with glucose, suggesting that the gltB-mutants had lost the ability to utilize amino acids as a carbon source. To confirm that gltB inactivation was the cause of this phenotype, we constructed a mutant with a targeted disruption of gltB. This strain behaved like the clones obtained by random mutagenesis, and failed to express not only PGA but also a number of other Glu-induced proteins. In contrast to wild-type cells, the gltB - strain accumulated considerable amounts of both Glu and Gln during long-term incubation.Communicated by A. Kondorosi  相似文献   

17.
18.
A gene for a putative two-component histidine kinase, which is homologous to os-1 from Neurospora crassa, was cloned and sequenced from the plant-pathogenic fungus Cochliobolus heterostrophus. The predicted protein possessed the conserved histidine kinase domain, the response regulator domain, and six tandem repeats of 92-amino-acids at the N-terminal end that are found in histidine kinases from other filamentous fungi. Introduction of the histidine kinase gene complemented the deficiency of the C. heterostrophus dic1 mutant, suggesting that the Dic1 gene product is a histidine kinase. Dic1 mutants are resistant to dicarboximide and phenylpyrrole fungicides, and they are sensitive to osmotic stress. We previously classified dic1 alleles into three types, based on their phenotypes. To explain the phenotypic differences among the dic1 mutant alleles, we cloned and sequenced the mutant dic1 genes and compared their sequences with that of the wild-type strain. Null mutants for Dic1, and mutants with a deletion or point mutation in the N-terminal repeat region, were highly sensitive to osmotic stress and highly resistant to both fungicides. A single amino acid change within the kinase domain or the regulator domain altered the sensitivity to osmotic stress and conferred moderate resistance to the fungicides. These results suggest that this predicted protein, especially its repeat region, has an important function in osmotic adaptation and fungicide resistance.Communicated by C. A. M. J. J. van den Hondel  相似文献   

19.
Sinorhizobium meliloti natural populations show a high level of genetic polymorphism possibly due to the presence of mobile genetic elements such as insertion sequences (IS), transposons, and bacterial mobile introns. The analysis of the DNA sequence polymorphism of the nod region of S. meliloti pSymA megaplasmid in an Italian isolate led to the discovery of a new insertion sequence, ISRm31. ISRm31 is 2,803 bp long and has 22-bp-long terminal inverted repeat sequences, 8-bp direct repeat sequences generated by transposition, and three ORFs (A, B, C) coding for proteins of 124, 115, and 541 amino acids, respectively. ORF A and ORF C are significantly similar to members of the transposase family. Amino acid and nucleotide sequences indicate that ISRm31 is a member of the IS66 family. ISRm31 sequences were found in 30.5% of the Italian strains analyzed, and were also present in several collection strains of the Rhizobiaceae family, including S. meliloti strain 1021. Alignment of targets sites in the genome of strains carrying ISRm31 suggested that ISRm31 inserts randomly into S. meliloti genomes. Moreover, analysis of ISRm31 insertion sites revealed DNA sequences not present in the recently sequenced S. meliloti strain 1021 genome. In fact, ISRm31 was in some cases linked to DNA fragments homologous to sequences found in other rhizobia species.  相似文献   

20.
Agrobacterium tumefaciens has the ability to transfer its T-DNA to plants, yeast, filamentous fungi, and human cells and integrate it into their genome. Conidia of the maize pathogen Helminthosporium turcicum were transformed to hygromycin B resistance by a Agrobacterium-tumefaciens-mediated transformation system using a binary plasmid vector containing the hygromycin B phosphotransferase (hph) and the enhanced green fluorescent protein (EGFP) genes controlled by the gpd promoter from Agaricus bisporus and the CaMV 35S terminator. Agrobacterium-tumefaciens-mediated transformation yielded stable transformants capable of growing on increased concentrations of hygromycin B. The presence of hph in the transformants was confirmed by PCR, and integration of the T-DNA at random sites in the genome was demonstrated by Southern blot analysis. Agrobacterium-tumefaciens-mediated transformation of Helminthosporium turcicum provides an opportunity for advancing studies of the molecular genetics of the fungus and of the molecular basis of its pathogenicity on maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号