首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the possibility that, regardless of the involvement of a second messenger system, the ultimate effect of presynaptic, receptor-activated inhibitory modulation is the opening of a K channel. With the consequent hyperpolarization of the terminal, less Ca2+ would enter and this would result in the observed diminished release of a neurotransmitter. This possibility was explored utilizing rat cortical synaptosomes that were prelabeled with either 86Rb or [3H]acetylcholine, depolarizing with either K+ or veratridine, and measuring either efflux of 86Rb or release of [3H]acetylcholine in the presence or absence of inhibitory presynaptic modulators. The modulating agents used were 2-chloroadenosine, carbamylcholine, clonidine, and morphine. In all instances, these agents promoted an increased efflux of 86Rb, indicating hyperpolarization, and decreased release of acetylcholine. These results are compatible with our suggestion that an increase in K conductance may be responsible for presynaptic inhibition of the release of neurotransmitters.  相似文献   

2.
Abstract: Superfused rabbit neostriatal slices prelabeled with [3H]dopamine ([3H]DA) were depolarized with electrical pulses (12 V, 1 ms). Although transmitter release showed a proportional increase with a greater number of pulses (30-360 pulses), flat frequency-release curves were obtained. Haloperidol (0.03–0.3 μ m ) enhanced 3H overflow without affecting its metabolism or time course, and antagonized apomorphine-induced inhibition of transmitter release. Maximal enhancement of release by haloperidol was obtained with 30–60 pulses delivered at a rate of 3 Hz, whereas much less facilitation of release was seen at 0.3 and 1 Hz (30–90 pulses) or with 360 pulses at either of the three frequencies. Therefore, the slope of the frequency-release curve was markedly increased by haloperidol. These results indicate that activation of presynaptic DA receptors, and thus facilitation of release by haloperidol was highly dependent on the rate and duration of stimulation of striatal dopaminergic terminals. In these neurons the feedback loop seems to act physiologically to depress the slope of the frequency-release curve.  相似文献   

3.
Summary Somatostatin-immunoreactive nerves and endocrine cells were localized by use of immunohistochemistry in human stomach, small and large intestine. The nature of the immunoreactivity in acid extracts of separated layers of intestine was determined with separation by high pressure liquid chromatography followed by detection with radioimmunoassay; authentic somatostatin-14 was found in the external musculature, which contains nerves, and in the submucosa and mucosa, which contain both nerve fibres and endocrine cells.The distribution of somatostatin nerves in the gastric antrum, duodenum, jejunum, ileum, ascending and sigmoid colon, and rectum is described. In the intestine many positive perikarya and fine varicose fibres were seen. Mucosal fibres formed a sub-epithelial plexus and a looser network in the lamina propria; this nerve supply was less dense in the large intestine. Submucous ganglia contained positive perikarya and terminals; many terminals formed pericellular baskets, mainly around non-reactive cells. A small number of nerve fibres were associated with submucosal blood vessels. The innervation of the circular and longitudinal muscle was sparse. Positive nerve terminals were seen in the myenteric plexus, although fewer than in the submucous ganglia; positive perikarya were scarce in myenteric ganglia. Somatostatin-immunoreactive nerves were found in the muscle layers and myenteric plexus of the gastric antrum, but were not detected in the antral mucosa and all layers of the gastric body.The distribution of human enteric somatostatin nerves is compared to that in small laboratory animals, and possible roles for these nerves are discussed.  相似文献   

4.
The occurrence of presynaptic control of synaptic transmission in the cercal-afferent giant-interneurone system of the cockroach was investigated. Reduction in amplitude (up to 50%, lasting about 200–250 ms) of the compound evoked EPSP followed repetitive (300 to 500 Hz) supra-threshold stimulation of cercal nerves XI. A similar but weaker depressive effect was detected on the unitary EPSP resulting from stimulation of an ipsilateral cercal mechanoreceptor.This inhibition is attributed to multisynaptic inhibitory pathways impinging upon presynaptic excitatory neurones. The involvement of chloride ions is suggested by the observation that both picrotoxin and chloride-deficient salines abolished the inhibitory phenomenon. Presynaptic mannitolgap recording from cercal nerve XI revealed a chloride-dependent hyperpolarization in response to repetitive conditioning stimulation. The time course of this response was similar to that of presynaptic inhibition. Bath-application of GABA (20 mM) produced a chloride-dependent hyperpolarization followed by a depolarization of the intraganglionic part of the cerca-afferents. GABA-induced hyperpolarization and electrically-induced presynaptic hyperpolarization were both reversed in low chloride saline (166 mM chloride). It is proposed that presynaptic modulation of acetyl-choline release occurs at the cercal-afferent giant-interneurone synapses. The role played by GABA is duscussed.  相似文献   

