首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible role of epidermal growth factor (EGF) receptor phosphorylation at threonine 654 in modulating the protein-tyrosine kinase activity of EGF-treated A431 cells has been studied. It has been suggested that EGF could indirectly activate a protein-serine/threonine kinase, protein kinase C, that can phosphorylate the EGF receptor at threonine 654. Protein kinase C is known to be activated, and threonine 654 is phosphorylated, when A431 cells are exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). The protein-tyrosine kinase activity of EGF receptors is normally evidenced in EGF-treated cells by phosphorylation of the receptor at tyrosine. This is inhibited when TPA-treated cells are exposed to EGF. We now show that receptor phosphorylation at threonine 654 can also be detected in EGF-treated A431 cells, presumably due to indirect stimulation of protein kinase C or a similar kinase. Some receptor molecules are phosphorylated both at threonine 654 and at tyrosine. Since prior phosphorylation at threonine 654 inhibits autophosphorylation, we propose that protein kinase C can phosphorylate the threonine 654 of autophosphorylated receptors. This provides evidence for models in which protein kinase C activation, consequent upon EGF binding, could reduce the protein-tyrosine kinase activity of the EGF receptor. Indeed, we find that 12-O-tetradecanoylphorbol-13-acetate, added 10 min after EGF, further increases threonine 654 phosphorylation and induces the loss of tyrosine phosphate from A431 cell EGF receptors.  相似文献   

2.
3.
Two retroviral protein-tyrosine kinases, v-src and v-ros, have been reported to possess phosphatidylinositol (PtdIns) kinase activity. Because the epidermal growth factor (EGF) receptor is a protein-tyrosine kinase with structural homology to p60v-src and because EGF stimulates PtdIns turnover in A431 cells, the EGF receptor has been examined for PtdIns kinase activity. Preparations of the EGF receptor, isolated from A431 cells and purified by two different methods of affinity chromatography, possessed an associated PtdIns kinase activity. This activity which co-purified with the EGF receptor represented only about 2% of the total PtdIns kinase activity of A431 membranes, and there was no correlation between the number of EGF receptors and the amount of PtdIns kinase activity in membranes from various cell types. A peptide substrate, angiotensin II, and PtdIns did not compete with each other as substrates for the protein-tyrosine and PtdIns kinase activities of the EGF receptor. When self-phosphorylated EGF receptor was fractionated by Sephacryl S-300 gel permeation chromatography, the peak of PtdIns kinase activity was separated from the comigrating peak of protein-tyrosine kinase activity and the self-phosphorylated EGF receptor. These results indicate that the protein-tyrosine kinase and PtdIns kinase activities which co-purify with the EGF receptor reside on different molecules. Angiotensin II and PtdIns did not compete as substrates for p60v-src isolated by immunoabsorption with a monoclonal antibody, suggesting that PtdIns kinase activity may also not be intrinsic to p60v-src.  相似文献   

4.
5.
Extracts of bakers' yeast (Saccharomyces cerevisiae) contain protein-tyrosine kinase activity that can be detected with a synthetic Glu-Tyr copolymer as substrate (G. Schieven, J. Thorner, and G.S. Martin, Science 231:390-393, 1986). By using this assay in conjunction with ion-exchange and affinity chromatography, a soluble tyrosine kinase activity was purified over 8,000-fold from yeast extracts. The purified activity did not utilize typical substrates for mammalian protein-tyrosine kinases (enolase, casein, and histones). The level of tyrosine kinase activity at all steps of each preparation correlated with the content of a 40-kDa protein (p40). Upon incubation of the most highly purified fractions with Mn-ATP or Mg-ATP, p40 was the only protein phosphorylated on tyrosine. Immunoblotting of purified p40 or total yeast extracts with antiphosphotyrosine antibodies and phosphoamino acid analysis of 32P-labeled yeast proteins fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the 40-kDa protein is normally phosphorylated at tyrosine in vivo. 32P-labeled p40 immunoprecipitated from extracts of metabolically labeled cells by affinity-purified anti-p40 antibodies contained both phosphoserine and phosphotyrosine. The gene encoding p40 (YPK1) was cloned from a yeast genomic library by using oligonucleotide probes designed on the basis of the sequence of purified peptides. As deduced from the nucleotide sequence of YPK1, p40 is homologous to known protein kinases, with features that resemble known protein-serine kinases more than known protein-tyrosine kinases. Thus, p40 is a protein kinase which is phosphorylated in vivo and in vitro at both tyrosine and serine residues; it may be a novel type of autophosphorylating tyrosine kinase, a bifunctional (serine/tyrosine-specific) protein kinase, or a serine kinase that is a substrate for an associated tyrosine kinase.  相似文献   

