首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na+/H+ antiporters are ubiquitous membrane proteins and play a central role in cell homeostasis including pH regulation, osmoregulation, and Na+/Li+ tolerance in bacteria. The microbial communities in extremely hypersaline soil are an important resource for isolating Na+/H+ antiporter genes. A metagenomic library containing 35,700 clones was constructed by using genomic DNA obtained from the hypersaline soil samples of Keke Salt Lake in Northwest of China. Two Na+/H+ antiporters, K1-NhaD, and K2-NhaD belonging to NhaD family, were screened and cloned from this metagenome by complementing the triple mutant Escherichia coli strain KNabc (nhaA , nhaB , chaA ) in medium containing 0.2 M NaCl. K1-NhaD and K2-NhaD have 75.5% identity at the predicted amino acid sequence. K1-NhaD has 78% identity with Na+/H+ antiporter NhaD from Halomonas elongate at the predicted amino acid sequence. The predicted K1-NhaD is a 53.5 kDa protein (487 amino acids) with 13 transmembrane helices. K2-NhaD has 73% identity with Alkalimonas amylolytica NhaD. The predicted K2-NhaD is a 55 kDa protein (495 amino acids) with 12 transmembrane helices. Both K1-NhaD and K2-NhaD could make the triple mutant E. coli KNabc (nhaA , nhaB , chaA) grow in the LBK medium containing 0.2–0.6 M Na+ or with 0.05–0.4 M Li+. Everted membrane vesicles prepared from E. coli KNabc cells carrying K1-NhaD or K2-NhaD exhibited Na+/H+ and Li+/H+ antiporter activities which were pH-dependent with the highest activity at pH 9.5. Little K+/H+ antiporter activity was also detected in vesicles form E. coli KNabc carrying K1-NhaD or K2-NhaD.  相似文献   

2.
Failure of inactivation is the typical response of voltage-gated Na+ channels to the cytosolic presence of proteolytic enzymes, protein reagents such as N-bromoacetamide (NBA) or iodate, and antibodies directed against the linker between domains III and IV of the α-subunit. The present patch clamp experiments with cardiac Na+ channels aimed to test the hypothesis that these interventions may provoke the occurrence of non-inactivating Na+ channels with distinct kinetic properties. A site-directed polyclonal antibody (anti-SLP2, target sequence 1481–1496 of the cardiac Na+ channel α-subunit) eliminated fast Na+ inactivation to induce burst activity which was accompanied by the occurrence of two open states. A deactivation process terminated channel activity during membrane depolarization proceeding with time constants of close to 40 ms (at –40 mV). NBA-modified and iodate-modified Na+ channels were kinetically indistinguishable from the anti-SLP2-modified type since they likewise deactivate and, thus, attain an only moderate Po of close to 20%. This is fundamentally different from the behaviour of enzymatically-modified Na+ channels: after cytosolic proteolysis with α-chymotrypsin, trypsin or pronase, mean Po during membrane depolarization amounted to approximately 40% because deactivation operated extremely slowly and less efficiently (time constants 100–200 ms at –40 mV, as a minimum) or was virtually non-operating. In-vitro cleavage of the synthetic linker sequence 1481–1496 confirmed that this part of the α-subunit provides a substrate for these peptidases or reactants for NBA but cannot be chemically modified by iodate. This iodate resistance indicates that iodate-modified Na+ channels are based on a structural alteration of still another region which is also involved in Na+ inactivation, besides the linker between domains III and IV of the α-subunit. Endogenous peptidases such as calpain did not affect Na+ inactivation. This stresses the stochastic nature of a kinetic peculiarity of cardiac Na+ channels, mode-switching to a non-inactivating mode. Received: 25 May 1996 / Accepted: 12 September 1996  相似文献   

3.
In conscious rats pretreatment with indomethacin or flurbiprofen, two chemically unrelated inhibitors of prostaglandin synthesis, reduced urine volume and sodium excretion induced by four diuretics, acetazolamide, amiloride, bendrofluazide and frusemide, or oral sodium chloride loads. The maximum reduction in sodium excretion was limited to approximately 2 mmol/kg Na+ even when sodium excretion was greatly increased. In contrast these inhibitors did not appreciably affect potassium excretion. These results indicate that part of the natriuretic response in the rat to highly and moderately efficacious diuretics and to sodium chloride loading is modified by prostaglandins. We suggest that the lack of effects on potassium excretion indicate that the collecting tubule is the probable site of action.  相似文献   

