首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA复制原点识别复合体(origin recognition complex,ORC)识别并结合在DNA复制原点上,募集其他相关的复制因子组成复制前复合体(pre-replication complex,pre-RC)。ORC各个独立的亚基还具有非复制相关的功能。利用荧光定量PCR技术监测感染核型多角体病毒(BmNPV)后,家蚕五龄起蚕脂肪体组织中ORC各个亚基的表达的变化。在感染早期,ORC的拷贝数有所下降,随后表达量增加,并出现两个峰值。病毒感染36 h后,ORC各个亚基的表达量均下降。家蚕感染病毒后,脂肪体组织中ORC的表达趋势与病毒DNA复制的趋势相近,推测BmORC参与了病毒DNA的复制。  相似文献   

3.
4.
Progression of cell cycle is regulated by sequential expression of cyclins, which associate with distinct cyclin kinases to drive the transition between different cell cycle phases. The complex of Cyclin A with cyclin‐dependent kinase 2 (CDK2) controls the DNA replication activity through phosphorylation of a set of chromatin factors, which critically influences the S phase transition. It has been shown that the direct interaction between the Cyclin A‐CDK2 complex and origin recognition complex subunit 1 (ORC1) mediates the localization of ORC1 to centrosomes, where ORC1 inhibits cyclin E‐mediated centrosome reduplication. However, the molecular basis underlying the specific recognition between ORC1 and cyclins remains elusive. Here we report the crystal structure of Cyclin A‐CDK2 complex bound to a peptide derived from ORC1 at 2.54 å resolution. The structure revealed that the ORC1 peptide interacts with a hydrophobic groove, termed cyclin binding groove (CBG), of Cyclin A via a KXL motif. Distinct from other identified CBG‐binding sequences, an arginine residue flanking the KXL motif of ORC1 inserts into a neighboring acidic pocket, contributing to the strong ORC1‐Cyclin A association. Furthermore, structural and sequence analysis of cyclins reveals divergence on the ORC1‐binding sites, which may underpin their differential ORC1‐binding activities. This study provides a structural basis of the specific ORC1‐cyclins recognition, with implication in development of novel inhibitors against the cyclin/CDK complexes.  相似文献   

5.
The origin recognition complex (ORC) has an important function in determining the initiation sites of DNA replication. In higher eukaryotes, ORC lacks sequence-specific DNA binding, and the mechanisms of ORC recruitment and origin determination are poorly understood. ORC is recruited with high efficiency to the Epstein-Barr virus origin of plasmid replication (OriP) through a complex mechanism involving interactions with the virus-encoded EBNA1 protein. We present evidence that ORC recruitment to OriP and DNA replication function depends on RGG-like motifs, referred to as LR1 and LR2, in the EBNA1 amino-terminal domain. Moreover, we show that LR1 and LR2 recruitment of ORC is RNA dependent. HMGA1a, which can functionally substitute for LR1 and LR2 domain, can also recruit ORC in an RNA-dependent manner. EBNA1 and HMGA1a RGG motifs bound to structured G-rich RNA, as did ORC1 peptides, which interact with EBNA1. RNase A treatment of cellular chromatin released a fraction of the total ORC, suggesting that ORC association with chromatin, and possibly cellular origins, is stabilized by RNA. We propose that structural RNA molecules mediate ORC recruitment at some cellular and viral origins, similar to OriP.  相似文献   

6.
The distinct structural properties of heterochromatin accommodate a diverse group of vital chromosome functions, yet we have only rudimentary molecular details of its structure. A powerful tool in the analyses of its structure in Drosophila has been a group of mutations that reverse the repressive effect of heterochromatin on the expression of a gene placed next to it ectopically. Several genes from this group are known to encode proteins enriched in heterochromatin. The best characterized of these is the heterochromatin-associated protein, HP1. HP1 has no known DNA-binding activity, hence its incorporation into heterochromatin is likely to be dependent upon other proteins. To examine HP1 interacting proteins, we isolated three distinct oligomeric species of HP1 from the cytoplasm of early Drosophila embryos and analyzed their compositions. The two larger oligomers share two properties with the fraction of HP1 that is most tightly associated with the chromatin of interphase nuclei: an underphosphorylated HP1 isoform profile and an association with subunits of the origin recognition complex (ORC). We also found that HP1 localization into heterochromatin is disrupted in mutants for the ORC2 subunit. These findings support a role for the ORC-containing oligomers in localizing HP1 into Drosophila heterochromatin that is strikingly similar to the role of ORC in recruiting the Sir1 protein to silencing nucleation sites in Saccharomyces cerevisiae.  相似文献   