6.
7.
The major NaCl-stimulated protein-tyrosine kinase activity found in soluble thymus extracts, as measured by the phosphorylation of angiotensin I, is a 40-kDa enzyme known as p40 (Zioncheck, T. F., Harrison, M. L., and Geahlen, R. L. (1986) J. Biol. Chem. 261, 15637-15643). Antibodies prepared against p40 cross-react with a 72-kDa protein-tyrosine kinase (p72) from spleen or thymus that is closely related to p40 by peptide-mapping experiments. The recovery of p40 from spleen homogenates is reduced while the recovery of p72 is enhanced by the addition of high concentrations of leupeptin or soybean trypsin inhibitor to the homogenization media. The generation of p40 in spleen homogenates occurs with a concomitant increase in protein-tyrosine kinase activity. Activated catalytic fragments of 38-43 kDa can be generated by the treatment of partially purified p72 with trypsin or papain. The p72 protein-tyrosine kinase is found at the highest levels in spleen, thymus, and lung, tissues that also have high protein-tyrosine kinase activity and generate high levels of p40 following homogenization. p72 is also found in certain T and B cell-derived cell lines and in NIH3T3 cells.  相似文献   

8.
Vascular endothelial cell growth factor (VEGF) binds to and promotes the activation of one of its receptors, KDR. Once activated, KDR induces the tyrosine phosphorylation of cytoplasmic signaling proteins that are important to endothelial cell proliferation. In human umbilical vein endothelial cells (HUVECs), tumor necrosis factor (TNF) inhibits the phosphorylation and activation of KDR. The ability of TNF to diminish VEGF-stimulated KDR activity was impaired by sodium orthovanadate, suggesting that the inhibitory activity of TNF was mediated by a protein-tyrosine phosphatase. KDR-initiated responses specifically associated with endothelial cell proliferation, mitogen-activated protein kinase activation and DNA synthesis, were also inhibited by TNF, and this was reversed by sodium orthovanadate. Stimulation of HUVECs with TNF induced association of the SHP-1 protein-tyrosine phosphatase with KDR, identifying this phosphatase as a candidate negative regulator of VEGF signal transduction. Heterologous receptor inactivation mediated by a protein-tyrosine phosphatase provides insight into how TNF may inhibit endothelial cell proliferative responses and modulate angiogenesis in pathological settings.  相似文献   

9.
Inhibition of p56(lck) tyrosine kinase by isothiazolones   总被引:1,自引:0,他引:1  
Lck encodes a 56-kDa protein-tyrosine kinase, predominantly expressed in T lymphocytes, crucial for initiating T cell antigen receptor (TCR) signal transduction pathways, culminating in T cell cytokine gene expression and effector functions. As a consequence of a high-throughput screen for selective, novel inhibitors of p56(lck), an isothiazolone compound was identified, methyl-3-(N-isothiazolone)-2-thiophenecarboxylate(A-125800), which inhibits p56(lck) kinase activity with IC50 = 1-7 microM. Under similar assay conditions, the isothiazolone compound was equipotent in blocking the ZAP-70 tyrosine kinase activity but was 50 to 100 times less potent against the catalytic activities of p38 MAP kinase and c-Jun N-terminal kinase 2alpha. A-125800 blocked activation-dependent TCR tyrosine phosphorylation and intracellular calcium mobilization in Jurkat T cells (IC50 = 35 microM) and blocked T cell proliferation in response to alloantigen (IC50 = 14 microM) and CD3/CD28-induced IL-2 secretion (IC50 = 2.2 microM) in primary T cell cultures. Inhibition of p56(lck )by A-125800 was dose- and time-dependent and was irreversible. A substitution of methylene for the sulfur atom in the isothiazolone ring of the compound completely abrogated the ability to inhibit p56(lck) kinase activity and TCR-dependent signal transduction. Incubation with thiols such as beta-ME or DTT also blocked the ability of the isothiazolone to inhibit p56(lck) kinase activity. LC/MS analysis established the covalent modification of p56(lck) at cysteine residues 378, 465, and 476. Together these data support an inhibitory mechanism, whereby cysteine -SH groups within the p56(lck) catalytic domain react with the isothiazolone ring, leading to ring opening and disulfide bond formation with the p56(lck) enzyme. Loss of p56(lck) activity due to -SH oxidation has been suggested to play a role in the pathology of AIDS. Consequently, a similar mechanism of sulfhydryl oxidation leading to p56(lck) inhibition, described in this report, may occur in the intact T cell and may underlie certain T cell pathologies.  相似文献   