4.
In seawater-acclimated rainbow trout (Oncorhynchus mykiss), base secretion into the intestine is a key component of the intestinal water absorption that offsets osmotic water loss to the marine environment. Acid–base balance is maintained by the matched excretion of acid equivalents via other routes, presumably the gill and/or kidney. The goal of the present study was to examine acid–base balance in rainbow trout upon transfer to more dilute environments, conditions under which base excretion into the intestine is predicted to fall, requiring compensatory adjustments of acid excretion at the gill and/or kidney if acid–base balance is to be maintained. Net acid excretion via the gill/kidney and rectal fluid, and blood acid–base status were monitored in seawater-acclimated rainbow trout maintained in seawater or transferred to iso-osmotic conditions. As predicted, transfer to iso-osmotic conditions significantly reduced base excretion into the rectal fluid (by ~48%). Transfer to iso-osmotic conditions also significantly reduced the excretion of titratable acidity via extra-intestinal routes from 183.4 ± 71.3 to −217.5 ± 42.7 μmol kg−1 h−1 (N = 7). At the same time, however, ammonia excretion increased significantly during iso-osmotic transfer (by ~72%) so that the apparent overall reduction in net acid excretion (from 419.7 ± 92.9 to 189.2 ± 76.5 μmol kg−1 h−1; N = 7) was not significant. Trout maintained blood acid–base status during iso-osmotic transfer, although arterial pH was significantly higher in transferred fish than in those maintained in seawater. To explore the mechanisms underlying these adjustments of acid–base regulation, the relative mRNA expression and where possible, activity of a suite of proteins involved in acid–base balance were examined in intestine, gill and kidney. At the kidney, reduced mRNA expression of carbonic anhydrase (CA; cytosolic and membrane-associated CA IV), V-type H+-ATPase, and Na+/HCO3 co-transporter were consistent with a reduced role in net acid excretion following iso-osmotic transfer. Changes in relative mRNA expression and/or activity at the intestine and gill were consistent with the roles of these organs in osmotic rather than acid–base regulation. Overall, the data emphasize the coordination of acid–base, osmoregulatory and ionoregulatory processes that occur with salinity transfer in a euryhaline fish.  相似文献   

5.
Renal function in red wattlebirds in response to varying fluid intake   总被引:1,自引:1,他引:0  
Red wattlebirds (Anthochaera carunculata) are among the more nectarivorous of the Australian honeyeaters (family Meliphagidae). As such, they potentially ingest large and dilute fluid loads as food, and they produce copious dilute urine in the field. We examined in the laboratory the renal mechanisms by which such fluid loads are processed. Wattlebirds received one of three liquid diets [a mix of honey, water, and Complan (Boots) complete dietary supplement] of varying concentration (250, 1000, and 1750 mmol/kg, Na+/K+ concentrations of 4/4, 12/15, and 23/30 mmol/l, respectively). We measured renal function via infusion of a filtration marker (14C-polyethylene glycol) from osmotic minipumps implanted intraperitoneally. Wattlebirds consumed volumes of the three diets sufficient to provide nearly equal caloric intakes (approximately 200 kJ/day), and as a consequence had water turnover rates varying from 30 to 200 ml/day (approximately 50–335% of total body water per day). Renal function in the morning, before feeding, did not differ among diet groups (glomerular filtration rate =18 ml/h, urine flow rate =0.4 ml/h). In the afternoon, after feeding, urine flow did vary, from 3 ml/h in birds on the most concentrated diet to 6 ml/h on the most dilute. This was accomplished by varying the rate of tubular reabsorption of water (from a high of >90% on the most concentrated diet to a low of just over 70% on the most dilute), with little variation in the rate of glomerular filtration (mean ∼23 ml/h). Comparisons between dietary intakes and urinary outputs of water and electrolytes suggest that not all dietary water was absorbed from the gut, but that there was significant post-renal reabsorption of Na+. The reduced fractional water reabsorption on the dilute diet was accompanied by a decrease in the circulating concentration of arginine vasotocin (from >4 pg/ml in birds on the two more concentrated diets to <1 pg/ml on the most dilute diet). In contrast, concentrations of aldosterone (10–20 pg/ml) did not differ among diets. Perhaps in consequence, renal fractional absorption of Na+ also did not differ, and so birds on the dilute diet, with their higher urine flows, had higher rates of Na+ excretion and suffered a decreased concentration of Na+ in the plasma. Accepted: 14 January 1988  相似文献   