5.
Abstract: Stimulation of chick sympathetic neurons in culture by the cholinergic agonists acetylcholine, nicotine, and 1,1-dimethyl-4-phenylpiperazinium (all at 10–1,000 µmol/L) induced concentration-dependent increases of free calcium levels measured by fura 2 fluorescence in neuronal processes. The response evoked by acetylcholine had both nicotinic and muscarinic components, whereas that induced by 1,1-dimethyl-4-phenylpiperazinium was purely nicotinic. Tetrodotoxin (0.3 µmol/L) blocked completely the increase of intraterminal free calcium level evoked by electrical stimulation. On the other hand, stimulation with 1,1-dimethyl-4-phenylpiperazinium still evoked 20–25% of the control response in the presence of tetrodotoxin. The concentration-response relationship of 1,1-dimethyl-4-phenylpiperazinium stimulation did not differ in the absence and in the presence of tetrodotoxin. The nicotinic antagonists d -tubocurarine (10 µmol/L) and mecamylamine (10 µmol/L), but not α-bungarotoxin (125 nmol/L), prevented the increase of intraterminal free calcium level evoked by 1,1-dimethyl-4-phenylpiperazinium (100 µmol/L) in the presence of tetrodotoxin. These observations indicate the presence of nicotinic receptors on neuronal processes that increase the intraterminal concentration of free calcium and probably modulate transmitter release. Their pharmacological properties are similar to those of nicotinic receptors located on neuronal cell bodies.  相似文献   

6.
Abstract: The total Ca2+-dependent release of glutamate induced by depolarization of cerebrocortical nerve terminals with KCl was analyzed into a fast and a slow component. The fast component exhibited a decay time of <1 s and accounted for 0.95 ± 0.10 nmol of glutamate, whereas the slow component, which exhibited a decay time of 52 ± 7 s, accounted for the release of 2.48 ± 0.19 nmol of glutamate. These two components were differentially affected by the Ca2+ chelator BAPTA, the divalent cation Sr2+, or the botulinum neurotoxin A. The adenosine A1 receptor agonist N 6-cyclohexyladenosine strongly reduced the fast component without altering the slow component. In contrast, the inhibitory effect of arachidonic acid and the facilitatory action of the metabotropic glutamate receptor agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid were observed as a decrease and an increase, respectively, in the two components. It is concluded, first, that the fast and slow components correspond to the release of docked and mobilized vesicles, respectively, and second, that presynaptic modulation more significantly alters the fast component of release.  相似文献   

