首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are many causes of abnormal protrusion of one or both eyes, the most common of which is imbalance of the glands of internal secretion. Among other causes are a variety of tumors that originate behind the eye or that extend to that location from other parts in the body. Infections can extend to the orbit behind the eye from the neighboring structures such as the paranasal sinuses. Infection may also extend to the orbit from distant areas by way of the blood and cause exophthalmos.  相似文献   

2.
V N Simirski? 《Ontogenez》1979,10(3):253-260
The possibility of transformation of the corneal anterior epithelium in the lens following its separation from the stroma was studied. The corneal epithelium was implanted into: a) empty eye orbit and b) cavity of lensless eye of the Rana temporaria tadpoles. In the eye orbit it continued, as in the normal development, to form the basal membrane. Although in the eye cavity the structures similar to lentoids arose but the specific lens proteins were shown to be asbent from them using immunofluorescence. In both the cases, thus, no transformation of the corneal epithelium in the lens was observed. The role of stroma in the stabilization of differentiation of the corneal anterior epithelium is discussed. It is suggested that the absence of increase in the mitotic activity is one of the causes of failure of the corneal epithelium transformation in the lens.  相似文献   

3.
A predictive Lagrangian–Eulerian finite element eye model was used to analyze 2.27 and 0.45 kg trinitrotoluene equivalent blasts detonated from 24 different locations. Free air and ground level blasts were simulated directly in front of the eye and at lateral offset locations with box, average, less protective, and more protective orbital anthropometries, resulting in 96 simulations. Injury risk curves were developed for hyphema, lens dislocation, retinal damage, and globe rupture from experimental and computational data to compute risk from corneoscleral stress and intra-ocular pressure computational outputs. Corneoscleral stress, intra-ocular pressure, and injury risks increased when the blast size was larger and located nearer to the eye. Risks ranged from 20–100 % for hyphema, 1–100 % for lens dislocation, 2–100 % for retinal damage, and 0–98 % for globe rupture depending on the blast condition. Orbital geometry affected the stresses, pressures, and associated ocular injury risks of the blast conditions simulated. Orbital geometries that more fully surrounded the eye such as the more protective orbit tended to produce higher corneoscleral stresses and compression of the eye against the surrounding rigid orbit contributing to high stresses as the blast wave propagated. However, the more protective orbit tended to produce lower intra-ocular pressures in comparison with the other three orbital geometries which may indicate that the more protective orbit inhibits propagation of the blast wave and reduces ocular loading. Results of this parametric computational study of ocular blast loading are valuable to the design of eye protection equipment and the mitigation of blast-related eye injuries.  相似文献   

4.
In military, automotive, and sporting safety, there is concern over eye protection and the effects of facial anthropometry differences on risk of eye injury. The objective of this study is to investigate differences in orbital geometry and analyze their effect on eye impact injury. Clinical measurements of the orbital aperture, brow protrusion angle, eye protrusion, and the eye location within the orbit were used to develop a matrix of simulations. A finite element (FE) model of the orbit was developed from a computed tomography (CT) scan of an average male and transformed to model 27 different anthropometries. Impacts were modeled using an eye model incorporating lagrangian-eulerian fluid flow for the eye, representing a full eye for evaluation of omnidirectional impact and interaction with the orbit. Computational simulations of a Little League (CD25) baseball impact at 30.1m/s were conducted to assess the effect of orbit anthropometry on eye injury metrics. Parameters measured include stress and strain in the corneoscleral shell, internal dynamic eye pressure, and contact forces between the orbit, eye, and baseball. The location of peak stresses and strains was also assessed. Main effects and interaction effects identified in the statistical analysis illustrate the complex relationship between the anthropometric variation and eye response. The results of the study showed that the eye is more protected from impact with smaller orbital apertures, more brow protrusion, and less eye protrusion, provided that the orbital aperture is large enough to deter contact of the eye with the orbit.  相似文献   