6.
Acidaminococcus fermentans is able to ferment glutamate to ammonia, CO2, acetate, butyrate, and H2. The molecular hydrogen (approximately 10 kPa; E′ = –385 mV) stems from NADH generated in the 3-hydroxybutyryl-CoA dehydrogenase reaction (E°′ = –240 mV) of the hydroxyglutarate pathway. In contrast to growing cells, which require at least 5 mM Na+, a Na+-dependence of the H2-formation was observed with washed cells. Whereas the optimal glutamate fermentation rate was achieved already at 1 mM Na+, H2 formation commenced only at > 10 mM Na+ and reached maximum rates at 100 mM Na+. The acetate/butyrate ratio thereby increased from 2.0 at 1 mM Na+ to 3.0 at 100 mM Na+. A hydrogenase and an NADH dehydrogenase, both of which were detected in membrane fractions, are components of a model in which electrons, generated by NADH oxidation inside of the cytoplasmic membrane, reduce protons outside of the cytoplasmic membrane. The entire process can be driven by decarboxylation of glutaconyl-CoA, which consumes the protons released by NADH oxidation inside the cell. Hydrogen production commences exactly at those Na+ concentrations at which the electrogenic H+/Na+-antiporter glutaconyl-CoA decarboxylase is converted into a Na+/Na+ exchanger. Received: 3 May 1996 / Accepted: 12 August 1996  相似文献   

7.
The uptake of 3H-labeled choline by a suspension of isolated type II epithelial cells from rat lung has been studied in a Ringer medium. Uptake was linear for 4 min at both 0.1 μm and 5.0 μm medium choline; at 5 μm, only 10% of the label was recovered in a lipid fraction. Further experiments were conducted at the low concentration (0.1 μm), permitting characterization of the properties of high-affinity systems. Three fractions of choline uptake were detected: (i) a sodium-dependent system that was totally inhibited by hemicholinium-3 (HC-3); (ii) a sodium-independent uptake, when Na+ was replaced by Li+, K+ or Mg2+, inhibited by HC-3; (iii) a residual portion persisting in the absence of Na+ and unaffected by HC-3. Choline uptake was sigmoidally related to the medium Na+ concentration. Kinetic properties of the uptake of 0.1 μm 3H-choline in the presence and absence of medium Na+ were examined in two ways. (a) Inhibition by increasing concentrations of unlabeled choline (0.5–100 μm) was consistent with the presence of two Michaelis-Menten-type systems in the presence of Na+; a Na+-dependent portion (a mean of 0.52 of the total) had a K m for choline of 1.5 μm while K m in the absence of Na+ (Li+ substituting) was 18.6 μm. (b) Inhibition by HC-3 (0.3–300 μm) gave Ki values of 1.7 μm and 5.0 μm HC-3 for the Na+-dependent and -independent fractions. The apparent K m of the Na+-dependent uptake is lower than that reported previously for lung-derived cells and is in the range of the K m values reported for high-affinity, Na+-dependent choline uptake by neuronal cells. Received: 18 February 1997/Revised: 7 December 1997  相似文献   

8.
Recently, a “Na+/NH4 + exchange complex” model has been proposed for ammonia excretion in freshwater fish. The model suggests that ammonia transport occurs via Rhesus (Rh) glycoproteins and is facilitated by gill boundary layer acidification attributable to the hydration of CO2 and H+ efflux by Na+/H+ exchanger (NHE-2) and H+-ATPase. The latter two mechanisms of boundary layer acidification would occur in conjunction with Na+ influx (through a Na+ channel energized by H+-ATPase and directly via NHE-2). Here, we show that natural ammonia loading via feeding increases branchial mRNA expression of Rh genes, NHE-2, and H+-ATPase, as well as H+-ATPase activity in juvenile trout, similar to previous findings with ammonium salt infusions and high environmental ammonia (HEA) exposure. The associated increase in ammonia excretion occurs in conjunction with a fourfold increase in Na+ influx after a meal. When exposed to HEA (1.5 mmol/l NH4HCO3 at pH 8.0), both unfed and fed trout showed differential increases in mRNA expression of Rhcg2, NHE-2, and H+-ATPase, but H+-ATPase activity remained at control levels. Unfed fish exposed to HEA displayed a characteristic reversal of ammonia excretion, initially uptaking ammonia, whereas fed fish (4 h after the meal) did not show this reversal, being able to immediately excrete ammonia against the gradient imposed by HEA. Exposure to HEA also led to a depression of Na+ influx, demonstrating that ammonia excretion can be uncoupled from Na+ influx. We suggest that the efflux of H+, rather than Na+ influx itself, is critical to the facilitation of ammonia excretion.  相似文献   