10.
The effect of piceatannol on lipopolysaccharide (LPS)-induced nitric oxide (NO) production was examined. Piceatannol significantly inhibited NO production in LPS-stimulated RAW 264.7 cells. The inhibition was due to the reduced expression of an inducible isoform of NO synthase (iNOS). The inhibitory effect of piceatannol was mediated by down-regulation of LPS-induced nuclear factor (NF)-kappaB activation, but not by its cytotoxic action. Piceatannol inhibited IkappaB kinase (IKK)-alpha and beta phosphorylation, and subsequently IkappaB-alpha phosphorylation in LPS-stimulated RAW 264.7 cells. On the other hand, piceatannol did not affect activation of mitogen-activated protein (MAP) kinases including extracellular signal regulated kinase 1/2 (Erk1/2), p38 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Piceatannol inhibited the phosphorylation of Akt and Raf-1 molecules, which regulated the activation of IKK-alpha and beta phosphorylation. The detailed mechanism of the inhibition of LPS-induced NO production by piceatannol is discussed.  相似文献   

11.
Src kinase regulation by phosphorylation and dephosphorylation   总被引:10,自引:0,他引:10  
Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPalpha, PTPepsilon, and PTPlambda. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.  相似文献   

12.
SAP-1 (stomach cancer-associated protein-tyrosine phosphatase-1) is a transmembrane-type protein-tyrosine phosphatase that is abundant in the brain and certain cancer cell lines. With the use of a "substrate-trapping" approach, p130(cas), a major focal adhesion-associated phosphotyrosyl protein, has now been identified as a likely physiological substrate of SAP-1. Expression of recombinant SAP-1 induced the dephosphorylation of p130(cas) as well as that of two other components of the integrin-signaling pathway (focal adhesion kinase and p62(dok)) in intact cells. In contrast, expression of a substrate-trapping mutant of SAP-1 induced the hyperphosphorylation of these proteins, indicating a dominant negative effect of this mutant. Overexpression of SAP-1 induced disruption of the actin-based cytoskeleton as well as inhibited various cellular responses promoted by integrin-mediated cell adhesion, including cell spreading on fibronectin, growth factor-induced activation of extracellular signal-regulated kinase 2, and colony formation. Finally, the enzymatic activity of SAP-1, measured with an immunocomplex phosphatase assay, was substantially increased by cell-cell adhesion. These results suggest that SAP-1, by mediating the dephosphorylation of focal adhesion-associated substrates, negatively regulates integrin-promoted signaling processes and, thus, may contribute to contact inhibition of cell growth and motility.  相似文献   

13.
We have previously described a gene named tkl (tyrosine kinase related to lck). It belongs to the src family of protein-tyrosine kinases and among these it has significant homology to the lck gene (lymphoide cell kinase). The tkl gene product may represent the avian homolog of Lck, which is believed to participate in a lymphocyte-specific signal transduction pathway by association with a membrane receptor. To study the biochemical properties of the protein, a nearly complete tkl gene (isolated from a cDNA library from chicken spleen cells) was expressed in a baculovirus system. Approximately 10% of the extracted protein consisted of the soluble 51-kDa Tkl protein (p51tkl) at 40 h post-infection. This protein was found to be phosphorylated on tyrosine and serine residues at a ratio of 5:1. As expected, glycosylation or myristoylation could not be detected. Immunocomplex kinase assays indicated strong autophosphorylation of p51tkl at tyrosine residues and phosphorylation of exogenous substrates such as D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histones H2b and H4, and casein. This protein-tyrosine kinase activity also exhibited a marked preference for Mn2+ compared to Mg2+. The high level expression of enzymatically active Tkl should provide an excellent tool to further study the biological functions of this class of enzymes.  相似文献   

14.
It has been proposed that H(2)O(2) increases tyrosine phosphorylation of cellular proteins by inhibiting protein-tyrosine phosphatase through oxidation of the cysteine residue of the enzyme essential for its catalytic activity. Tyrosine phosphorylation of the delta isoform of protein kinase C (PKC) was induced by H(2)O(2) in CHO and COS-7 cells. H(2)O(2) also induced activation of mitogen-activated protein kinase. Vanadate and molybdate, which inhibit protein-tyrosine phosphatase by binding to its active site, did not induce tyrosine phosphorylation of PKCdelta, but enhanced H(2)O(2)-induced tyrosine phosphorylation of PKCdelta in the cell. The oxoanions, however, generated the active form of mitogen-activated protein kinase. Another protein-tyrosine phosphatase inhibitor, phenylarsine oxide, which bridges the thiol residues of the enzyme, induced tyrosine phosphorylation of PKCdelta, and the reaction was enhanced by vanadate. These results suggest that inhibition of protein-tyrosine phosphatase is insufficient for induction of tyrosine phosphorylation of PKCdelta in the cells, and that presumably activation of protein-tyrosine kinase may be essential for tyrosine phosphorylation of the PKC isoform.  相似文献   