7.
Neostriatal neurons may undergo events of spontaneous synchronization as those observed in recurrent networks of excitatory neurons, even when cortical afferents are transected. It is necessary to explain these events because the neostriatum is a recurrent network of inhibitory neurons. Synchronization of neuronal activity may be caused by plateau-like depolarizations. Plateau-like orthodromic depolarizations that resemble up-states in medium spiny neostriatal neurons (MSNs) may be induced by a single corticostriatal suprathreshold stimulus. Slow synaptic depolarizations may last hundreds of milliseconds, decay slower than the monosynaptic glutamatergic synaptic potentials that induce them, and sustain repetitive firing. Because inhibitory inputs impinging onto MSNs have a reversal potential above the resting membrane potential but below the threshold for firing, they conform a type of “shunting inhibition”. This work asks if shunting GABAergic inputs onto MSNs arrive asynchronously enough as to help in sustaining the plateau-like corticostriatal response after a single cortical stimulus. This may help to begin explaining autonomous processing in the striatal micro-circuitry in the presence of a tonic excitatory drive and independently of spatio-temporally organized inputs. It is shown here that besides synaptic currents from AMPA/KA- and NMDA-receptors, as well as L-type intrinsic Ca2+- currents, inhibitory synapses help in maintaining the slow depolarization, although they accomplish the role of depressing firing at the beginning of the response. We then used a NEURON model of spiny cells to show that inhibitory synapses arriving asynchronously on the dendrites can help to simulate a plateau potential similar to that observed experimentally. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Abstract : Effects of selective Ca2+ channel blockers on GABAergic inhibitory postsynaptic currents (IPSCs) were studied in the acutely dissociated rat nucleus basalis of Meynert (nBM) neurons attached with nerve endings, namely, the “synaptic bouton” preparation, and in the thin slices of nBM, using nystatin perforated and conventional whole-cell patch recording modes, respectively. In the synaptic bouton preparation, nicardipine (3 × 10-6M) and ω-conotoxin-MVIIC (3 × 10-6M) reduced the frequency of spontaneous postsynaptic currents by 37 and 22%, respectively, whereas ω-conotoxin-GVIA had no effect. After blockade of L- and P/Q-type Ca2+ channels, successive removal of Ca2+ from external solution had no significant effect on the residual spontaneous activities, indicating that N-, R-, and T-type Ca2+ channels are not involved in the spontaneous GABA release. Thapsigargin, but not ryanodine, increased the frequency of spontaneous IPSCs in both the synaptic bouton and slice preparations, suggesting the partial contribution of the intracellular Ca2+ storage site to the spontaneous GABA release. In contrast, ω-conotoxin-GVIA (3 × 10-6M) and ω-conotoxin-MVIIC (3 × 10-6M) suppressed the evoked IPSCs by 31 and 37%, respectively, but nicardipine produced no significant effect. The residual evoked currents were abolished in Ca2+-free external solution but not in the external solution containing 10-5M Ni2+, suggesting the involvement of N-, P/Q-, and R-type Ca2+ channels but not L- and T-type ones in the evoked IPSCs. Neither thapsigargin nor ryanodine had any significant effects on the evoked IPSCs. It was concluded that Ca2+ channel subtypes responsible for spontaneous transmitter release are different from those mediating the transmitter release evoked by nerve stimulation.  相似文献   

9.
L-Glutamate, N-methyl-D-aspartic acid (NMDA), quisqualate, and kainate were found to increase endogenous somatostatin release from primary cultures of rat cortical neurons in a dose-dependent manner. The rank order of potency calculated from the dose-response curves was quisqualate greater than glutamate = NMDA greater than kainate, with EC50 values of 0.4, 20, and 40 microM, respectively. Alanine, glutamine, and glycine did not modify the release of somatostatin. The stimulation of somatostatin release elicited by L-glutamate was Ca2+ dependent, was decreased by Mg2+, and was blocked by DL-amino-5-phosphonovaleric acid (APV) and thienylphencyclidine (TCP), two specific antagonists of NMDA receptors. The NMDA stimulatory effect was strongly inhibited by APV in a competitive manner (IC50 = 50 microM) and by TCP in a noncompetitive manner (IC50 = 90 nM). The release of somatostatin induced by the excitatory amino acid agonists was not blocked by tetrodotoxin (1 microM), a result suggesting that tetrodotoxin-sensitive, sodium-dependent action potentials are not involved in the effect. Somatostatin release in response to NMDA was potentiated by glycine, but the inhibitory strychnine-sensitive glycine receptor did not appear to be involved. Our data suggest that glutamate exerts its stimulatory action on somatostatin release essentially through an NMDA receptor subtype.  相似文献   