9.
Transport Pathways for Therapeutic Concentrations of Lithium in Rat Liver   总被引:1,自引:0,他引:1  
Although both amiloride- and phloretin-sensitive Na+/Li+ exchange activities have been reported in mammalian red blood cells, it is still unclear whether or not the two are mediated by the same pathway. Also, little is known about the relative contribution of these transport mechanisms to the entry of therapeutic concentrations of Li+ (0.2–2 mm) into cells other than erythrocytes. Here, we describe characteristics of these transport systems in rat isolated hepatocytes in suspension. Uptake of Li+ by hepatocytes, preloaded with Na+ and incubated in the presence of ouabain and bumetanide, comprised three components. (a) An amiloride-sensitive component, with apparent K m 1.2 mm Li+, V max 40 μmol · (kg dry wt · min)−1, showed increased activity at low intracellular pH. The relationship of this component to the concentration of intracellular H+ was curvilinear suggesting a modifier role of [H+] i . This system persisted in Na+-depleted cells, although with apparent K m 3.8 mm. (b) A phloretin-sensitive component, with K m 1.2 mm, V max 21 μmol · (kg · min)−1, was unaffected by pH but was inactive in Na+-depleted cells. Phloretin inhibited Li+ uptake and Na+ efflux in parallel. (c) A residual uptake increased linearly with the external Li+ concentration and represented an increasing proportion of the total uptake. The results strongly suggest that the amiloride-sensitive and the phloretin-sensitive Li+ uptake in rat liver are mediated by two separate pathways which can be distinguished by their sensitivity to inhibitors and intracellular [H+]. Received: 8 April 1999/Revised: 19 July 1999  相似文献   

10.
Summary The teiid lizardAmeiva quadrilineata has a nasal salt gland that responds to NaCl loading by increasing excretion of Na+ (from 1.12 to 2.63 M/100 gh), K+ (from 0.14 to 2.43 M/100 gh), and Cl (from 1.10 to 5.47 M/100 gh). For salt-loaded lizards these values represent 47% of the total excretion of Na+, 35% for K+, and 87% for Cl.The lizards forage on beaches and their diet includes large numbers of amphipods (Talorchestia) which are approximately twice as salty as the lizards' body fluids. All of the ingested Na+ and K+ can be excreted through the cloaca, but extra-renal excretion of Cl is probably important to the lizards under natural conditions.  相似文献   

11.
In a preparation of isolated gills of the shore crabCarcinus mediterraneus perfused with dilute sea water (pH 8.1, 200 mM Na+) which was identical to the bathing solution of the gill, acidification of the collected perfusate was observed. Acidification was not affected by 10−4 M EIPA (5-[N-ethyl-N-isopropyl]amiloride), a strong inhibitor of Na+/H+ exchange. However, in the presence of 10−4 M acetazolamide, acidification was greatly blocked. The significant decrease of the acid load of the perfusate is considered to be a result of inhibition of the branchial intracellular carbonic anhydrase catalyzing the formation of H+ ions.  相似文献   