7.
The origin recognition complex (ORC) is a conserved heterohexamer required for the formation of pre-replication (pre-RC) complexes at origins of DNA replication. Many studies of ORC subunits have been carried out in transformed human cell lines but the properties of ORC in primary cells have not been addressed. Here, we compare the expression levels and chromatin-association of ORC subunits in HeLa cells to the primary human cell line, WI38, and a virally transformed derivative of WI38, VA13. ORC subunits 2 and 4 were highly overexpressed in both HeLa and VA13, whereas ORC1 levels were elevated in VA13 but considerably higher in HeLa cells. Cellular extraction revealed that the proportion of ORC2 and ORC4 subunits bound to chromatin was similar in all three cell lines throughout the cell-cycle. In contrast, very little ORC1 was associated with chromatin after extraction of primary WI38 cells, whereas the majority of overexpressed ORC1 in both HeLa and VA13 co-fractionated with chromatin throughout the cell-cycle. Although none of the cell lines displayed significant changes in the levels or chromatin-association of ORC during the cell-cycle, the chromatin-associated fraction of ORC1 displayed an increase in apparent molecular weight during S-phase. Similar experiments comparing immortalized CHO cells to an isogenic virally transformed derivative revealed no changes in levels of ORC subunits but an increase in the proportion of all three ORC subunits associated with chromatin. These results demonstrate a complex influence of cellular immortalization and transformation properties on the expression and regulation of ORC subunits. These results extend the potential link between cancer and deregulation of pre-RC proteins, and underscore the importance of considering the transformation status of cell lines when working with these proteins.  相似文献   

8.
9.
10.
11.
The human RIF1 protein controls DNA replication, but the molecular mechanism is largely unknown. Here, we demonstrate that human RIF1 negatively regulates DNA replication by forming a complex with protein phosphatase 1 (PP1) that limits phosphorylation‐mediated activation of the MCM replicative helicase. We identify specific residues on four MCM helicase subunits that show hyperphosphorylation upon RIF1 depletion, with the regulatory N‐terminal domain of MCM4 being particularly strongly affected. In addition to this role in limiting origin activation, we discover an unexpected new role for human RIF1‐PP1 in mediating efficient origin licensing. Specifically, during the G1 phase of the cell cycle, RIF1‐PP1 protects the origin‐binding ORC1 protein from untimely phosphorylation and consequent degradation by the proteasome. Depletion of RIF1 or inhibition of PP1 destabilizes ORC1, thereby reducing origin licensing. Consistent with reduced origin licensing, RIF1‐depleted cells exhibit increased spacing between active origins. Human RIF1 therefore acts as a PP1‐targeting subunit that regulates DNA replication positively by stimulating the origin licensing step, and then negatively by counteracting replication origin activation.  相似文献   

12.
Oxygen release compounds (ORC) are one possibility to enhance aerobic degradation in contaminated aquifers. However, some applications have been reported where oxygen concentrations did not meet expectations, this was attributed to ground water composition, e.g., high pH. Column experiments have been performed and the measurements were interpreted using a numerical model to investigate oxygen release kinetics from ORC in more detail. Because the zero-order rate law recommended by the manufacturer did not reflect the measurements, a more complex kinetic scheme was developed. The simulations show a minor influence of inorganic ground water constituents on oxygen release from ORC in the columns due to buffering by mineral precipitation, but an enhanced oxygen release if aerobic degradation takes place. If ORC is applied as socks, the impact of inorganic ground water composition increases compared to the application in column experiments. A simple quadratic equation is provided to estimate oxygen release rate from the buffer capacity of the ground water versus increasing pH—a parameter easily determinable in the laboratory. For slightly mineralized waters with high pH, this equation forecasts decreased oxygen release, but no total inhibition of oxygen release.  相似文献   