5.
Complete postorbital bars, bony arches that encompass the lateral aspect of the eye and form part of a circular orbit, have evolved homoplastically multiple times during mammalian evolution. Numerous functional hypotheses have been advanced for postorbital bars, the most promising being that postorbital bars function to stiffen the lateral orbit in taxa that have significant angular deviation between the temporal fossa and the bony orbit. Without a stiff lateral orbit the anterior temporalis muscle and fascia potentially would pull on the postorbital ligament, deform the orbit, and cause disruption of oculomotor precision. Morphometric data were collected on 1,329 specimens of 324 taxa from 16 orders of extant eutherian and metatherian mammals in order to test whether the orientation of the orbit relative to the temporal fossa is correlated with the replacement of the postorbital ligament with bone. The allometric and ecological influences on orbit orientation across mammals are also explored. The morphometric results corroborate the hypothesis: Shifts in orbit orientation relative to the temporal fossa are correlated with the size of the postorbital processes, which replace the ligament. The allometric and ecological factors that influence orbit orientation vary across taxa. Postorbital bars stiffen the lateral orbital wall. Muscle pulleys, ligaments, and other connective tissue attach to the lateral orbital wall, including the postorbital bar. Without a stiff lateral orbit, deformation due to temporalis contraction would displace soft tissues contributing to normal oculomotor function.  相似文献   

6.
Ocular injuries from blast have increased in recent wars, but the injury mechanism associated with the primary blast wave is unknown. We employ a three-dimensional fluid–structure interaction computational model to understand the stresses and deformations incurred by the globe due to blast overpressure. Our numerical results demonstrate that the blast wave reflections off the facial features around the eye increase the pressure loading on and around the eye. The blast wave produces asymmetric loading on the eye, which causes globe distortion. The deformation response of the globe under blast loading was evaluated, and regions of high stresses and strains inside the globe were identified. Our numerical results show that the blast loading results in globe distortion and large deviatoric stresses in the sclera. These large deviatoric stresses may be indicator for the risk of interfacial failure between the tissues of the sclera and the orbit.  相似文献   

7.
Control of eye movements is essential in accomplishing visual or perceptive tasks. The brain and central nervous system process retinal information and send nervous signals to the extraocular muscles, which exert forces that cause the eye to move. A model for the human extraocular plant, which consists of the nervous input signals, the extraocular muscles, the orbit and the globe, is proposed. The derivation is based on anatomical and physiological data as well as experiments concerned with a variety of eye movements under normal and abnormal conditions. The nervous activity controlling eye movements was estimated from electromyography and single unit studies of the extraocular nuclei. The equations describing muscle properties were discussed in a previous paper by the authors; these results were incorporated into the present model. The characteristics of the isolated globe and its visco-elastic interaction with the orbit were computed from length- tension curves and isotonic experiments. Simulations using the resulting representation accurately depicted the isotonic experiments on the isolated globe and on the total extraocular plant, the isometric forces during three different types of eye movements, and the weighted globe experiment. A future paper will show that the model accurately simulates normal eye movements of different types and amplitudes.  相似文献   

8.
Primary blast injury (PBI) is the general term that refers to injuries resulting from the mere interaction of a blast wave with the body. Although few instances of primary ocular blast injury, without a concomitant secondary blast injury from debris, are documented, some experimental studies demonstrate its occurrence. In order to investigate PBI to the eye, a finite element model of the human eye using simple constitutive models was developed. The material parameters were calibrated by a multi-objective optimisation performed on available eye impact test data. The behaviour of the human eye and the dynamics of mechanisms occurring under PBI loading conditions were modelled. For the generation of the blast waves, different combinations of explosive (trinitrotoluene) mass charge and distance from the eye were analysed. An interpretation of the resulting pressure, based on the propagation and reflection of the waves inside the eye bulb and orbit, is proposed. The peculiar geometry of the bony orbit (similar to a frustum cone) can induce a resonance cavity effect and generate a pressure standing wave potentially hurtful for eye tissues.  相似文献   