12.
The rabbit Na+/glucose cotransporter (SGLT1) exhibits a presteady-state current after step changes in membrane voltage in the absence of sugar. These currents reflect voltage-dependent processes involved in cotransport, and provide insight on the partial reactions of the transport cycle. SGLT1 presteady-state currents were studied as a function of external Na+, membrane voltage V m , phlorizin and temperature. Step changes in membrane voltage—from the holding V h to test values, elicited transient currents that rose rapidly to a peak (at 3–4 msec), before decaying to the steady state, with time constants τ≈4–20 msec, and were blocked by phlorizin (K i ≈30 μm). The total charge Q was equal for the application of the voltage pulse and the subsequent removal, and was a function of V m . The Q-V curves obeyed the Boltzmann relation: the maximal charge Q max was 4–120 nC; V 0.5, the voltage for 50% Q max was −5 to +30 mV; and z, the apparent valence of the moveable charge, was 1. Q max and z were independent of V h (between 0 and −100 mV) and temperature (20–30°C), while increasing temperature shifted V 0.5 towards more negative values. Decreasing [Na+] o decreased Q max, and shifted V 0.5 to more negative voltages 9by −100 mV per 10-fold decrease in [Na+] o ). The time constant τ was voltage dependent: the τ-V relations were bell-shaped, with maximal τmax 8–20 msec. Decreasing [Na+] o decreased τmax, and shifted the τ-V curves towards more negative voltages. Increasing temperature also shifted the τ-V curves, but did not affect τmax. The maximum temperature coefficient Q 10 for τ was 3–4, and corresponds to an activation energy of 25 kcal/mole. Simulations of a 6-state ordered kinetic model for rabbit Na+/glucose cotransport indicate that charge-movements are due to Na+-binding/dissociation and a conformational change of the empty transporter. The model predicts that (i) transient currents rise to a peak before decay to steady-state; (ii) the τ-V relations are bell-shaped, and shift towards more negative voltages as [Na+] o is reduced; (iii) τmax is decreased with decreasing [Na+] o ; and (iv) the Q-V relations are shifted towards negative voltages as [Na+] o is reduced. In general, the kinetic properties of the presteady-state currents are qualitatively predicted by the model. Received: 12 August 1996/Revised: 30 September 1996  相似文献   

13.
This paper summarizes investigations on the enzyme carbonic anhydrase (CA) in the gills of the osmoregulating shore crabCarcinus maenas. Carbonic anhydrase, an enzyme catalyzing the reversible hydration of CO2 to HCO3 and H+, is localized with highest activities in the posterior salt-transporting gills of the shore crab- and here CA activity is strongly dependent on salinity. Contrary to the earlier hypothesis established for the blue crabCallinectes sapidus that cytoplasmic branchial CA provides the counter ions HCO3 and H+ for apical exchange against Na+ and Cl, the involvement of CA in NaCl uptake mechanisms can be excluded inCarcinus. Differential and density gradient centrifugations indicate that branchial CA is a predominantly membrane-associated protein. Branchial CA was greatly inhibited by the sulfonamide acetazolamide (AZ) Ki=2.4·10−8 mol/l). Using the preparation of the isolated perfused gill, application of 10−4 mol/l AZ resulted in an 80% decrease of CO2/HCO3 excretion. Thus we conclude that CA is localized in plasma membranes, maintaining the CO2 gradient by accelerating adjustment of the pH-dependent CO2/HCO3 equilibrium.  相似文献   

14.
To examine the involvement of Na+,K+,2Cl cotransport in monovalent ion fluxes in vascular smooth muscle cells (VSMC), we compared the effect of bumetanide on 86Rb, 36Cl and 22Na uptake by quiescent cultures of VSMC from rat aorta. Under basal conditions, the values of bumetanide-sensitive (BS) inward and outward 86Rb fluxes were not different. Bumetanide decreased basal 86Rb uptake by 70–75% with a K i of ∼0.2–0.3 μm. At concentrations ranging up to 1 μm, bumetanide did not affect 36Cl influx and reduced it by 20–30% in the range from 3 to 100 μm. In contrast to 86Rb and 36Cl influx, bumetanide did not inhibit 22Na uptake by VSMC. BS 86Rb uptake was completely abolished in Na+- or Cl-free media. In contrast to 86Rb, basal BS 36Cl influx was not affected by Na+ o and K+ o . Hyperosmotic and isosmotic shrinkage of VSMC increased 86Rb and 36Cl influx to the same extent. Shrinkage-induced increments of 86Rb and 36Cl uptake were completely abolished by bumetanide with a K i or ∼0.3 μm. Shrinkage did not induce BS 86Rb and 36Cl influx in (Na+ or Cl)- and (Na+ or K+)-depleted media, respectively. In the presence of an inhibitor of Na+/H+ exchange (EIPA), neither hyperosmotic nor isosmotic shrinkage activated 22Na influx. Bumetanide (1 μm) did not modify basal VSMC volume and intracellular content of sodium, potassium and chloride but abolished the regulatory volume increase in isosmotically-shrunken VSMC. These data demonstrate the absence of the functional Na+,K+,2Cl cotransporter in VSMC and suggest that in these cells basal and shrinkage-induced BS K+ influx is mediated by (Na+ o + Cl o )-dependent K+/K+ exchange and Na+ o -dependent K+,Cl cotransport, respectively. Received: 30 January 1996/Revised: 20 May 1996  相似文献   

