首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wnt signaling is critical to many aspects of development, and aberrant activation of the Wnt signaling pathway can cause cancer. Dishevelled (Dvl) protein plays a central role in this pathway by transducing the signal from the Wnt receptor complex to the beta-catenin destruction complex. Dvl also plays a pivotal role in the planar cell polarity pathway that involves the c-Jun N-terminal kinase (JNK). How functions of Dvl are regulated in these two distinct pathways is not clear. We show that deleting the C-terminal two-thirds of Dvl, which includes the PDZ and DEP domains and is essential for Dvl-induced JNK activation, rendered the molecule a much more potent activator of the beta-catenin pathway. We also found that casein kinase Iepsilon (CKIepsilon), a previously identified positive regulator of Wnt signaling, stimulated Dvl activity in the Wnt pathway, but dramatically inhibited Dvl activity in the JNK pathway. Consistent with this, overexpression of CKIepsilon in Drosophila melanogaster stimulated Wnt signaling and disrupted planar cell polarity. We also observed a correlation between the localization and the signaling activity of Dvl in the beta-catenin pathway and the JNK pathway. Furthermore, by using RNA interference, we demonstrate that the Drosophila CKIepsilon homologue Double time positively regulates the beta-catenin pathway through Dvl and negatively regulates the Dvl-induced JNK pathway. We suggest that CKIepsilon functions as a molecular switch to direct Dvl from the JNK pathway to the beta-catenin pathway, possibly by altering the conformation of the C terminus of Dvl.  相似文献   

3.
4.
Roles of Axin in the Wnt signalling pathway   总被引:20,自引:0,他引:20  
The Wnt signalling pathway is conserved in various species from worms to mammals, and plays important roles in development, cellular proliferation, and differentiation. The molecular mechanisms by which the Wnt signal regulates cellular functions are becoming increasingly well understood. Wnt stabilizes cytoplasmic beta-catenin, which stimulates the expression of genes including c-myc, c-jun, fra-1, and cyclin D1. Axin, newly recognized as a component of the Wnt signalling pathway, negatively regulates this pathway. Other components of the Wnt signalling pathway, including Dvl, glycogen synthase kinase-3beta, beta-catenin, and adenomatous polyposis coli, interact with Axin, and the phosphorylation and stability of beta-catenin are regulated in the Axin complex. Thus, Axin acts as a scaffold protein in the Wnt signalling pathway, thereby regulating cellular functions.  相似文献   

5.
6.
Axin forms a complex with adenomatous polyposis coli gene product, glycogen synthase kinase-3beta (GSK-3beta), beta-catenin, Dvl, and protein phosphatase 2A and functions as a scaffold protein in the Wnt signaling pathway. In the Axin complex, GSK-3beta efficiently phosphorylates beta-catenin, which is then ubiquitinated and degraded by proteasome. We isolated a novel protein that binds to Axin and named it Axam (for Axin associating molecule). Axam formed a complex with Axin in intact cells and bound directly to Axin. Axam inhibited the complex formation of Dvl with Axin and the activity of Dvl to suppress GSK-3beta-dependent phosphorylation of Axin. Furthermore, Axam induced the degradation of beta-catenin in SW480 cells and inhibited Wnt-dependent axis duplication in Xenopus embryos. These results suggest that Axam regulates the Wnt signaling pathway negatively by inhibiting the binding of Dvl to Axin.  相似文献   

7.
W Wei  M Li  J Wang  F Nie  L Li 《Molecular and cellular biology》2012,32(19):3903-3912
Dishevelled (Dvl) is a key component in the canonical Wnt signaling pathway and becomes hyperphosphorylated upon Wnt stimulation. Dvl is required for LRP6 phosphorylation, which is essential for subsequent steps of signal transduction, such as Axin recruitment and cytosolic β-catenin stabilization. Here, we identify the HECT-containing Nedd4-like ubiquitin E3 ligase ITCH as a new Dvl-binding protein. ITCH ubiquitinates the phosphorylated form of Dvl and promotes its degradation via the proteasome pathway, thereby inhibiting canonical Wnt signaling. Knockdown of ITCH by RNA interference increased the stability of phosphorylated Dvl and upregulated Wnt reporter gene activity as well as endogenous Wnt target gene expression induced by Wnt stimulation. In addition, we found that both the PPXY motif and the DEP domain of Dvl are critical for its interaction with ITCH, as mutation in the PPXY motif (Dvl2-Y568F) or deletion of the DEP domain led to reduced affinity for ITCH. Consistently, overexpression of ITCH inhibited wild-type Dvl2-induced, but not Dvl2-Y568F mutant-induced, Wnt reporter activity. Moreover, the Y568F mutant, but not wild-type Dvl2, can reverse the ITCH-mediated inhibition of Wnt-induced reporter activity. Collectively, these results indicate that ITCH plays a negative regulatory role in modulating canonical Wnt signaling by targeting the phosphorylated form of Dvl.  相似文献   

