首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The latitudinal species richness gradient (LRG) has been the subject of intense interest and many hypotheses but much less consideration has been given to longitudinal richness differences. The effect of postglacial dispersal, determined by connectivity and vagility, on richness was evaluated for the species‐poor European and North American Pacific and species‐rich Atlantic regional freshwater fish faunas. The numbers of species, by habitat, migration and distributional range categories, were determined from regional species lists for these three realms. The current orientation and past connections of drainage channels indicate that connectivity is greatest in the Atlantic and least in the Pacific. With increasing connectivity across realms, endemism decreased and postglacial recolonization increased, as did the LRG slope, with the greatest richness difference occurring between southern Atlantic and Pacific regions. Recolonizing species tended to be migratory, habitat generalists and from families of marine origin. Diversification, as indicated by species/genus ratios, probability of diversification, taxonomic distinctness and endemicity, declined with increasing latitude in all realms and was least in Europe. Richness patterns are consistent with an LRG driven by the time available for postglacial recolonization and by differences in dispersal ability, with richness differences across realms reflecting differences in dispersal and diversification.  相似文献   

2.
The increase in species richness from the poles to the Equator has been observed in numerous terrestrial and aquatic taxa. A number of different hypotheses have been put forward as explanations for this trend, e.g. area and energy availability. However, whether these hypotheses apply to large spatial scales in marine environments remains unclear. The present study shows a clear latitudinal gradient from high to low latitude (from 80 degrees N to 70 degrees S) in marine species richness for 6643 species (fishes and invertebrates) in 10 different taxa dwelling in benthic and pelagic habitats on both sides of the Atlantic. The patterns in benthic taxa are strongly influenced by coastal hydrographic processes, with marked peaks and troughs, and consequently the gradients are not symmetric along both Atlantic sides. Pelagic taxa show a plateau-shaped distribution and the influence from coastal events on gradients could not be demonstrated. The relationships between species richness and different environmental factors indicate that area size does not explain the latitudinal pattern in benthic species richness on a large spatial scale. Sea-surface temperature (positive relationship) is the best predictor of this pattern for benthic species, and nitrate concentration (negative relationship) is the best predictor for pelagic species. The results call into question the existence of a single primary cause that would explain the pattern in marine species richness on a large spatial scale.  相似文献   

3.
4.
The range size distributions of 6643 species in ten different fish and invertebrate taxa dwelling in pelagic (latitudinal range sizes) and benthic (latitudinal and depth range sizes) habitats on both sides of the Atlantic Ocean (80°N−70°S) were studied. The objectives were to analyse: (1) the range size distribution patterns for the various taxa and whether they have right/left skewed or lognormal distributions; (2) the geographical species distributions, to ascertain whether the distribution ranges change with latitude (Rapoport's rule); and (3) the relationship between the depth ranges of benthic species and their maximum depth of occurrence and how depth range size distributions change with latitude. The pelagic taxa exhibited larger range sizes than did the benthic taxa, continental slope/rise species excepted. On the other hand, the boundaries between geographical provinces for both benthic taxa and pelagic taxa tended to occur in association with major oceanographic processes. The shape of the latitudinal range frequency distributions (LRFDs) of the pelagic organisms were distinctly left‐skewed, and the LRFDs for most taxa were significantly different from lognormal. There was no common pattern for the distributions of the benthic organisms, which were lognormal in Cephalopoda, Stomatopoda, and Crustacea Decapoda and tended to be left‐skewed and significantly different from lognormal in Pisces. The applicability of Rapoport's rule was not clearly inferable from the results, and the rule appears to be conditioned by the location of biogeographical boundaries and the endemism rate in the different biogeographical provinces. A clear increase in depth range size with maximum depth range was observable for benthic species, confirming previous studies. Species’ depth range distributions displayed a discernible latitudinal pattern, right‐skewed at high latitudes and left‐skewed at low latitudes. The location of biogeographical boundaries, and endemism rate by biogeographical province were considered to be the factors most useful in explaining species’ distribution patterns and their conformity or nonconformity to Rapoport's rule. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 437–455.  相似文献   