15.
The NADH dehydrogenase I from Escherichia coli is a bacterial homolog of the mitochondrial complex I which translocates Na+ rather than H+. To elucidate the mechanism of Na+ transport, the C-terminally truncated NuoL subunit (NuoLN) which is related to Na+/H+ antiporters was expressed as a protein A fusion protein (ProtA–NuoLN) in the yeast Saccharomyces cerevisiae which lacks an endogenous complex I. The fusion protein inserted into membranes from the endoplasmatic reticulum (ER), as confirmed by differential centrifugation and Western analysis. Membrane vesicles containing ProtA–NuoLN catalyzed the uptake of Na+ and K+ at rates which were significantly higher than uptake by the control vesicles under identical conditions, demonstrating that ProtA–NuoLN translocated Na+ and K+ independently from other complex I subunits. Na+ transport by ProtA–NuoLN was inhibited by EIPA (5-(N-ethyl-N-isopropyl)-amiloride) which specifically reacts with Na+/H+ antiporters. The cation selectivity and function of the NuoL subunit as a transporter module of the NADH dehydrogenase complex is discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
MDCK cells display several acid-base transport systems found in intercalated cells, such as Na+-H+ exchange, H+–K+ ATPase and Cl/HCO 3 exchange. In this work we studied the functional activity of a vacuolar H+-ATPase in MDCK cells and its chloride dependence. We measured intracellular pH (pHi) in monolayers grown on glass cover slips utilizing the pH sensitive probe BCECF. To analyze the functional activity of the H+ transporters we observed the intracellular alkalinization in response to an acute acid load due to a 20 mm NH+ 4 pulse, and calculated the initial rate of pHi recovery (dpHi/dt). The cells have a basal pHi of 7.17 ± 0.01 (n= 23) and control dpHi/dt of 0.121 ± 0.006 (n= 23) pHi units/min. This pHi recovery rate is markedly decreased when Na+ was removed, to 0.069 ± 0.004 (n= 16). It was further reduced to 0.042 ± 0.005 (n= 12) when concanamycin 4.6 × 10−8 m (a specific inhibitor of the vacuolar H+-ATPase) was added to the zero Na+ solution. When using a solution with zero Na+, low K+ (0.5 mm) plus concanamycin, pHi recovery fell again, significantly, to 0.023 ± 0.006 (n= 14) as expected in the presence of a H+–K+-ATPase. This result was confirmed by the use of 5 × 10−5 m Schering 28080. The Na+ independent pHi recovery was significantly reduced from 0.069 ± 0.004 to 0.042 ± 0.004 (n= 12) when NPPB 10−5 m (a specific blocker of Cl channels in renal tubules) was utilized. When the cells were preincubated in 0 Cl/normal Na+ solution for 8 min. before the ammonium pulse, the pHi recovery fell from 0.069 ± 0.004 to 0.041 ± 0.007 (n= 12) in a Na+ and Cl free solution. From these results we conclude that: (i) MDCK cells have two Na+-independent mechanisms of pHi recovery, a concanamycin sensitive H+-ATPase and a K+ dependent, Schering 28080 sensitive H+–K+ ATPase; and, (ii) pHi recovery in Na+-free medium depends on the presence of a chloride current which can be blocked by NPPB and impaired by preincubation in Cl–free medium. This finding supports a role for chloride in the function of the H+ ATPase, which might be electrical shunting or a biochemical interaction. Received: 24 October 1997/Revised: 19 February 1998  相似文献   