9.
Character evolution in the orbital region of the Afrotheria   总被引:1,自引:0,他引:1  
P. G. Cox 《Journal of Zoology》2006,269(4):514-526
The orbit or eye socket is a highly plastic area of the mammalian skull. There is significant variation within and between the different mammalian orders in the size and position of the bones and foramina that contribute to this region. For this reason, orbital characters are often used in attempts to determine the relationships of the various mammalian groups. This study describes the orbital region of the Afrotheria, the proposed group of endemic African mammals that comprises the paenungulates (elephants, manatees and dugongs, and hyraxes), elephant-shrews, aardvarks, golden moles and tenrecs. Evolution within the Afrotherian orbit is then explored by scoring 19 orbital characters in each Afrotherian genus, and plotting the character state changes on to previously existing phylogenies of the Afrotheria. These phylogenies were all produced from recent molecular work. It was found that there is a great deal of variation in the orbital region within the Afrotheria, most notably in the size of the lacrimal and its contacts with other bones, the appearance of the palatine in the orbit and the structure of the zygomatic arch. Overall, orbital characters strongly supported an elephant-hyrax clade over the more traditional grouping of elephants and sirenians (Tethytheria) within the paenungulates. There was also support for a monophyletic Tenrecoidea (a clade of tenrecs plus golden moles). Additionally, it was shown that there is a great deal of variation in the orbital region among the genera of the Tenrecidae and the Macroscelididae.  相似文献   

10.
Because of superficial thinking obstetricians have been blamed unjustifiably for causing brain damage, cerebral palsy, mental subnormality, congenital torticollis, and facial palsy. It is essential to look behind obvious difficulties in labour, such as abnormal presentation or anoxia, to the underlying causes, which are often genetic or social, or concern other prenatal factors.  相似文献   

11.

Background

Human populations and breeds of domestic animals are composed of individuals with a multiplicity of eye (= iris) colorations. Some wild birds and mammals may have intraspecific eye color variability, but this variation seems to be due to the developmental stage of the individual, its breeding status, and/or sexual dimorphism. In other words, eye colour tends to be a species-specific trait in wild animals, and the exceptions are species in which individuals of the same age group or gender all develop the same eye colour. Domestic animals, by definition, include bird and mammal species artificially selected by humans in the last few thousand years. Humans themselves may have acquired a diverse palette of eye colors, likewise in recent evolutionary time, in the Mesolithic or in the Upper Paleolithic.

Presentation of the hypothesis

We posit two previously unrecognized hypotheses regarding eye color variation: 1) eye coloration in wild animals of every species tends to be a fixed trait. 2) Humans and domestic animal populations, on the contrary, have eyes of multiple colors. Sexual selection has been invoked for eye color variation in humans, but this selection mode does not easily apply in domestic animals, where matings are controlled by the human breeder.

Testing the hypothesis

Eye coloration is polygenic in humans. We wish to investigate the genetics of eye color in other animals, as well as the ecological correlates.

Implications of the hypothesis

Investigating the origin and function of eye colors will shed light on the reason why some species may have either light-colored irises (e.g., white, yellow or light blue) or dark ones (dark red, brown or black). The causes behind the vast array of eye colors across taxa have never been thoroughly investigated, but it may well be that all Darwinian selection processes are at work: sexual selection in humans, artificial selection for domestic animals, and natural selection (mainly) for wild animals.
  相似文献   

12.
One hundred and five cases of airgun pellet injuries of the eye have been analysed. The average age was 14 and the male to female ratio 7·5:1. Forty-five patients had final visual acuities of 6/18 or less in the injured eye and 19 of these had the eye removed. The two main causes for poor vision were retinal damage and cataract. One patient became completely blind after sympathetic ophthalmitis arising 11 years after the injury. The pellet lodged in the orbit in 14 cases and three of these, together with one who had an intraethmoidal pellet, were investigated for abnormal lead levels in blood and urine. The results were normal.The circumstances of the injury were obtained in 12 cases and most involved careless handling of a gun. Instruction of children and parents in schools and on television, rather than stricter legislation, is suggested as a means of prevention.  相似文献   

13.
In the eye of the Goldeye the photoreceptors are arranged in bundles and the pigment epithelium contains a massive reflector or tapetum lucidum. Photoreceptor bundles are arranged in parallel rows, the bundles alternating in position from row to row. Each bundle contains about 60 photoreceptors, of which 30 or so are cones. Rod outer segments lie in the scleral half of the outer retinal region of the light-adapted eye. Processes of the pigment epithelium cells extend vitread almost to the external limiting membrane; they envelop the bundles of rods and cones, and a ring of four processes surrounds each bundle. A process contains two kinds of reflecting crystals (composed of uric acid). A large part of the epithelium cell is packed with small disc-shaped crystals (crystallites) enclosed in thin membranes; the tip of the process, in the region of the photoreceptor bundle, contains orderly arrays of small rod-shaped crystals (rodlets). It is suggested that the crystallites form a diffuse reflector backscattering light into the rods; and that the rodlets reflect light regularly from their surfaces into the photoreceptor bundles. In the light-adapted state, rods are enveloped by pigment and crystallites. The organization is compared with that of other fishes that have photoreceptors in bundles (grouped retinae) and tapeta lucida.  相似文献   