10.
Abstract: The modulation of dopamine release by presynaptic nicotinic receptors in vitro is well established, but the significance of this effect in vivo is unclear. We have characterised the effect of nicotine, locally applied via a microdialysis probe, on dopamine release from the terminal regions of three ascending dopaminergic pathways in conscious, freely moving rats. Nicotine caused a dose-dependent increase in dopamine release in the striatum, the nucleus accumbens, and, to a lesser extent, the frontal cortex. Metabolite levels were unaltered by any concentration of nicotine. Prior administration of mecamylamine via the probe abolished the nicotine-evoked increase in dopamine release, confirming the mediation of nicotinic receptors. The dose dependence of mecamylamine-sensitive, nicotine-evoked dopamine release was similar in all three brain regions. However, 10−5 M tetrodotoxin totally blocked nicotine-stimulated dopamine release in the striatum and the accumbens but not the cortex. Daily subcutaneous injections of nicotine (0.4 mg kg−1 for 7 days) increased the response to a subsequent local application of nicotine in the striatum, and a similar trend was found in the other brain areas. The same daily dose of nicotine given as a continuous infusion had no effect, whereas infusion of 4 mg kg−1 day−1 increased the response to a subsequent nicotine challenge. The localisation and regulation of nicotinic receptors in the terminal fields of dopaminergic pathways are discussed.  相似文献   

11.
Abstract: Thioperamide (2 mg/kg, i.p.), a histamine H3-receptor antagonist, increased the number of somatostatin (SS) receptors, with no change in the affinity constant, in the rat frontoparietal cortex. This effect was prevented by treatment with ( R )-α-methylhistamine (3.2 mg/kg, i.p.), a histamine H3-receptor agonist. Thioperamide also induced an increase in SS binding in rats pretreated with mepyramine, a histamine H1-receptor antagonist, or cimetidine, a histamine H2-receptor antagonist. Pretreatment with mepyramine plus cimetidine administered simultaneously antagonized the thioperamide effect on SS binding. The increase in the number of SS receptors was accompanied by a greater SS-mediated inhibition of basal and forskolin-stimulated adenylyl cyclase (AC) activity in frontoparietal cortical membranes in the thioperamide group. Furthermore, the functional activity of the guanine nucleotide-binding inhibitory protein (Gi protein) was not altered by thioperamide or ( R )-α-methylhistamine administration in frontoparietal cortical membranes. In rats treated with mepyramine plus thioperamide or cimetidine plus thioperamide, the increase in the number of SS receptors was also accompanied by an increased SS inhibition of AC activity. Thioperamide induced a significant increase in SS-like immunoreactivity content in the frontoparietal cortex. Altogether, these results suggest that frontoparietal cortical histamine may play, at least in part, a role in the regulation of the somatostatinergic system.  相似文献   

12.
Summary After the application of fixatives including phosphotungstic acid or a mixture of osmium tetroxide and zinc iodide, complex tubular structures are evident in the presynaptic side of the synapses between photoreceptor and bipolar cells of the rat's retina. In the first case only the limiting membranes are visualized, while in the second only the content of the tubules is stained. These tubules seem to be related, on a morphological ground, with the formation of synaptic vesicles. These tubular structures are not observed when fixation is done with osmium tetroxide or glutaraldehyde-osmium tetroxide.This work has been supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina, and from National Institutes of Health, U.S.A., (5 RO1 NS 06953-05 NEUA).We want to express our gratitude to Mrs. Haydée Agoff de Zimman and Mr. Alberto Saénz for their skillful technical assistance.  相似文献   

13.
Although GABA(A) receptors are widely distributed at inhibitory synapses on dendrites and cell bodies of neurons, they also occur in other places, in particular at synapses made on axons and in extrasynaptic membranes. This review summarises some of the evidence that presynaptic receptors modulate transmission not only at primary afferents in the spinal cord, but also at a variety of sites in the brain, including hippocampal mossy fibres. These receptors modulate transmitter release via several different mechanisms. Another form of unconventional GABA(A) receptor-mediated signalling is the mediation of a tonic conductance, seen in granule cells of the cerebellum and dentate gyrus and also in hippocampal interneurons. Tonic signalling appears to be mediated by extrasynaptic receptors. The adaptive significance of this form of signalling remains poorly understood.  相似文献   