5.
The consistent decrease in species richness with latitude shows several exceptions among marine organisms. We hypothesize that contrasting latitudinal diversity gradients can be explained by differences in critical life-history attributes, such as mode of larval development (MLD). We deconstructed latitudinal species richness patterns of marine benthic invertebrates according to MLD to elucidate differences in patterns of species richness and to reveal underlying processes. The patterns of species richness were remarkably similar across taxa within MLD but differed between MLD. Species richness decreased polewards in planktotrophic species and increased in direct developers. Temperature explained most of the variation in species richness. Low temperature at high latitudes may generally favour direct developing species, but, together with low chlorophyll- a concentration, limit the distribution of planktotrophic species. The contrasting influence of temperature on different MLDs might be explained by its effect on the length of planktonic life and on brooding costs.  相似文献   

6.
Aim In Europe, the relationships between species richness and latitude differ for lentic (standing water) and lotic (running water) species. Freshwater animals are highly dependent on suitable habitat, and thus the distribution of available habitat should strongly influence large‐scale patterns of species richness. We tested whether habitat availability can account for the differences in species richness patterns between European lentic and lotic freshwater animals. Location Europe. Methods We compiled occurrence data of 1959 lentic and 2445 lotic species as well as data on the amount of lentic and lotic habitats across 25 pre‐defined biogeographical regions of European freshwaters. We used the range of elevation of each region as a proxy for habitat diversity. We investigated the relationships between species richness, habitat availability and habitat diversity with univariate and multiple regression analyses. Results Species richness increased with habitat availability for lentic species but not for lotic species. Species richness increased with elevational range for lotic species but decreased for lentic species. For both groups, neither habitat availability nor diversity could account for previously reported latitudinal patterns in species richness. For lotic species, richness declined with latitude, whereas there was no relationship between habitat availability and latitude. For lentic species, richness showed a hump‐shaped relationship with latitude, whereas available habitat increased with latitude. Main conclusions Habitat availability and diversity are poor predictors of species richness of the European freshwater fauna across large scales. Our results indicate that the distributions of European freshwater animals are probably not in equilibrium and may still be influenced by history, namely the recurrent European glaciations and possible differences in post‐glacial recolonization. The distributions of lentic species appear to be closer to equilibrium than those of lotic species. This lends further support to the hypothesis that lentic species have a higher propensity for dispersal than lotic species.  相似文献   

7.
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth), down the fore reef slope to the reef base (10-30 m depth) then across the adjacent continental shelf (30-110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate.  相似文献   

8.
We analysed the geographic distribution of 645 species of marine benthic algae along the Atlantic coast of Europe and Pacific coast of temperate South America to test for the existence of an association between geographic range size and latitude (Rapoport's Rule) and for three key components of the explanations offered for it. We found that species in high diversity areas are characterized by small geographic ranges and by low specific growth rates as compared to species with large geographic ranges, thus supporting the Rapoport-rescue hypothesis. However, the pattern is not related to species' tolerances, to abiotic conditions or to climatic variability. Further, the inverse latitudinal diversity pattern shown by the marine algal flora of temperate Pacific South America, and the opposite patterns shown by tropical and subantarctic species within this flora, stressed that small geographic ranges are linked to high diversity areas in general, and not only in relation to the pole to tropic species diversity gradient.  相似文献   

9.
Aim Climate change could result in an increase in species richness because large‐scale biogeography suggests that more species could be gained from equatorial regions than may be lost pole‐ward. However, the colonization of newly available habitat may lag behind the rate dictated by climatic warming if there exists of a lack of connectivity between ‘donor’ and receiving areas. The objective of this study was to compare how regional warming affected the biodiversity of marine fish in areas that differed in their connectivity in the Baltic Sea. Location North‐east Atlantic, Kattegat and Baltic Sea. Methods The total species richness and the mean species richness from scientific surveys were related to changes in temperature and salinity. Changes in the extent of the distribution of individual fish species were related to the latitudinal distribution, salinity tolerance, maximum body size and exploitation status to assess to what extent climate change and fishing impacts could explain changes in species richness in the Baltic. Results Rising temperatures in the well‐connected Kattegat correlated to an increase in the species richness of fish, due to an increase in low‐latitude species. Unexpectedly, species richness in the poorly connected Baltic Sea also increased. However, the increase seems to be related to higher salinity rather than temperature and there was no influx of low‐latitude species. Main conclusions These results do not support the hypothesis that low‐connectivity areas are less likely to see increases in species richness in response to warming. This indicates that the effect of climate change on biodiversity may be more difficult to predict in areas of low connectivity than in well‐connected areas.  相似文献   