14.
A new citharid flounder,Citharoides orbitalis, is described based on four specimens from Western Australia. The new species can be distinguished from the only known congener,C. macrolepidotus, by its longer orbit, greater distance between the upper eye and dorsal profile, and wider space between each eye and the anterior rim of the orbit.  相似文献   

15.
Midfacial reduction in primates has been explained as a byproduct of other growth patterns, especially the convergent orbits. This is at once an evolutionary and developmental explanation for relatively short snouts in most modern primates. Here, we use histological sections of perinatal nonhuman primates (tamarin, tarsier, loris) to investigate how orbital morphology emerges during ontogeny in selected primates compared to another euarchontan (Tupaia glis). We annotated serial histological sections for location of osteoclasts or osteoblasts, and used these to create three‐dimensional “modeling maps” showing perinatal growth patterns of the facial skeleton. In addition, in one specimen we transferred annotations from histological sections to CT slices, to create a rotatable 3D volume that shows orbital modeling. Our findings suggest that growth in the competing orbital and neurocranial functional matrices differs among species, influencing modeling patterns. Distinctions among species are observed in the frontal bone, at a shared interface between the endocranial fossa and the orbit. The medial orbital wall is extensively resorptive in primates, whereas the medial orbit is generally depositional in Tupaia. As hypothesized, the orbital soft tissues encroach on available interorbital space. However, eye size cannot, by itself, explain the extent of reduction of the olfactory recess. In Loris, the posterior portion of medial orbit differed from the other primates. It showed evidence of outward drift where the olfactory bulb increased in cross‐sectional area. We suggest the olfactory bulbs are significant to orbit position in strepsirrhines, influencing an expanded interorbital breadth at early stages of development. Am J Phys Anthropol 154:424–435, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
V R Galoian 《Biofizika》1988,33(6):1041-1053
It is well known that the eye is a phylogenetically stabilized body with rotation properties. The eye has an elastic cover and is filled with uniform fluid. According to the theory of covers and other concepts on the configuration of turning fluid mass we concluded that the eyeball has an elliptic configuration. Classification of the eyeball is here presented with simultaneous studies of the principles of the eye situation. The parallelism between the state and different types of heterophory and orthophory was studied. To determine normal configuration it is necessary to have in mind some principles of achieving advisable correct situation of the eye in orbit. We determined the centre of the eye rotation and showed that it is impossible to situate it out of the geometrical centre of the eyeball. It was pointed out that for adequate perception the rotation centre must be situated on the visual axis. Using the well known theory of floating we experimentally determined that the centre of the eye rotation lies on the level of the floating eye, just on the point of cross of the visual line with the optical axis. It was shown experimentally on the basis of recording the eye movements in the process of eyelid closing that weakening of the eye movements is of gravitational pattern and proceeds under the action of stability forces, which directly indicates the floating state of the eye. For the first time using the model of the floating eye it was possible to show the formation of extraeye vacuum by straining the back wall. This effect can be obtained without any difficulty, if the face is turned down. The role of negative pressure in the formation of the eye ametropy, as well as new conclusions and prognostications about this new model are discussed.  相似文献   

17.
Recent studies suggest that binocular rivalry at stimulus onset, so called onset rivalry, differs from rivalry during sustained viewing. These observations raise the interesting question whether there is a relation between onset rivalry and rivalry in the presence of eye movements. We therefore studied binocular rivalry when stimuli jumped from one visual hemifield to the other, either through a saccade or through a passive stimulus displacement, and we compared rivalry after such displacements with onset and sustained rivalry. We presented opponent motion, orthogonal gratings and face/house stimuli through a stereoscope. For all three stimulus types we found that subjects showed a strong preference for stimuli in one eye or one hemifield (Experiment 1), and that these subject-specific biases did not persist during sustained viewing (Experiment 2). These results confirm and extend previous findings obtained with gratings. The results from the main experiment (Experiment 3) showed that after a passive stimulus jump, switching probability was low when the preferred eye was dominant before a stimulus jump, but when the non-preferred eye was dominant beforehand, switching probability was comparatively high. The results thus showed that dominance after a stimulus jump was tightly related to eye dominance at stimulus onset. In the saccade condition, however, these subject-specific biases were systematically reduced, indicating that the influence of saccades can be understood from a systematic attenuation of the subjects' onset rivalry biases. Taken together, our findings demonstrate a relation between onset rivalry and rivalry after retinal shifts and involvement of extra-retinal signals in binocular rivalry.  相似文献   