14.
Striatal atrophy in Huntington's disease (HD) is characterized by selective preservation of a subclass of neurons colocalizing NADPH-diaphorase (NADPH-d), somatostatin (SS), and neuropeptide Y (NPY), which have been reported to show three- to fivefold increases in SS-like immunoreactivity (SSLI) and NPY content. Since HD brain is capable of producing excessive quantities of the excitotoxin quinolinic acid (Quin), an N-methyl-D-aspartate (NMDA) receptor agonist, and since experimental Quin lesions show neuronal loss with sparing of NADPH-d/SS/NPY neurons, it has been suggested that Quin may be important in the pathogenesis of HD. In the present study we determined whether Quin stimulates SS gene function in cultured cortical cells known to be rich in NADPH-d/SS/NPY neurons. Cultures of dispersed fetal rat cortical cells were exposed to Quin (1 and 10 mM) with or without (-)-2-amino-5-phosphonovaleric acid (APV; 0.5 mM), an NMDA receptor antagonist, NMDA (0.2 and 0.5 mM), and glutamate (Glu; 0.5 mM). Medium and cellular SSLI was determined by radioimmunoassay and SS mRNA by Northern analysis with a cRNA probe. Quin induced significant (p less than 0.01) 1.6- and 2.5-4 fold increases in SSLI and SS mRNA accumulation, respectively, which were abolished by APV. Release of SSLI into the culture medium was stimulated two- to fivefold by Quin over a 2- to 20-h period. The increase in SS mRNA produced by Quin was time and dose dependent. A similar dose-dependent increase in SS mRNA comparable with that observed with Quin was induced by NMDA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Presynaptic modulation by eicosanoids in cortical synaptosomes   总被引:1,自引:0,他引:1  
In continuing experiments to determine the ionic basis of inhibitory presynaptic modulation, rat cortical synaptosomes were employed and receptor-activated K+ efflux was determined with a K+ sensitive electrode. When synaptosomes were sub-optimally depolarized by veratridine, the addition of agents that activated purinergic, 2, muscarinic and opioid receptors all promoted K+ efflux. With 2-chloroadenosine as a model inhibitory presynaptic modulator, the increased K+ efflux evoked by this agent was blocked by the cyclooxygenase inhibitor indomethacin suggesting that arachidonic acid or its metabolites was an intermediary in opening the channel. When arachidonic acid and PGE2 were tested, both promoted K+ efflux that was inhibited by dendrotoxin and mast cell degranulating peptide, two agents that are known to inhibit a delayed rectifier K+ current. Our results suggest that via eicosanoid second messengers, inhibitory presynaptic modulators open a sub-class of K channels that hyperpolarize nerve terminals, therefore less Ca2+ would enter per nerve impulse and thus the evoked release of neurotransmitters would be decreased.Abbreviations DTX dendrotoxin - MCDP mast cell degranulating peptide - NHGA norhydroguairetic acid - PGE2 prostaglandin E2  相似文献   

16.
Abstract: We have used in vivo microdialysis in anaesthetised rats to investigate whether somatostatin (SRIF) can play a neuromodulatory role in the striatum. When 100 n M SRIF was retrodialysed for 15 min, it increased concentrations of dopamine (DA) by 28-fold, γ-aminobutyric acid (GABA) by eightfold, and glutamate (Glu) by sixfold as well as those of aspartate (Asp) and taurine (Tau). These effects were both calcium- and tetrodotoxin-sensitive. Lower (10 or 50 n M ) and higher (1 µ M ) SRIF concentrations were less effective. Rapid sampling showed that whereas Asp and Glu concentrations were raised for 3 min at the start of 15-min SRIF infusions, those of DA were increased for 12 min. A second 15-min application of 100 n M SRIF given 135 min after the first application failed to increase transmitter release. An NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid (200 µ M ), blocked SRIF (100 n M )-evoked Asp, Glu, Tau, and GABA release and reduced that of DA. An α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate antagonist, 6,7-dinitroquinoxaline-2,3-dione (100 µ M ), blocked SRIF-induced DA and Tau release and reduced that of Asp, Glu, and GABA. These results show that SRIF increases DA, Glu, Asp, GABA, and Tau release in the rat striatum and suggest that its actions on DA and GABA release are mainly mediated through increased excitatory amino acid release.  相似文献   

