首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 834 毫秒
1.
Equilibrium unfolding of class pi glutathione S-transferase   总被引:4,自引:0,他引:4  
The equilibrium unfolding transition of class pi glutathione S-transferase, a homodimeric protein, from porcine lung was monitored by spectroscopic methods (fluorescence emission and ultraviolet absorption), and by enzyme activity changes. Solvent (guanidine hydrochloride and urea)-induced denaturation is well described by a two-state model involving significant populations of only the folded dimer and unfolded monomer. Neither a folded, active monomeric form nor stable unfolding intermediates were detected. The conformational stability, delta Gu (H2O), of the native dimer was estimated to be about 25.3 +/- 2 kcal/mol at 20 degrees C and pH6.5.  相似文献   

2.
Kim YH  Stites WE 《Biochemistry》2008,47(33):8804-8814
To explore the effects of molecular crowding and excluded volume upon protein stability, we used a series of cross-linking reagents with nine different single-cysteine mutants of staphylococcal nuclease to make covalently linked dimers. These cross-linkers ranged in length from 10.5 to 21.3 A, compelling separations which would normally be found only in the most concentrated protein solutions. The stabilities of the dimeric proteins and monomeric controls were determined by guanidine hydrochloride and thermal denaturation. Dimers with short linkers tend to exhibit pronounced three-state denaturation behavior, as opposed to the two-state behavior of the monomeric controls. Increasing linker length leads to less pronounced three-state behavior. The three-state behavior is interpreted in a three-state model where cross-linked native protein dimer, N-N, interconverts in a two-state transition with a dimer where one protein subunit is denatured, N-D. The remaining native protein in turn can denature in another two-state transition to a state, D-D, in which both tethered proteins are denatured. Three-state behavior is best explained by excluded volume effects in the denatured state. For many dimers, linkers longer than 17 A removed most three-state character. This sets a limit on the flexibility and size of the denatured state. Notably, in contradiction to theoretical predictions, these cross-linked dimers were not stabilized. The failure of these predictions is possibly due to neglect of the alteration in hydrophobic exposure that accompanies any significant reduction in the conformational space of the denatured state.  相似文献   

3.
Banks DD  Gloss LM 《Biochemistry》2003,42(22):6827-6839
To compare the stability of structurally related dimers and to aid in understanding the thermodynamics of nucleosome assembly, the equilibrium stabilities of the recombinant wild-type H3-H4 tetramer and H2A-H2B dimer have been determined by guanidinium-induced denaturation, using fluorescence and circular dichroism spectroscopies. The unfolding of the tetramer and dimer are highly reversible. The unfolding of the H2A-H2B dimer is a two-state process, with no detected equilibrium intermediates. The H3-H4 tetramer is unstable at moderate ionic strengths (mu approximately 0.2 M). TMAO (trimethylamine-N-oxide) was used to stabilize the tetramer; the stability of the H2A-H2B dimer was determined under the same solvent conditions. The equilibrium unfolding of H3-H4 was best described by a three-state mechanism, with well-folded H3-H4 dimers as a populated intermediate. When compared to H2A-H2B, the H3-H3 tetramer interface and the H3-H4 histone fold are strikingly less stable. The free energy of unfolding, in the absence of denaturant, for the H3-H4 and H2A-H2B dimers are 12.4 and 21.0 kcal mol(-)(1), respectively, in 1 M TMAO. It is postulated that the difference in stability between the histone dimers, which contain the same fold, is the result of unfavorable tertiary interactions, most likely the partial to complete burial of three salt bridges and burial of a charged hydrogen bond. Given the conservation of these buried interactions in histones from yeast to mammals, it is speculated that the H3-H4 tetramer has evolved to be unstable, and this instability may relate to its role in nucleosome dynamics.  相似文献   

