首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiology and biochemistry of Sarcina ventriculi was studied in order to determine adaptations made by the organism to changes in environmental pH. The organism altered carbon and electron flow from acetate, formate and ethanol production at neutral pH, to predominantly ethanol production at pH 3.0. Increased levels of pyruvate dehydrogenase (relative to pyruvate decarboxylase) and acetaldehyde dehydrogenase occurred when the organism was grown at neutral pH, indicating the predominance of carbon flux through the oxidative branch of the pathway for pyruvate metabolism. When the organism was grown at acid pH, there was a significant increase in pyruvate decarboxylase levels and a decrease in acetaldehyde dehydrogenase, causing flux through the non-oxidative branch of the pathway. CO2 reductase and formate dehydrogenase were not regulated as a function of growth pH. Pyruvate dehydrogenase possessed Michaelis-Menten kinetics for pyruvate with an apparent K m of 2.5 mM, whereas pyruvate decarboxylase exhibited sigmoidal kinetics, with a S0.5 of 12.0 mM. Differences in total protein banding patterns from cells grown at pH extremes suggested that synthesis of pyruvate decarboxylase and other enzymes was in part responsible for metabolic regulation of the fermentation products formed.  相似文献   

2.
In the phototrophic nonsulfur bacterium Rhodobacter capsulatus E1F1, L-alanine dehydrogenase aminating activity functions as an alternative route for ammonia assimilation when glutamine synthetase is inactivated. L-Alanine dehydrogenase deaminating activity participates in the supply of organic carbon to cells growing on L-alanine as the sole carbon source. L-Alanine dehydrogenase is induced in cells growing on pyruvate plus nitrate, pyruvate plus ammonia, or L-alanine under both light-anaerobic and dark-heterotrophic conditions. The enzyme has been purified to electrophoretic and immunological homogeneity by using affinity chromatography with Red-120 agarose. The native enzyme was an oligomeric protein of 246 kilodaltons (kDa) which consisted of six identical subunits of 42 kDa each, had a Stokes' radius of 5.8 nm, an s20.w of 10.1 S, a D20,w of 4.25 x 10(-11) m2 s-1, and a frictional quotient of 1.35. The aminating activity was absolutely specific for NADPH, whereas deaminating activity was strictly NAD dependent, with apparent Kms of 0.25 (NADPH), 0.15 (NAD+), 1.25 (L-alanine), 0.13 (pyruvate), and 16 (ammonium) mM. The enzyme was inhibited in vitro by pyruvate or L-alanine and had two sulfhydryl groups per subunit which were essential for both aminating and deaminating activities.  相似文献   

3.
Syntrophococcus sucromutans is the predominant species capable of O demethylation of methoxylated lignin monoaromatic derivatives in the rumen. The enzymatic characterization of this acetogen indicated that it uses the acetyl coenzyme A (Wood) pathway. Cell extracts possess all the enzymes of the tetrahydrofolate pathway, as well as carbon monoxide dehydrogenase, at levels similar to those of other acetogens using this pathway. However, formate dehydrogenase could not be detected in cell extracts, whether formate or a methoxyaromatic was used as electron acceptor for growth of the cells on cellobiose. Labeled bicarbonate, formate, [1-14C] pyruvate, and chemically synthesized O-[methyl-14C]vanillate were used to further investigate the catabolism of one-carbon (C1) compounds by using washed-cell preparations. The results were consistent with little or no contribution of formate dehydrogenase and pointed out some unique features. Conversion of formate to CO2 was detected, but labeled formate predominantly labeled the methyl group of acetate. Labeled CO2 readily exchanged with the carboxyl group of pyruvate but not with formate, and both labeled CO2 and pyruvate predominantly labeled the carboxyl group of acetate. No CO2 was formed from O demethylation of vanillate, and the acetate produced was position labeled in the methyl group. The fermentation pattern and specific activities of products indicated a complete synthesis of acetate from pyruvate and the methoxyl group of vanillate.  相似文献   