13.
The origin recognition complex 1 (ORC1) is the largest subunit of the ORC, the heteromeric hexamer. ORC1 is an essential component of the pre-replicative complex (pre-RC) that licenses eukaryote DNA replication origins. The levels of ORC1 fluctuate during the mitotic cell cycle in Drosophila as well as in some human cells. Proteolysis of ORC1 occurs at the end of M phase in Drosophila, which is mediated by the anaphase-promoting complex (APC), and in late S phase in human cells by Skip-Cullin-F box (SCF). Previously we showed that proteolysis of ORC1 by APC is mediated by the ORC1 destruction box (the O-box), an APC motif conserved among species yet distinct from the D-box or KEN-box. Recently we showed that replacing the O-box with the D-box (ORC1O→D) changes the degradation profile of ORC1 during a canonical cell cycle. Here we report further characterization of the ORC1O→D allele that turned out to be a useful tool to examine the function of ORC1 in other modes of DNA replication during oogenesis. In endoreplication stages ORC1O→D does not change any DNA content profiles, consistent with our previous finding that ORC is dispensable for endoreplication. However, in amplification stage replication efficiency of ORC1O→D is drastically reduced, which resulted in amplification defects that led to thin egg shell phenotype. Taken together, our analyses show that orc1 allele newly identified is female sterile and possesses a unique feature of phenotypes that are distinct in different modes of DNA replication.  相似文献   

14.
Oxygen release compounds (ORC) are one possibility to enhance aerobic degradation in contaminated aquifers. However, some applications have been reported where oxygen concentrations did not meet expectations, this was attributed to ground water composition, e.g., high pH. Column experiments have been performed and the measurements were interpreted using a numerical model to investigate oxygen release kinetics from ORC in more detail. Because the zero-order rate law recommended by the manufacturer did not reflect the measurements, a more complex kinetic scheme was developed. The simulations show a minor influence of inorganic ground water constituents on oxygen release from ORC in the columns due to buffering by mineral precipitation, but an enhanced oxygen release if aerobic degradation takes place. If ORC is applied as socks, the impact of inorganic ground water composition increases compared to the application in column experiments. A simple quadratic equation is provided to estimate oxygen release rate from the buffer capacity of the ground water versus increasing pH—a parameter easily determinable in the laboratory. For slightly mineralized waters with high pH, this equation forecasts decreased oxygen release, but no total inhibition of oxygen release.  相似文献   

15.
Eukaryotic cells coordinate chromosome duplication by the assembly of protein complexes at origins of DNA replication by sequential binding of member proteins of the origin recognition complex (ORC), CDC6, and minichromosome maintenance (MCM) proteins. These pre-replicative complexes (pre-RCs) are activated by cyclin-dependent kinases and DBF4/CDC7 kinase. Here, we carried out a comprehensive yeast two-hybrid screen to establish sequential interactions between two individual proteins of the mouse pre-RC that are probably required for the initiation of DNA replication. The studies revealed multiple interactions among ORC subunits and MCM proteins as well as interactions between individual ORC and MCM proteins. In particular CDC6 was found to bind strongly to ORC1 and ORC2, and to MCM7 proteins. DBF4 interacts with the subunits of ORC as well as with MCM proteins. It was also demonstrated that CDC7 binds to different ORC and MCM proteins. CDC45 interacts with ORC1 and ORC6, and weakly with MCM3, -6, and -7. The three subunits of the single-stranded DNA binding protein RPA show interactions with various ORC subunits as well as with several MCM proteins. The data obtained by yeast two-hybrid analysis were paradigmatically confirmed in synchronized murine FM3A cells by immunoprecipitation of the interacting partners. Some of the interactions were found to be cell-cycle-dependent; however, most of them were cell-cycle-independent. Altogether, 90 protein-protein interactions were detected in this study, 52 of them were found for the first time in any eukaryotic pre-RC. These data may help to understand the complex interplay of the components of the mouse pre-RC and should allow us to refine its structural architecture as well as its assembly in real time.  相似文献   