4.
5.
The leucine zipper motif is a characteristic amino acid sequence found in dimeric DNA-binding proteins. Computer-generated models for leucine zippers were constructed as alpha-helical coiled dimers with leucine repeated every seventh residue. An empirical Gibbs free energy, delta G, function which incorporates hydrophobic force, electrostatic interactions, and conformational entropy loss as the major intermolecular interactions was used to estimate the delta G of dimer formation in fos, jun, and GCN4 zipper sequences. The calculations showed that complexes known to form stable homo- or heterodimers have favorable (negative) delta G, while other less stable complexes have unfavorable (positive) delta G. Leucines in position d of the coiled coil contribute large hydrophobic stabilization energies while residues in the a position contribute less to dimer stability. Hydrophobic contributions show little sequence specificity, however, and do not contribute significantly to homo/heterodimer preference. Charged residues in the e and g positions, on the other hand, determine homo/heterodimer specificity. In GCN4 homodimers, residues GLU el, Glu b2, Lys g2, and Lys e4 greatly contribute to dimer stability. The preferential stability of fos-jun heterodimer over the jun-jun and fos-fos homodimers is primarily due to the side chains Asp b1, Glu g1, Asp b2, Glu e2, Glu g2, Glu g3, and Lys a5 of the fos helix, and Arg c1, Lys g1, Lys b2, Lys e2, Arg e4, and Glu g4 of the jun helix.  相似文献   

6.
The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.  相似文献   

7.
Functionally active elongation factor Ts (EF-Ts) from Thermus thermophilus forms a homodimer. The dimerization interface of EF-Ts is composed of two antiparallel beta-sheets that can be connected by an intermolecular disulfide bond. The stability of EF-Ts from T. thermophilus in the presence and absence of the intermolecular disulfide bond was studied by differential scanning calorimetry and circular dichroism. The ratio of the van't Hoff and calorimetric enthalpies, delta H(vH)/delta H(cal), indicates that EF-Ts undergoes thermal unfolding as a dimer independently of the presence or absence of the disulfide bond. This can be concluded from (1) the presence of residual secondary structure above the thermal transition temperature, (2) the absence of concentration dependence, which would be expected for dissociation of the dimer prior to unfolding of the monomers, and (3) a relatively low heat capacity change (delta Cp) upon unfolding. The retained dimeric structure of the thermally denatured state allowed for the determination of the effect of the intermolecular disulfide bond on the conformational stability of EF-Ts, which is deltadelta G(S-S,SH HS) = 10.5 kJ/mol per monomer at 72.5 degrees C. The possible physiological implications of the dimeric EF-Ts structure and of the intersubunit disulfide bond for the extreme conformational stability of proteins in thermophiles are discussed.  相似文献   

8.
The free energies of dimer dissociation of the retroviral proteases (PRs) of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) were determined by measuring the effects of denaturants on the protein fluorescence upon the unfolding of the enzymes. HIV-1 PR was more stable to denaturation by chaotropes and extremes of pH and temperature than SIV PR, indicating that the former enzyme has greater conformational stability. The urea unfolding curves of both proteases were sigmoidal and single phase. The midpoints of the transition curves increased with increasing protein concentrations. These data were best described by and fitted to a two-state model in which folded dimers were in equilibrium with unfolded monomers. This denaturation model conforms to cases in which protein unfolding and dimer dissociation are concomitant processes in which folded monomers do not exist [Bowie, J. U., & Sauer, R. T. (1989) Biochemistry 28, 7140-7143]. Accordingly, the free energies of unfolding reflect the stabilities of the protease dimers, which for HIV-1 PR and SIV PR were, respectively, delta GuH2O = 14 +/- 1 kcal/mol (Ku = 39 pM) and 13 +/- 1 kcal/mol (Ku = 180 pM). The binding of a tight-binding, competitive inhibitor greatly stabilized HIV-1 PR toward urea-induced unfolding (delta GuH2O = 19.3 +/- 0.7 kcal/mol, Ku = 7.0 fM). There were also profound effects caused by adverse pH on the protein conformation for both HIV-1 PR and SIV PR, resulting in unfolding at pH values above and below the respective optimal ranges of 4.0-8.0 and 4.0-7.0  相似文献   