4.
Continuous production of L-alanine with conjugated enzyme systems of alanine dehydrogenase (AlaDH) and lactate dehydrogenase (LDH) or alcohol dehydrogenase (ADH) was carried out with NAD regeneration in an ultrafiltration hollow-fiber capillary reactor (HFCR) which was proposed as a test bioreactor with very small scale. In the AlaDH/LDH system, pyruvate is the intermediate product for L-alanine so that an optimal point existed in pyruvate concentration for the production rate of L-alanine. NAD cycling number of 4850 and L-alanine productivity of 61.7 mmol/L h were obtained at the best condition. In the AlaDH/ADH system, however, the substrate inhibition in the AlaDH reaction by pyruvate should be considered and the best results of NAD cycling number and (L)-alanine productivity were 2700 and 13.5 mmol/L h, respectively. In consideration of concentration distribution and mixing in the axial direction on an HFCR, performance of the reactor was theoretically analyzed with a multistage stirred tank reactor model combined with the kinetic model based on all the elementary reactions involved. Although quantitative discrepancy existed in some cases, the present theoretical model could explain experimental results and is expected to be generally applicable to standard hollow fiber reactors.  相似文献   

5.
Alanine dehydrogenase (L-alanine: NAD+ oxidoreductase, deaminating) was simply purified to homogeneity from a thermophile, Bacillus sphaericus DSM 462, by ammonium sulfate fractionation, red-Sepharose 4B chromatography and preparative slab gel electrophoresis. The enzyme had a molecular mass of about 230 kDa and consisted of six subunits with an identical molecular mass of 38 kDa. The enzyme was much more thermostable than that from a mesophile, B. sphaericus, and retained its full activity upon heating at 75 degrees C for at least 60 min and with incubation in pH 5.5-9.5 at 75 degrees C for 10 min. The enzyme can be stored without loss of its activity in a frozen state (-20 degrees C, at pH 7.2) for over 5 months. The optimum pH for the L-alanine deamination and pyruvate amination were around 10.5 and 8.2, respectively. The enzyme exclusively catalyzed the oxidative deamination of L-alanine in the presence of NAD+, but showed low amino acceptor specificity; hydroxypyruvate, oxaloacetate, 2-oxobutyrate and 3-fluoropyruvate are also aminated as well as pyruvate in the presence of NADH and ammonia. Initial velocity and product inhibition studies showed that the reductive amination proceeded through a sequential mechanism containing partially random binding. NADH binds first to the enzyme, and then pyruvate and ammonia bind in a random fashion. The products are sequentially released from the enzyme in the order L-alanine then NAD+. A dead-end inhibition by the formation of an abortive ternary complex which consists of the enzyme, NAD+ and pyruvate was included in the reaction. A possible role of the dead-end inhibition is to prevent the enzyme from functioning in the L-alanine synthesis. The Michaelis constants for the substrates were as follows: NADH, 0.10 mM; pyruvate, 0.50 mM; ammonia, 38.0 mM; L-alanine, 10.5 mM and NAD+, 0.26 mM.  相似文献   

6.
In a previous study, an Escherichia coli strain lacking the key enzymes (acetate kinase and phosphotransacetylase, ACK-PTA) of the major acetate synthesis pathways reduced acetate accumulation. The ackA-pta mutant strain also exhibits an increased lactate synthesis rate. Metabolic flux analysis suggested that the majority of excessive carbon flux was redirected through the lactate formation pathway rather than the ethanol synthesis pathway. This result indicated that lactate dehydrogenase may be competitive at the pyruvate node. However, a 10-fold overexpression of the fermentative lactate dehydrogenase (ldhA) gene in the wild-type parent GJT001 was not able to divert carbon flux from acetate. The carbon flux through pyruvate and all its end products increases at the expense of flux through biosynthesis and succinate. Intracellular pyruvate measurements showed that strains overexpressing lactate dehydrogenase (LDH) depleted the pyruvate pool. This observation along with the observed excretion of pyruvate in the ackA-pta strain indicates the significance of intracellular pyruvate pools. In the current study, we focus on the role of the intracellular pyruvate pool in the redirection of metabolic fluxes at this important node. An increasing level of extracellular pyruvate leads to an increase in the intracellular pyruvate pool. This increase in intracellular pyruvate affects carbon flux distribution at the pyruvate node. Partitioning of the carbon flux to acetate at the expense of ethanol occurs at the acetyl-CoA node while partitioning at the pyruvate node favors lactate formation. The increased competitiveness of the lactate pathway may be due to the allosteric activation of LDH as a result of increased pyruvate levels. The interaction between the reactions catalyzed by the enzymes PFL (pyruvate formate lyase) and LDH was examined.  相似文献   