16.
Most eukaryotic cell types can withdraw from proliferative cell cycles and remain quiescent for extended periods. Intact nuclei isolated from quiescent murine NIH3T3 cells fail to replicate in vitro when incubated in Xenopus egg extracts, although intact nuclei from proliferating cells replicate well. Permeabilization of the nuclear envelope rescues the ability of quiescent nuclei to replicate in the extract. We show that origin replication complex (ORC), minichromosome maintenance (MCM), and Cdc6 proteins are all present in early quiescent cells. Immunodepletion of Cdc6 or the MCM complex from Xenopus egg extract inhibits replication of permeable, quiescent, but not proliferating, NIH3T3 nuclei. Immunoblotting results demonstrate that mouse homologues of Mcm2, Mcm5, and Cdc6 are displaced from chromatin in quiescent cells. However, this absence of chromatin-bound Cdc6 and MCM proteins from quiescent cells appears not to be due to the absence of ORC subunits as murine homologues of Orc1 and Orc2 remain chromatin-bound in quiescent cells. Surprisingly, intact quiescent nuclei fail to bind exogenously added XCdc6 or to replicate in Xenopus egg extracts immunodepleted of ORC, even though G1- or S-phase nuclei still replicate in these extracts. Our results identify Cdc6 and the MCM complex as essential replication components absent from quiescent chromatin due to nonfunctional chromatin-bound ORC proteins. These results can explain why quiescent mammalian nuclei are unable to replicate in vivo and in Xenopus egg extracts.  相似文献   

17.
18.
Pre-replicative complex (pre-RC) assembly is a critical part of the mechanism that controls the initiation of DNA replication, and ATP binding and hydrolysis by multiple pre-RC proteins are essential for pre-RC assembly and activation. Here, we demonstrate that Adk1p (adenylate kinase 1 protein) plays an important role in pre-RC assembly in Saccharomyces cerevisiae. Isolated from a genetic screen, adk1G20S cells with a mutation within the nucleotide-binding site were defective in replication initiation. adk1Δ cells were viable at 25 °C but not at 37°C. Flow cytometry indicated that both the adk1-td (temperature-inducible degron) and adk1G20S mutants were defective in S phase entry. Furthermore, Adk1p bound to chromatin throughout the cell cycle and physically interacted with Orc3p, whereas the Adk1G20S protein had a reduced ability to bind chromatin and Orc3p without affecting the cellular ATP level. In addition, Adk1p associated with replication origins by ChIP assay. Finally, Adk1-td protein depletion prevented pre-RC assembly during the M-to-G1 transition. We suggest that Adk1p regulates ATP metabolism on pre-RC proteins to promote pre-RC assembly and activation.  相似文献   

19.
Archaea contain one or more proteins with homology to eukaryotic ORC/Cdc6 proteins. Sequence analysis suggests the existence of at least two subfamilies of these proteins, for which we propose the nomenclature ORC1 and ORC2. We have determined crystal structures of the ORC2 protein from the archaeon Aeropyrum pernix in complexes with ADP or a non-hydrolysable ATP analogue, ADPNP. Between two crystal forms, there are three crystallographically independent views of the ADP complex and two of the ADPNP complex. The protein molecules in the three complexes with ADP adopt very different conformations, while the two complexes with ADPNP are the same. These structures indicate that there is considerable conformational flexibility in ORC2 but that ATP binding stabilises a single conformation. We show that the ORC2 protein can bind DNA, and that this activity is associated with the C-terminal domain of the protein. We present a model for the interaction of the winged helix (WH) domain of ORC2 with DNA that differs from that proposed previously for Pyrobaculum aerophilum ORC/Cdc6.  相似文献   

20.
DNA replication origins are poorly characterized genomic regions that are essential to recruit and position the initiation complex to start DNA synthesis. Despite the lack of specific replicator sequences, initiation of replication does not occur at random sites in the mammalian genome. This has lead to the view that DNA accessibility could be a major determinant of mammalian origins. Here, we performed a high‐resolution analysis of nucleosome architecture and initiation sites along several origins of different genomic location and firing efficiencies. We found that mammalian origins are highly variable in nucleosome conformation and initiation patterns. Strikingly, initiation sites at efficient CpG island‐associated origins always occur at positions of high‐nucleosome occupancy. Origin recognition complex (ORC) binding sites, however, occur at adjacent but distinct positions marked by labile nucleosomes. We also found that initiation profiles mirror nucleosome architecture, both at endogenous origins and at a transgene in a heterologous system. Our studies provide a unique insight into the relationship between chromatin structure and initiation sites in the mammalian genome that has direct implications for how the replication programme can be accommodated to diverse epigenetic scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号