9.
A glutathione S-transferase (Sj26GST) from Schistosoma japonicum, which functions in the parasite's Phase II detoxification pathway, is expressed by the Pharmacia pGEX-2T plasmid and is used widely as a fusion-protein affinity tag. It contains all 217 residues of Sj26GST and an additional 9-residue peptide linker with a thrombin cleavage site at its C-terminus. Size-exclusion HPLC (SEC-HPLC) and SDS-PAGE studies indicate that purification of the homodimeric protein under nonreducing conditions results in the reversible formation of significant amounts of 160-kDa and larger aggregates without a loss in catalytic activity. The basis for oxidative aggregation can be ascribed to the high degree of exposure of the four cysteine residues per subunit. The conformational stability of the dimeric protein was studied by urea- and temperature-induced unfolding techniques. Fluorescence-spectroscopy, SEC-HPLC, urea- and temperature-gradient gel electrophoresis, differential scanning microcalorimetry, and enzyme activity were employed to monitor structural and functional changes. The unfolding data indicate the absence of thermodynamically stable intermediates and that the unfolding/refolding transition is a two-state process involving folded native dimer and unfolded monomer. The stability of the protein was found to be dependent on its concentration, with a delta G degree (H2O) = 26.0 +/- 1.7 kcal/mol. The strong relationship observed between the m-value and the size of the protein indicates that the amount of protein surface area exposed to solvent upon unfolding is the major structural determinant for the dependence of the protein's free energy of unfolding on urea concentration. Thermograms obtained by differential scanning microcalorimetry also fitted a two-state unfolding transition model with values of delta Cp = 7,440 J/mol per K, delta H = 950.4 kJ/mol, and delta S = 1,484 J/mol.  相似文献   

10.
The equilibrium unfolding-refolding process of the elastase-alpha 1-proteinase inhibitor complex, induced by guanidinium chloride, was followed by spectroscopic methods. A reversible transition with a midpoint at 2.04 +/- 0.04 M guanidinium chloride was observed by fluorescence. This transition was attributed to elastase on the basis of circular dichroism and uv absorption difference data obtained for the covalent complex and for the free proteins. The conformational stability of elastase in the complex was analyzed considering the approximation of a two-state transition. The free energy of denaturation delta GH2O was 4.2 kcal.mol-1 for complexed elastase compared to 10.5 kcal.mol-1 for the free enzyme. Such a decrease in the stability of elastase suggests that, after forming the covalent complex with the inhibitor, the enzyme undergoes not only the expected local modifications of the active site, but also an extensive structural reorganization.  相似文献   

11.
The conformational stabilities of bovine lens gamma-crystallin fractions II, IIIA, IIIB, and IVA and those modified with glutathione were compared by studying the thermal and guanidine hydrochloride (Gdn-HCl) denaturation behavior. The conformational state was monitored by both far-UV CD and fluorescence measurements. All the gamma-crystallins studied showed a sigmoidal order-disorder transition with varied melting temperatures. The thermal denaturation of these proteins is reversible up to a temperature 3 or 4 degrees C above T 1/2; above this temperature, irreversible aggregation occurs. The validity of a two-state approximation of both thermal and Gdn-HCl denaturation was tested for all four crystallins, and the presence of one or more intermediates was evident in the unfolding of IVA. delta GDH2O values of these crystallins range from 4 to 9 kcal/mol. Upon glutathione treatment IVA showed the maximum decrease in T 1/2 by approximately 9 degrees C and in delta GDH2O value by 29%; the smallest decrease in T 1/2 was for IIIA by 2 degrees C and in delta GDH2O by 15%. We have demonstrated that the glutathione reaction can dramatically reduce the conformational stability of gamma-crystallins and, thus, that the thermodynamic quantities of the unreacted crystallins can be used to evaluate the stability of these proteins when modified during cataract formation.  相似文献   