17.
High-affinity uptake of dopamine (DA), glutamate, and gamma-aminobutyric acid (GABA) was determined in crude synaptosomal preparations from neostriatal regions of rats 7, 17, and 27 months of age. Dopamine uptake was highest in rostral neostriatum, but no age-related differences were detected. On the other hand, the high-affinity uptake of both GABA and glutamate was increased with age. This may reflect astrocytic hypertrophy or hyperplasia, which have been reported to occur in the neostriatum during the aging process.  相似文献   

18.
Abstract The glutamate (Glu) terminals in rat neostriatum were removed by a unilateral frontal decortication. One to two weeks later the effects of insulin-induced hypoglycemia on the steady-state levels of amino acids [Glu, glutamine (Gin), aspartate (Asp), γ-aminobutyric acid (GABA), tau-rine] and energy metabolites (glucose, glycogen, α-ketoglu-tarate, pyruvate, lactate, ATP, ADP, AMP, phosphocre-atine) were examined in the intact and decorticated neostriatum from brains frozen in situ. The changes in the metabolite levels were examined during normoglycemia, hypoglycemia with burst-suppression (BS) EEG, after 5 and 30 min of hypoglycemic coma with isoelectric EEG, and 1 h of recovery following 30 min of isoelectric EEG. In normoglycemia Glu decreased and Gin and glycogen increased significantly on the decorticated side. During the BS period no significant differences in the measured compounds were noted between the two sides. After 5 min of isoelectric EEG Glu, Gin, GABA, and ATP levels were significantly lower and Asp higher on the intact than on the decorticated side. No differences between the two sides were found after 30 min of isoelectric EEG. After 1 h of recovery from 30 min of isoelectric EEG Glu, Gin, and glycogen had not reached their control levels. Glu was significantly lower, and Gin and glycogen higher on the decorticated side. The Asp and GABA levels were not significantly different from control levels. The results indicate that the turnover of Glu is higher in the intact than in decorticated neostriatum during profound hypoglycemia.  相似文献   

19.
Abstract: : Muscarinic acetylcholine receptor expression and function in cultured rat neostriatal neurons were examined. All experiments were performed on intact neurons grown in vitro for 12-14 days. The muscarinic antagonist N-[3H]methylscopolamine ([3H]NMS) binds to a single site in cultures with a KD of 89 pM and a Bmax of 187 fmol/mg of protein, or 32,000 sites/neuron. Competition studies using [3H]NMS were performed to determine what receptor sur > types were present. Nonlinear analysis of competition curves was best described with a single binding site for atropine, pirenzepine, and AF-DX 116 {11-[[2-[(diethylamino)-methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one}, with Ki values of 0.6, 62, and 758 nM, respectively. These results indicate that the muscarinic receptors present in neostriatal cultures are of the M1subtype, having high affinity for pirenzepine and low affinity for AF-DX 116. In contrast with antagonists, carbachol displaced [3H]NMS from two sites with Ki values of 6.5 and 147 μM, with the higher-affinity form predominant (83% of sites). The M1 receptor subtype was linked to phosphoinositide turnover. Carbachol stimulated the formation of phosphoinositides with an EC50 of 37 μM and was antagonized by atropine. At equimolar doses, pirenzepine was more potent than AF-DX 116 at antagonizing the response.  相似文献   

20.
Unilateral frontal cortex ablations were performed in rats so that the glutamate terminals in the ipsilateral rostral neostriatum were removed. At 1 or 7 days later, intraperitoneal injections of ammonium acetate induced different changes in amino acid concentrations in the intact and deafferentated neostriatum. After 1 day, the level of glutamate decreased only in the intact side, whereas that of glutamine increased and that of aspartate decreased to the same extent on both sides following ammonia injection. After 7 days, the glutamate level decreased more in the intact than the decorticated side in both nonconvulsing and convulsing rats. The concentration of alanine increased most in the intact neostriatum, whereas glutamine levels increased and aspartate levels decreased to the same extent on both sides in nonconvulsing and convulsing rats. The results indicate that ammonia has a more pronounced effect on neuronal than glial glutamate pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号