7.
Minute amounts of oxygen were supplied to a continuous cultivation of Lactococcus lactis subsp. cremoris MG1363 grown on a defined glucose-limited medium at a dilution rate of 0.1 h(-1). More than 80% of the carbon supplied with glucose ended up in fermentation products other than lactate. Addition of even minute amounts of oxygen increased the yield of biomass on glucose by more than 10% compared to that obtained under anaerobic conditions and had a dramatic impact on catabolic enzyme activities and hence on the distribution of carbon at the pyruvate branch point. Increasing aeration caused carbon dioxide and acetate to replace formate and ethanol as catabolic end products while hardly affecting the production of either acetoin or lactate. The negative impact of oxygen on the synthesis of pyruvate formate lyase was confirmed. Moreover, oxygen was shown to down regulate the protein level of alcohol dehydrogenase while increasing the enzyme activity levels of the pyruvate dehydrogenase complex, alpha-acetolactate synthase, and the NADH oxidases. Lactate dehydrogenase and glyceraldehyde dehydrogenase enzyme activity levels were unaffected by aeration.  相似文献   

8.
The addition of L-alanine reduced lactate dehydrogenase leakage from primary cultured rat hepatocytes treated with galactosamine (D-gal), while D-alanine and other amino acids did not. However, the mechanisms have not yet been entirely clarified. In this study, we used various inhibitors of metabolism, i.e., aminooxyacetate, oligomycin, and quinolinic acid, to examine the relation between this protective effect and the metabolism of L-alanine. Quinolinic acid (10 mM) did not affect the hepatoprotective effect of L-alanine, while oligomycin (0.1 mug/ml) and aminooxyacetate (1 mM) eliminated the hepatoprotective effect of L-alanine. L-Alanine also increased the albumin secretion by cultured hepatocytes treated with D-gal, while pyruvate had little effect. It was revealed that the intracellular content of pyruvate did not increase as a result of addition of L-alanine. These results are consistent with the hypothesis that L-alanine metabolism is important for hepatoprotection, but pyruvate cannot be used as a substitute for L-alanine.  相似文献   

9.
Using analytical subcellular fractionation techniques, 12% of the total L-alanine aminotransferase activity and 26% of the total L-aspartate aminotransferase activity was localized in enterocyte mitochondria. Alanine and aspartate were products from the oxidation of glutamine and glutamate by enterocyte mitochondria. At low concentrations, malate stimulated aspartate synthesis but was inhibitory at higher concentrations. The malate inhibition of aspartate synthesis, which increased in the presence of pyruvate, was accompanied by an increase in alanine synthesis. With glutamine as substrate in the presence of pyruvate and malate, alanine synthesis was increased by 127% on addition of purified L-alanine aminotransferase, in spite of large amounts of glutamate generated. It was concluded that when pyruvate is available the important route for glutamine or glutamate oxidation by transamination was via L-alanine:2-oxoglutarate aminotransferase and not via L-aspartate:2-oxoglutarate aminotransferase. Results suggested that mitochondria may account for 50% of alanine production from glutamine in the enterocyte despite the relatively low activity of L-alanine aminotransferase therein.  相似文献   

10.
The nuoA-N gene cluster encodes a transmembrane NADH:ubiquinone oxidoreductase (NDH-I) responsible for coupling redox chemistry to proton-motive force generation. Interactions between nuo and the acetate-producing pathway encoded by ackA-pta were investigated by examining the metabolic patterns of several mutant strains under anaerobic growth conditions. In an ackA-pta strain, the flux to acetate was decreased dramatically, whereas flux to lactate was increased significantly when compared with its parent strain; the fluxes to pyruvate and ethanol also increased slightly. In addition, pyruvate was excreted. A strain carrying the nuo mutation showed metabolic flux distribution similar to the wild type. The ackA-pta-nuo strain showed a different metabolic pattern. It not only exhibited reduced acetate accumulation but also significantly lower ethanol and formate synthesis. Metabolic flux distribution analysis suggests that the excessive carbon flux was redirected at the pyruvate node through the lactate dehydrogenase pathway for lactate formation rather than the pyruvate formate-lyase (PFL) pathway for acetyl-CoA and formate production. The diminished capacity through the formate and ethanol (ADH) pathways was not the result of genetic disruption of functional PFL or ADH production. The introduction of a Bacillus subtilis acetolactate synthase gene returned formate, ethanol, and lactate levels to those of the wild type (ackA(+)pta(+)nuo(+)) strain. Furthermore, transfer of a lactate dehydrogenase mutation yielded a strain producing ethanol as the sole fermentation product. As confirmation of the nuo effect, cultures of the ackA-pta strain, supplemented with an NDH-I inhibitor, produced intermediary levels of flux to ethanol and formate. Mutations in both ackA-pta and nuo are required to significantly reduce the flux through the PFL pathway.  相似文献   