8.
Dishevelled (Dvl) is a positive regulator of the canonical Wnt signaling pathway, which regulates the levels of beta-catenin. The beta-catenin oncoprotein depends upon the association of Dvl and Axin proteins through their DIX domains, and its accumulation directs the expression of specific developmental-related genes at the nucleus. Here, the (1)H, (13)C and (15)N resonances of the human Dishevelled 2 DIX domain are assigned using heteronuclear nuclear magnetic resonance (NMR) spectroscopy. In addition, helical and extended elements are identified based on the NMR data. The results establish a structural context for characterizing the actin and phospholipid interactions and binding sites of this novel domain, and provide insights into its role in protein localization to stress fibers and cytoplasmic vesicles during Wnt signaling.  相似文献   

9.
10.
11.
Axin, a negative regulator of the Wnt signaling pathway, forms a complex with glycogen synthase kinase-3beta (GSK-3beta), beta-catenin, adenomatous polyposis coli (APC) gene product, and Dvl, and it regulates GSK-3beta-dependent phosphorylation in the complex and the stability of beta-catenin. Using yeast two-hybrid screening, we found that regulatory subunits of protein phosphatase 2A, PR61beta and -gamma, interact with Axin. PR61beta or -gamma formed a complex with Axin in intact cells, and their interaction was direct. The binding site of PR61beta on Axin was different from those of GSK-3beta, beta-catenin, APC, and Dvl. Although PR61beta did not affect the stability of beta-catenin, it inhibited Dvl- and beta-catenin-dependent T cell factor activation in mammalian cells. Moreover, it suppressed beta-catenin-induced axis formation and expression of siamois, a Wnt target gene, in Xenopus embryos, suggesting that PR61beta acts either at the level of beta-catenin or downstream of it. Taken together with the previous observations that PR61 interacts with APC and functions upstream of beta-catenin, these results demonstrate that PR61 regulates the Wnt signaling pathway at various steps.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Activation of canonical Wnt/beta-catenin pathway in Invasive Ductal Carcinoma of Breast (IDCs) was recently reported from our laboratory. Herein, we analyzed promoter methylation status of CDH1 and Adenomatous polyposis coli (APC) genes in 50 IDCs and correlated with expression of E-cadherin (E-CD) and APC proteins and with activation of oncogenic Wnt/beta-catenin signaling pathway components, Dvl, beta-catenin and CyclinD1. Further, Wnt/beta-catenin driven epithelial mesenchymal transition (EMT) was investigated by correlating the expression of Dvl, beta-catenin and CyclinD1 with vimentin expression in these IDCs. Promoter hypermethylation was observed in 25/50 (50%) IDCs for CDH1 and in 11/50 (22%) tumors for APC, associated with loss of expression of E-CD and APC proteins; concordant hypermethylation of these genes was observed in paired patients' sera. Further, 57% of tumors harboring CDH1 methylation and 50% tumors harboring the methylated APC gene showed nuclear localization of beta-catenin, suggesting activation of the canonical Wnt/beta-catenin pathway. Our study demonstrates significant association between vimentin expression and nuclear beta-catenin (p=0.001; Odds ratio (OR)=25.6) and Dvl (p=0.023; OR=8.0), suggesting that EMT may be driven by Wnt/beta-catenin activation in IDCs. In conclusion, we demonstrate correlation of CDH1 and APC promoter methylation with loss of E-CD and APC proteins and with activation of Wnt/beta-catenin signaling pathway. Association of nuclear Dvl and beta-catenin with vimentin expression suggests the importance of Wnt/beta-catenin pathway driven EMT in IDCs. The concordance between CDH1 and APC methylation in IDCs and paired circulating DNA underscores the utility of serum DNA as a non-invasive tool for methylation analysis in IDC patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号