10.
The geographical distribution of species richness and species range size of African anthropoid primates (catarrhines) is investigated and related to patterns of habitat and dietary niche breadth. Catarrhine species richness is concentrated in the equatorial regions of central and west Africa; areas that are also characterised by low average species range sizes and increased ecological specificity. Species richness declines with increasing latitude north and south of the equator, while average species range size, habitat and dietary breadth increase. Relationships between species richness, species range size and niche breadth remain once latitudinal and longitudinal effects have been removed. Among areas of lowest species richness, however, there is increased variation in terms of average species range size and niche breadth, and two trends are identified. While most such areas are occupied by a few wide-ranging generalists, others are occupied by range-restricted specialist species. That conservation efforts increasingly focus on regions of high species richness may be appropriate if these regions are also characterised by species that are more restricted in both their range size and their ecological versatility, although special consideration may be required for some areas of low species richness.  相似文献   

11.
Parasite species richness is a fundamental characteristic of host species and varies substantially among host communities. Hypotheses aiming to explain observed patterns of richness are numerous, and none is universal. In this study, we use tapeworm parasites of elasmobranch fishes to examine the phylogenetic and environmental influences on the variation in species richness for this specific system. Tapeworms are the most diverse group of helminths to infect elasmobranchs. Elasmobranchs are cosmopolitan in distribution and their tapeworm parasites are remarkably host specific; therefore, making this an ideal system in which to examine global patterns in species diversity. Here, we 1) quantify the tapeworm richness in elasmobranch fishes, 2) identify the host features correlated with tapeworm richness, and 3) determine whether tapeworm richness follows a latitudinal gradient. The individual and combined effects of host size, factors associated with water temperatures (influenced by latitude and depth), host habitat, and type of elasmobranch (shark or batoid) on measures of species diversity were assessed using general linear models. These analyses included tapeworm host records for 317 different elasmobranch species (124 species were included in our analyses) and were conducted with and without taking into account phylogenetic relationships between host species. Since sharks and batoids differ substantially in body form, analyses were repeated for each host subset. On average, batoids harboured significantly more tapeworm species than shark hosts. Tapeworm richness in sharks was influenced by median depth, whereas no predictor variable included in our models could adequately account for interspecific variation in tapeworm richness in batoid hosts. The taxonomic diversity of tapeworm assemblages of sharks and batoids was influenced by median depth and median latitude, respectively. When the influence of host phylogeny is accounted for, larger hosts harbour a greater tapeworm richness, whereas hosts exploiting wider latitudinal ranges harbour more taxonomically distinct tapeworm assemblages. Species richness and taxonomic diversity of tapeworm assemblages in elasmobranch fishes are influenced by different evolutionary pressures, including host phylogenetic relationships, space constraints and geographical area. Our results suggest that ca 3600 tapeworm species have yet to be described from elasmobranch fishes.  相似文献   

12.
Aim To document continental‐ and regional‐scale variation in the size distributions of freshwater fish and examine some energetic, evolutionary and biogeographic explanations for these patterns. Location North America. Methods Regional species lists, coupled with habitat and body size information, were used to document the spatial patterns. Results At the continental scale, riverine specialist fishes show a unimodal, right‐skewed, body size distribution whereas habitat generalist and lacustrine specialist species exhibit bimodal size distributions, with only a slight preponderance of small‐mode species. Most large‐mode species are migratory. Resident species, unlike migratory ones, show a latitudinal increase in mean size, but the size increase across all species is steeper because the importance of large migratory species increases with latitude. Size distributions change from right‐ to left‐skewed with increasing latitude. Maximum body size does not change with increasing family richness but minimum size declines and skewness increases, consistent with diversification of small species. Skewness does not vary with mean family body size. Main conclusions Post‐glacial recolonization by large, habitat generalist, migratory species is the main determinant of latitudinal size distribution trends. There is little support for the energetic hypothesis, but the data are consistent with a negative Cope's rule.  相似文献   