11.
1. Lactation is associated with an increase in the arterial blood concentration of L-alanine and L-glutamate, but a decrease in that of L-glutamine compared with the corresponding values for virgin rats. 2. Virgin rats fed a 'cafeteria diet' that induces hyperphagia have increased arterial concentrations of L-alanine, L-glutamate and L-glutamine. During lactation L-alanine and L-glutamate concentrations are even higher. 3. The removal of L-alanine is decreased in hepatocytes from lactating rats fed either a chow or cafeteria diet. 4. Measurements of arteriovenous differences across lactating mammary glands indicate that appreciable amounts of L-glutamine and L-alanine are extracted by the gland. 5. A high proportion of the L-alanine metabolized by isolated acini from fed lactating rats is converted into lipid. 6. Metabolism of L-alanine in acini from starved lactating rats is limited by the activity of pyruvate dehydrogenase. 7. It is concluded that L-alanine and certain other amino acids taken up by the gland in excess of the requirements for protein synthesis can be converted into lipid.  相似文献   

12.
Bifidobacterium breve NCFB 2257 was grown in glucose-limited and nitrogen (N)-limited chemostats at dilution rates (D) from 0.04 to 0.60 h–1, to study the effect of nutrient availability on carbohydrate metabolism. The results showed that D had little effect on fermentation product formation, irrespective of the form of nutrient limitation. However, marked differeces were observed in the distribution of fermentation products, that were attributable to glucose availability. In glucose-limited cultures, formate and acetate were the principal end-products of metabolism. Lactate was never detected under these growth conditions. In contrast, lactate and acetate were mainly formed when glucose was in excess, and formate was not produced. These results are explained by the metabolic fate of pyruvate, which can be dissimilated by either phosphoroclastic cleavage to acetyl phosphate and formate, or alternatively, it may be reduced to lactate. Enzymic studies were made to establish the mechanisms that regulated pyruvate metabolism. The data demonstrated that control was not exercised through regulation of the synthesis and activity of lactate dehydrogenase (LDH), phosphofructokinase or alcohol dehydrogenase. It is possible however, that there was competition for pyruvate by LDH and the phosphoroclastic enzyme, which would determine the levels of lactate and formate produced respectively. These results demonstrate the metabolic flexibility of B. breve, which preferentially uses lactate as an electron sink during N-limited growth, whereas under energy-limitation, carbon flow is directed towards acetyl phosphate to maximise ATP synthesis. Correspondence to: B. A. Degnan  相似文献   

13.
In a medium containing a trace element solution and 10-4 M ferrous ions the growth yield ofClostridium formicoaceticum on fructose was 5.5 g of weight per l; in the absence of metal ion solution it was 1 g per l. The specific activity of methyl viologen dependent formate dehydrogenase under both conditions was 0.28 and 0.03 units per mg of protein, respectively. It could be increased to 9.75 units when the growth medium contained 10-4 M tungstate and 10-5 M selenite in addition. Molybdate was only about 40% as effective as tungstate. Tungstate or molybdate could not be replaced by vanadate, selenite not by sulfide. The formate dehydrogenase catalyzed also the reduction of CO2 to formate. The highest rate of formate synthesis was observed when pyruvate served as the reductant. No pyruvate: formate exchange but rapid pyruvate: CO2 exchange could be observed with cell-free extracts ofC. formicoaceticum. Pyruvate is fermented byC. formicoaceticum to yield up to 1.16 mole acetate per mole of pyruvate. Resting cells accumulated some formate in addition to acetate.  相似文献   