18.
The mechanism of transbranchial excretion of total ammonia of brackish-water acclimated shore crabs, Carcinus maenas was examined using isolated, perfused gills. Applying physiological gradients of NH4Cl (100–200 μmol · l−1) directed from the haemolymph space to the bath showed that the efflux of total ammonia consisted of two components. The saturable component (excretion of NH4 +) greatly exceeded the linear component (diffusion of NH3). When an outwardly directed gradient (200 μmol · l−1) was applied, total ammonia in the perfusate was reduced by more than 50% during a single passage of saline through the gill. Effluxes of ammonia along the gradient were sensitive to basolateral dinitrophenol, ouabain, and Cs+ and to apical amiloride. Acetazolamide (1 mmol · l−1 basolateral) or Cl-free conditions had no substantial effects on ammonia flux, which was thus independent of both carbonic anhydrase mediated pH regulation and osmoregulatory NaCl uptake. When an inwardly directed gradient (200 μmol · l−1) was employed, influx rates were about 10-fold smaller and unaffected by basolateral ouabain (5 mmol · l−1) or dinitrophenol (0.5 mmol · l−1). Under symmetrical conditions (100 μmol · l−1 NH4Cl on both sides) ammonia was actively excreted against the gradient of total ammonia, which increased strongly during the experiment and against the gradient of the partial pressure of NH3. The active excretion rate was reduced to 7% of controls by basolateral dinitrophenol (0.5 mmol · l−1), to 44% by basolateral ouabain (5 mmol · l−1), to 46% by Na+-free conditions and to 42% by basolateral Cs+ (10 mmol · l−1), indicating basolateral membrane transport of NH4 + via the Na+/K+-ATPase and K+-channels and a second active, apically located, Na+ independent transport mechanism of NH4 +. Anterior gills, which are less capable of active ion uptake than posterior gills, exhibited even increased rates of active excretion of ammonia. We conclude that, under physiological conditions, branchial excretion of ammonia is a directed process with a high degree of effectiveness. It even allows active extrusion against an inwardly directed gradient, if necessary. Accepted: 11 March 1998  相似文献   

19.
The present study aimed to determine the mechanism of cation-selective secretion by multicellular salt glands. Using a hydroponic culture system, the secretion and accumulation of Na+ and K+ in Tamarix ramosissima and T. laxa under different salt stresses (NaCl, KCl and NaCl+KCl) were studied. Additionally, the effects of salt gland inhibitors (orthovanadate, Ba2+, ouabain, tetraethylammonium (TEA) and verapamil) on Na+ and K+ secretion and accumulation were examined. Treatment with NaCl (at 0–200 mmol L−1 levels) significantly increased Na+ secretion, whereas KCl treatment (at 0–200 mmol L−1 levels) significantly increased K+ secretion. The ratio of secretion to accumulation of Na+ was higher than that of K+. The changes in Na+ and K+ secretion differed after adding different ions into the single-salt solutions. Addition of NaCl to the KCl solution (at 100 mmol L−1 level, respectively) led to a significant decrease in K+ secretion rate, whereas addition of KCl to the NaCl solution (at 100 mmol L−1 level, respectively) had little impact on the Na+ secretion rate. These results indicated that Na+ secretion in Tamarix was highly selective. In addition, Na+ secretion was significantly inhibited by orthovanadate, ouabain, TEA and verapamil, and K+ secretion was significantly inhibited by ouabain, TEA and verapamil. The different impacts of orthovanadate on Na+ and K+ secretion might be the primary cause for the different Na+ and K+ secretion abilities of multicellular salt glands in Tamarix.  相似文献   

20.
Antidepressants, such as traditional tricyclic antidepressants (TCAs), are the first-line treatment for various pain syndromes. Available evidence indicates that TCAs may target Na+ channels for their analgesic action. In this report, we examined the effects of contemporary antidepressants sertraline and paroxetine on (1) neuronal Na+ channels expressed in GH3 cells and (2) muscle rNav1.4 Na+ channels heterologously expressed in Hek293t cells. Our results showed that both antidepressants blocked Na+ channels in a highly state-dependent manner. The 50% inhibitory concentrations (IC50) for sertraline and paroxetine ranged ∼18–28 μm for resting block and ∼2–8 μm for inactivated block of neuronal and rNav1.4 Na+ channels. Surprisingly, the IC50 values for both drugs were about 0.6–0.7 μm for the open channel block of persistent late Na+ currents generated through inactivation-deficient rNav1.4 mutant Na+ channels. For comparison, the open channel block in neuronal hNav1.7 counterparts yielded IC50 values around 0.3–0.4 μm for both drugs. Receptor mapping using fast inactivation-deficient rNav1.4-F1579A/K mutants with reduced affinities toward local anesthetics (LAs) and TCAs indicated that the F1579 residue is not involved in the binding of sertraline and paroxetine. Thus, sertraline and paroxetine are potent open channel blockers that target persistent late Na+ currents preferentially, but their block is not mediated via the phenylalanine residue at the known LA/TCA receptor site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号