13.
Recently three biogeographical units were identified along the Chilean coast (the Magellanic Province, an Intermediate Area, and the Peruvian Province), however few studies have focused on the factors and dynamic processes that formed these spatial units (e.g. Rapoport's rule and its causal mechanisms). In this study we used benthic polychaetes of the Chilean coast to evaluate patterns of latitudinal distribution and species richness, and the existence of the three main biogeographical provinces described for the Chilean coast. Additionally, we evaluated the latitudinal Rapoport effects and geometric constraint as a null hypothesis explaining the species richness distribution.
We found that benthic polychaete diversity increased towards southern latitudes. The cluster and ordination (non-metric MultiDimensional Scaling, nMDS) analyses of the distribution data, presented only two statistically significant (bootstrapping techniques) biogeographic provinces along the Chilean coast, with a break occurring between 41° and 42°S. While, our results did not support a latitudinal Rapoport effect, they did support the view that latitudinal Rapoport effects are a local phenomenon, occurring only for the Northeastern Pacific marine taxa. The relationship between latitudinal range extent and mean latitude indicated the existence of two hard boundaries at either extreme of the Chilean coast, limiting the geographical ranges of the species. However, geometric constraints tested using a Monte Carlo simulation approach showed a weak level of mid-domain effect on species richness. Finally, we propose that geometric constraint together with the geomorphology and historical characteristics of the Chilean coast explain the biogeographical patterns of benthic polychaete taxa in Chile.  相似文献   

14.
Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available.  相似文献   

15.
Linking ecology with parasite diversity in Neotropical fishes   总被引:1,自引:0,他引:1  
A comparative analysis was performed to seek large-scale patterns in the relationships between a set of fish species traits (body size, type of environment, trophic level, schooling behaviour, depth range, mean habitat temperature, geographical range, ability to enter brackish waters and capability of migration) and the diversity of their metazoan parasite assemblages among 651 Neotropical fish species. Two measurements of parasite diversity are used: the species richness and the taxonomic distinctness of a fish's parasite assemblage, including all metazoan parasites, ectoparasites only, or endoparasites only. The results showed that, on this scale, the average taxonomic distinctness of parasite assemblages was clearly more sensitive to the influence of host traits than parasite species richness. Differences in the taxonomic diversification of the parasite assemblages of different fish species were mainly related to the fish's environment (higher values in benthic–demersal species), trophic level (positive correlation with increasing level), temperature (positive correlation with temperature in marine ectoparasites, negative in endoparasites; positive for all groups of parasites in freshwater fishes) and oceanic distribution (higher values in fish species from the Pacific Ocean than those of the Atlantic). The results suggest that, among Neotropical fish species, only certain key host traits have influenced the processes causing the taxonomic diversification of parasite assemblages.  相似文献   

16.
Studies of geographical patterns of diversity have focused largely on compiling and analysing data to evaluate alternative hypotheses for the near‐universal decrease in species richness from the equator to the poles. Valuable insights into the mechanisms that promote diversity can come from studies of other patterns, such as variation in species distributions with elevation in terrestrial systems or with depth in marine systems. To obtain such insights, we analysed and interpreted data on species diversity, depth of occurrence and body size of pelagic fishes along an oceanic depth gradient. We used a database on pelagic marine fishes native to the north‐east Pacific Ocean between 40°N and 50°N. We used data from the Pacific Rim Fisheries Program that were obtained from commercial, management and scientific surveys between 1999 and 2000. Depth of occurrence and maximum body length were used to assess the distributions of 409 species of pelagic fishes along a depth gradient from 0 to 8000 m. A presence–absence matrix was used to classify the depth range of each species into 100‐m intervals. Atmar & Patterson's (1995 ) software was used to quantify the degree of nestedness of species distributions. Pelagic fish species diversity decreased steeply with increasing depth; diversity peaked at less than 200 m and more than half of the species had mean depths of occurrence between 0 and 300 m. The distribution of species showed a very strong nested subset pattern along the depth gradient. Whereas species with narrow ranges were generally restricted to shallow waters, wide‐ranging species occurred from near the surface to great depths. The relationship between maximum body size and mean depth range differed between teleost and elasmobranch fishes: being positive for teleosts, but negative for elasmobranches. Results support hypotheses that some combination of high productivity and warm temperature promote high species diversity, and reject those that would attribute the pattern of species richness to the mid‐domain effect, habitat area, or environmental constancy. The data provided a clear example of Rapoport's rule, a negative correlation between average depth range and species diversity.  相似文献   