14.
Pyruvate fermentation inRhodospirillum rubrum (strains F1, S1, and Ha) was investigated using cells precultured on different substrates anaerobically in the light and than transferred to anaerobic dark conditions. Pyruvate formate lyase was always the key enzyme in pyruvate fermentation but its activity was lower than in cells which have been precultured aerobically in darkness. The preculture substrate also had a clear influence on the pyruvate formate lyase activity. Strains F1 and S1 metabolized the produced formate further to H2 and CO2. A slight production of CO2 from pyruvate, without additional H2-production, could also be detected. It was concluded from this that under anaerobic dark conditions a pyruvate dehydrogenase was also functioning. On inhibition of pyruvate formate lyase the main part of pyruvate breakdown was taken over by pyruvate dehydrogenase.When enzyme synthesis was inhibited by chloramphenicol, propionate production in contrast to formate production was not affected. Protein synthesis was not significant during anaerobic dark culture. Bacteriochlorophyll. however, showed, after a lag phase, a clear rise.Abbreviations Bchl Bacteriochlorophyll - CoA Coenzyme A - DSM Deutsche Sammlung von Mikroorganismen (Göttingen) - OD optical density - PHBA poly--hydroxybutyric acid - R Rhodospirillum  相似文献   

15.
Alanine dehydrogenase [L-alanine:NAD+ oxidoreductase (deaminating), EC 1.4.1.4.] catalyses the reversible oxidative deamination of L-alanine to pyruvate and, in the anaerobic bacterium Bilophila wadsworthia RZATAU, it is involved in the degradation of taurine (2-aminoethanesulfonate). The enzyme regenerates the amino-group acceptor pyruvate, which is consumed during the transamination of taurine and liberates ammonia, which is one of the degradation end products. Alanine dehydrogenase seems to be induced during growth with taurine. The enzyme was purified about 24-fold to apparent homogeneity in a three-step purification. SDS-PAGE revealed a single protein band with a molecular mass of 42 kDa. The apparent molecular mass of the native enzyme was 273 kDa, as determined by gel filtration chromatography, suggesting a homo-hexameric structure. The N-terminal amino acid sequence was determined. The pH optimum was pH 9.0 for reductive amination of pyruvate and pH 9.0-11.5 for oxidative deamination of alanine. The apparent Km values for alanine, NAD+, pyruvate, ammonia and NADH were 1.6, 0.15, 1.1, 31 and 0.04 mM, respectively. The alanine dehydrogenase gene was sequenced. The deduced amino acid sequence corresponded to a size of 39.9 kDa and was very similar to that of the alanine dehydrogenase from Bacillus subtilis.  相似文献   

16.
Minute amounts of oxygen were supplied to a continuous cultivation of Lactococcus lactis subsp. cremoris MG1363 grown on a defined glucose-limited medium at a dilution rate of 0.1 h−1. More than 80% of the carbon supplied with glucose ended up in fermentation products other than lactate. Addition of even minute amounts of oxygen increased the yield of biomass on glucose by more than 10% compared to that obtained under anaerobic conditions and had a dramatic impact on catabolic enzyme activities and hence on the distribution of carbon at the pyruvate branch point. Increasing aeration caused carbon dioxide and acetate to replace formate and ethanol as catabolic end products while hardly affecting the production of either acetoin or lactate. The negative impact of oxygen on the synthesis of pyruvate formate lyase was confirmed. Moreover, oxygen was shown to down regulate the protein level of alcohol dehydrogenase while increasing the enzyme activity levels of the pyruvate dehydrogenase complex, α-acetolactate synthase, and the NADH oxidases. Lactate dehydrogenase and glyceraldehyde dehydrogenase enzyme activity levels were unaffected by aeration.  相似文献   