18.
To follow the subsequent history of grafted tissue in experiments designed to study regulation and commitment in the amphibian neural plate, previous workers have relied on graft scars, vital dyes applied externally to cells, or xenoplastic grafts. Each of these methods has been criticized on the grounds that they do not indicate unambiguously the origins of individual cells within the operated host. To overcome these difficulties, homoplastic, genetically marked embryonic grafts were taken from the prospective spinal neuroectoderm of triploid and tetraploid Xenopus laevis frogs and transplanted to presumptive eye and prosencephalic regions of the neural plate of diploid X. laevis embryos. Orthotopic presumptive eye grafts also were done. Marked cells were scored in section either by nucleolar number or computerized nuclear size analysis. Of 28 heterotopically grafted embryos that survived to stage 41, when the retina has differentiated, prospective spinal cord neuroectoderm in eight animals gave rise to cell types unique to the eye. The remaining 20 survivors appeared to be mosaic. These results substantiate claims of regulation in the neural plate and extend these observations to the level of individual cell types, a level of resolution not previously obtained in other studies.  相似文献   

19.
The Sun is the most abundant source of optical radiation for the child eye. New hand-held visible lasers are a threat to the child eye. Some scientific data suggest that near infrared radiation may cause cumulative damage in the ocular lens. The child eye usually is exposed to ambient solar radiation, gazing at the horizon. Ambient Sun ultraviolet radiation (UVR) exposure to the child is complex due to atmospheric scattering and strong dependence on background reflection. Solar exposure causes biological damage, only by photochemical mechanisms. UVR exposure to a child eye is mainly a threat to the anterior segment of the eye, but also age dependently to the retina. Above threshold exposure to UVR, for short delay onset of damage, causes a toxic reaction on the surface of the eye, snow blindness, and cataract. Sub-threshold daily exposure to UVR over decades is associated with several ocular surface pathologies and eye lid cancer. Visible radiation is a threat to the retina. A single above threshold exposure, for short delay onset of damage to the retina causes immediate photochemical Type II retinal damage, Sun blindness. A single exposure of the retina to a very high intensity laser beam may cause thermal or thermo-mechanical damage in the retina. In environments with high irradiance of optical radiation, the child eye should be protected. Legislation and public information is required for avoidance of damage from high intensity laser systems. More research is urgently needed to exclude the potential hazard of near infrared radiation.  相似文献   

20.
A finite element model of the eye and the orbit was used to examine the hypothesis that the orbital fat provides an important mechanism of eye stability during head trauma. The model includes the globe, the orbital fat, the extra-ocular muscles, and the optic nerve. MRI images of an adult human orbit were used to generate an idealized geometry of the orbital space. The globe was approximated as a sphere 12 mm in radius. The optic nerve and the sclera were represented as thin shells, whereas the vitreous and the orbital fat were represented as nearly incompressible solids of low stiffness. The orbital bone was modelled as a rigid shell. Frontal head impact resulting from a fall onto a hard floor was simulated by prescribing to the orbital bone a triangular acceleration pulse of 200 g (1962 m/s(2)) peak for a duration of 4.5 ms. The results show that the fat provides the crucial passive mechanism of eye restraint. The mechanism is a consequence of the fact that the fat is incompressible and that its motion is restricted by the rigidity of the orbital walls. Thus, the acceleration loads of short duration cannot generate significant distortion of the fat. In contrast, the passive muscles provide little support to the globe. When the connection between the orbital fat and the eye is absent the eye is held mainly by the optic nerve. We discuss the possible role that this loss of contact may have in some cases of the evulsion of the eye and the optic nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号