15.
A sensitive, automated, and nonisotopic assay for protein-tyrosine kinases and phosphatases has been developed. The assay uses commercially available antiphosphotyrosine monoclonal antibodies and the recently developed particle concentration immunofluorescence immunoassay technology. The assay is specific for phosphotyrosine residues, can be performed faster, and is at least 100-fold more sensitive than the current standard filter type radioassay. Myelin basic protein and a synthetic peptide corresponding to the autophosphorylation site of p56lck performed equally well in the detection of p56lck kinase activity. Myelin basic protein phosphorylated on tyrosine residues by p56lck was successfully used as substrate in the detection of phosphatase activity and vanadate or molybdate were shown to inhibit the phosphatase activity. The assay is particularly useful for the rapid detection of enzyme activities in column fractions from biochemical procedures steps and also for screening of large numbers of potential inhibitors or activators of protein-tyrosine kinases and phosphatases.  相似文献   

16.
We previously reported a molecular cloning of porcine gene syk encoding a non-receptor type 72-kDa protein-tyrosine kinase and a generation of anti-CPTK40 antibodies which could immunoprecipitate the activity of p72syk (Taniguchi et al. (1991) J. Biol. Chem. 266, 15790-15796). In this study, we have demonstrated that wheat germ agglutinin caused an increase in the autophosphorylation activity of p72syk which preceded an increase of protein-tyrosine phosphorylation observed at the same time in porcine splenocyte. The increase of p72syk activity was dose dependent and was inhibited by the coexistence of N-acetyl-D-glucosamine. Upon stimulation by the combination of 4 beta-phorbol 12-myristate 13-acetate and ionophore A23187, we could not detect the increase of activity of p72syk suggesting that the activation of p72syk was independent of protein kinase C and calcium ions.  相似文献   

17.
18.
Protein kinase activity, including activity specific for the phosphorylation of tyrosine residues, can be detected among particulate fraction proteins of T cell lymphomas after separation by SDS-polyacrylamide gel electrophoresis. Putative protein kinases are detected by renaturation of enzyme activity directly within the gel following removal of detergent. LSTRA, a cell line that exhibits elevated levels of protein-tyrosine kinase activity, was found to express a predominant protein-tyrosine kinase of molecular weight 30,000. This same enzyme was present in T lymphocytes and other T lymphoid cell lines. Studies involving rapid preparation of protein fractions, limited proteolysis and one-dimensional peptide mapping did not demonstrate a direct relationship between the phosphorylated 30,000 dalton protein and the predominant 56,000 dalton phosphotyrosine containing protein that is observed following phosphorylation of LSTRA cell particulate fractions in vitro.  相似文献   

19.
R Jove  S Kornbluth  H Hanafusa 《Cell》1987,50(6):937-943
Cellular src protein, p60c-src, is phosphorylated on tyrosine 527 in chicken embryo fibroblasts, and this phosphorylation is implicated in suppressing the protein-tyrosine kinase activity and transforming potential of p60c-src. To determine whether tyrosine 527 phosphorylation is dependent on p60c-src kinase activity, the ATP-binding site of chicken p60c-src was destroyed by substitution of lysine 295 with methionine. The resultant protein, p60c-src(M295), expressed either in chicken cells or in yeast, lacked detectable kinase activity. Nevertheless, tyrosine and serine phosphorylation of p60c-src(M295) overproduced in chicken cells were indistinguishable from that of authentic p60c-src. By contrast, p60c-src(M295) was not phosphorylated on tyrosine in yeast. These results suggest that a protein kinase present in chicken cells but not in yeast phosphorylates tyrosine 527 in trans, and are consistent with the possibility that this kinase is distinct from p60c-src.  相似文献   

20.
The protein kinase C (PKC) family has been clearly implicated in T-cell activation as have several nonreceptor protein-tyrosine kinases associated with the T-cell receptor, including p59fyn. This report demonstrates that thetaPKC and p59fyn specifically interact in vitro, in the yeast two-hybrid system, and in T-cells. Further indications of direct interaction are that p59fyn potentiates thetaPKC catalytic activity and that thetaPKC is a substrate for tyrosine phosphorylation by p59fyn. This interaction may account for the localization of thetaPKC following T-cell activation, pharmacological disruption of which results in specific cell-signaling defects. The demonstration of a physical interaction between a PKC and a protein-tyrosine kinase expands the class of PKC-anchoring proteins (receptors for activated C kinases (RACKs)) and demonstrates a direct connection between these two major T-cell-signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号