17.
Formate was formed in extracts of Chlorogonium elongatum via direct cleavage of pyruvate by a pyruvate formate-lyase (PFL, EC 2.3.1.54). The conversion of PFL to the catalytically active form required S-adenosylmethionine, ferric (2+), photoreduced deazariboflavin as reductant, pyruvate as allosteric effector and strict anaerobic conditions. At the optimum pH (pH 8.0), PFL catalyzed formate formation, pyruvate synthesis and the isotope exchange from [14C]formate into pyruvate with rates of 30.0, 1.5 and 1.2 nmol min-1 mg-1 protein, respectively. Treatment of the active enzyme with O2 irreversibly inactivated PFL activity (half-time 2 min). In addition to PFL, the activities of phosphotransacetylase (EC 2.3.1.8), acetate kinase (EC 2.7.2.1), aldehyde dehydrogenase (CoA acetylating, EC 1.2.1.10) and alcohol dehydrogenase (EC 1.1.1.1) were also detected in extracts of C. elongatum. The occurrence of these enzymes indicates pyruvate degradation via a formate-fermentation pathway during anaerobiosis of algal cells in the dark.Abbreviations DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazine+ethane sulfonic acid - PFL pyruvate formate-lyase  相似文献   

18.
Pyruvate was produced from glucose by Escherichia coli BW25113 that contained formate dehydrogenase (FDH) from Mycobacterium vaccae. In aerobic shake-flask culture (K (L) a?=?4.9?min(-1)), the recombinant strain produced 6.7?g pyruvate?l(-1) after 24?h with 4?g sodium formate?l(-1) and a yield of 0.34?g pyruvate?g?glucose(-1). These values were higher than those of the original strain (0.2?g?l(-1) pyruvate and 0.02?g pyruvate?g?glucose(-1)). Based on the reaction mechanism of FDH, the introduction of FDH into E. coli enhances the accumulation of pyruvate by the regeneration of NADH from NAD(+) since NAD(+) is a shared cosubstrate with the pyruvate dehydrogenase complex, which decarboxylates pyruvate to acetyl-CoA and CO(2). The oxygenation level was enough high to inactivate lactate dehydrogenase, which was of benefit to pyruvate accumulation without lactate as a by-product.  相似文献   

19.
During batch growth of Lactococcus lactis subsp. lactis NCDO 2118 on various sugars, the shift from homolactic to mixed-acid metabolism was directly dependent on the sugar consumption rate. This orientation of pyruvate metabolism was related to the flux-controlling activity of glyceraldehyde-3-phosphate dehydrogenase under conditions of high glycolytic flux on glucose due to the NADH/NAD+ ratio. The flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase led to an increase in the pool concentrations of both glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate and inhibition of pyruvate formate lyase activity. Under such conditions, metabolism was homolactic. Lactose and to a lesser extent galactose supported less rapid growth, with a diminished flux through glycolysis, and a lower NADH/NAD+ ratio. Under such conditions, the major pathway bottleneck was most probably at the level of sugar transport rather than glyceraldehyde-3-phosphate dehydrogenase. Consequently, the pool concentrations of phosphorylated glycolytic intermediates upstream of glyceraldehyde-3-phosphate dehydrogenase decreased. However, the intracellular concentration of fructose-1,6-bisphosphate remained sufficiently high to ensure full activation of lactate dehydrogenase and had no in vivo role in controlling pyruvate metabolism, contrary to the generally accepted opinion. Regulation of pyruvate formate lyase activity by triose phosphates was relaxed, and mixed-acid fermentation occurred (no significant production of lactate on lactose) due mostly to the strong inhibition of lactate dehydrogenase by the in vivo NADH/NAD+ ratio.  相似文献   

20.
Summary The synthesis of protein and lipid was studied in the testis and thoracic tissues ofDrosophila hydei by radioisotope incorporation. The formation and accumulation of late stage gametes in the testes during maturation was accompanied by more than 4-fold increases in both lipid and protein synthesis rates. Though there was an 8-fold increase in the rate of protein synthesis during thoracic tissue maturation, the rate of lipid synthesis little more than doubled. By comparison the rates of protein synthesis were high in mature testis and thoracic tissues, whereas the rate of lipid synthesis was high in the mature testis but low in both immature and mature thoracic tissues.Label incorporation from pyruvate and L-alanine into protein in thoracic tissue appeared to be highly dependent on Krebs cycle activity, whereas pyruvate and L-alanine label incorporation into protein in the testis was primarily from L-alanine and its derivatives. Both pyruvate and L-alanine were decarboxylated prior to label incorporation into lipid in the testis and thoracic tissue.This work was supported by National Science Foundation Grant GB-13393.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号