17.
Aim   We analysed the variation of species richness in the European freshwater fauna across latitude. In particular, we compared latitudinal patterns in species richness and β-diversity among species adapted to different habitat types.
Location   Europe.
Methods   We compiled data on occurrence for 14,020 animal species across 25 pre-defined biogeographical regions of European freshwaters from the Limnofauna Europaea . Furthermore, we extracted information on the habitat preferences of species. We assigned species to three habitat types: species adapted to groundwater, lotic (running water) and lentic (standing water) habitats. We analysed latitudinal patterns of species richness, the proportion of lentic species and β-diversity.
Results   Only lentic species showed a significant species–area relationship. We found a monotonic decline of species richness with latitude for groundwater and lotic habitats, but a hump-shaped relationship for lentic habitats. The proportion of lentic species increased from southern to northern latitudes. β-Diversity declined from groundwater to lentic habitats and from southern to northern latitudes.
Main conclusions   The differences in the latitudinal variation of species richness among species adapted to different habitat types are in part due to differences in the propensity for dispersal. Since lentic habitats are less persistent than lotic or groundwater habitats, lentic species evolved more efficient strategies for dispersal. The dispersal propensity of lentic species facilitated the recolonization of central Europe after the last glaciation. Overall, we stress the importance of considering the history of regions and lineages as well as the ecological traits of species for understanding patterns of biodiversity.  相似文献   

18.
The latitudinal decline of species richness is a general spatial pattern of biodiversity, and it applies to marine species as well. Based on a latitudinal gradient of marine species richness, potential stocks of marine ecosystem services are expected to be higher in lower latitudes through increment in biodiversity. However, little is known about the relationships of the marine ecosystem services with latitude and biodiversity. We estimated the latitudinal patterns and relationships with the biodiversity of potential stocks of three major reef fish-based ecosystem services (fisheries production, aquarium fish production, and recreational diving) at ten coral habitats from tropical to temperate zones in the Kuroshio Current region (8°37′N–33°24′N) using field survey data and information from relevant websites and administrative statistics. We found a latitudinal declin from south to north in potential stocks of aquarium fish production and diving in this region, whereas the peaks of fisheries production were found around both tropical and sub-tropical zones. Our results also showed strong positive effects of biodiversity on potential stocks of the three ecosystem services, highlighting the importance of conserving diverse fish species to sustain multiple services at high levels. Broad spatial patterns of the reef fish-based ecosystem services are useful as baselines for future evaluation of their changes. As the effects of climate change on reef fishes are predicted to vary among different latitude zones, our estimates of the ecosystem services infer specific management and economic actions for the respective zones against climate change.  相似文献   

19.
Climate change has been predicted to lead to changes in local and regional species richness through species extinctions and latitudinal ranges shifts. Here, we show that species richness of fish in the North Sea, a group of ecological and socio-economical importance, has increased over a 22-year period and that this rise is related to higher water temperatures. Over eight times more fish species displayed increased distribution ranges in the North Sea (mainly small-sized species of southerly origin) compared with those whose range decreased (primarily large and northerly species). This increase in species richness can be explained from the fact that fish species richness in general decreases with latitude. This observation confirms that the interaction between large-scale biogeographical patterns and climate change may lead to increasing species richness at temperate latitudes.  相似文献   

20.
For many taxa, diversity, often measured as species richness, decreases with latitude. In this report patterns of diversity (species richness, species diversity, and evenness) in groundfish assemblages were investigated in relation to depth (200–1200 m) and latitude (33–47°N) on the continental slope of the U.S. Pacific coast. The data originated from the 1999–2002 upper continental slope groundfish surveys conducted by the National Marine Fisheries Service. When the data were pooled across depths, species density and evenness were found to decline with latitude. All three diversity measures declined with depth, with the lowest overall diversity in the 600- to 900-m depth range where longspine thornyhead Sebastolobus altivelis constituted close to 70% of the catch. When latitudinal gradients were examined within four depth zones (200–300 m, 400–500 m, 600–900 m, and 1000–1200 m) more complex patterns emerged. At depth species richness and evenness were inversely correlated with latitude as longspine thornyhead dominated catches to the north. However, in shallower areas of the slope, species richness and evenness were positively correlated with latitude. Latitudinal patterns of diversity in the deeper zones and when pooled across depths were positively correlated with temperature and broadly consistent with the Ambient Energy hypothesis discussed by Willig et al. [Annu Rev Ecol System 34:273–309 (2003)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号