12.
Rat micro class glutathione transferases M1-1 and M2-2 are homodimers that share a 78% sequence identity but display differences in stability. M1-1 is more stable at the secondary and tertiary structural levels, whereas its quaternary structure is less stable. Each subunit in these proteins consists of two structurally distinct domains with intersubunit contacts occurring between domain 1 of one subunit and domain 2 of the other subunit. The chimeric subunit variants M(12), which has domain 1 of M1 and domain 2 of M2, and its complement M(21), were used to investigate the conformational stability of the chimeric homodimers M(12)-(12) and M(21)-(21) to determine the contribution of each domain toward stability. Exchanging entire domains between class micro GSTs is accommodated by the GST fold. Urea-induced equilibrium unfolding data indicate that whereas the class micro equilibrium unfolding mechanism (i.e., N(2) <--> 2I <--> 2U) is not altered, domain exchanges impact significantly on the conformational stability of the native dimers and monomeric folding intermediates. Data for the wild-type and chimeric proteins indicate that the order of stability for the native dimer (N(2)) is M2-2 > M(12)-(12) M1-1 approximately M(21)-(21), and that the order of stability of the monomeric intermediate (I) is M1 > M2 approximately M(12) > M(21). Interactions involving Arg 77, which is topologically conserved in GSTs, appear to play an important role in the stability of both the native dimeric and folding monomeric structures.  相似文献   

13.
Receptor protein-tyrosine phosphatase alpha (RPTP alpha) constitutively forms dimers in the membrane, and activity studies with forced dimer mutants of RPTP alpha revealed that rotational coupling of the dimer defines its activity. The hemagglutinin (HA) tag of wild type RPTP alpha and of constitutively dimeric, active RPTP alpha-F135C with a disulfide bond in the extracellular domain was not accessible for antibody, whereas the HA tag of constitutively dimeric, inactive RPTP alpha-P137C was. All three proteins were expressed on the plasma membrane to a similar extent, and the accessibility of their extracellular domains did not differ as determined by biotinylation studies. Dimerization was required for masking the HA tag, and we identified a region in the N terminus of RPTP alpha that was essential for the effect. Oxidative stress has been shown to induce a conformational change of the membrane distal PTP domain (RPTP alpha-D2). Here we report that H(2)O(2) treatment of cells induced a change in rotational coupling in RPTP alpha dimers as detected using accessibility of an HA tag in the extracellular domain as a read-out. The catalytic site Cys(723) in RPTP alpha-D2, which was required for the conformational change of RPTP alpha-D2 upon H(2)O(2) treatment, was essential for the H(2)O(2)-induced increase in accessibility. These results show for the first time that a conformational change in the intracellular domain of RPTP alpha led to a change in conformation of the extracellular domains, indicating that RPTPs have the capacity for inside-out signaling.  相似文献   

14.
The folding of multisubunit proteins is of tremendous biological significance since the large majority of proteins exist as protein-protein complexes. Extensive experimental and computational studies have provided fundamental insights into the principles of folding of small monomeric proteins. Recently, important advances have been made in extending folding studies to multisubunit proteins, in particular homodimeric proteins. This review summarizes the equilibrium and kinetic theory and models underlying the quantitative analysis of dimeric protein folding using chemical denaturation, as well as the experimental results that have been obtained. Although various principles identified for monomer folding also apply to the folding of dimeric proteins, the effects of subunit association can manifest in complex ways, and are frequently overlooked. Changes in molecularity typically give rise to very different overall folding behaviour than is observed for monomeric proteins. The results obtained for dimers have provided key insights pertinent to understanding biological assembly and regulation of multisubunit proteins. These advances have set the stage for future advances in folding involving protein-protein interactions for natural multisubunit proteins and unnatural assemblies involved in disease.  相似文献   

15.
Thermodynamic parameters associated with the unfolding of the legume lectin, WBA II, were determined by isothermal denaturation. The analysis of isothermal denaturation data provided values for conformational stability and heat capacity for WBA II unfolding. To explore the role of intersubunit contact in stability, we carried out similar studies under identical conditions on Concanavalin A, a legume lectin of nearly similar size, buried hydrophobic surface area and tertiary structure to that of WBA II but with a different oligomerization pattern. Both proteins showed a reversible two-state unfolding with guanidine hydrochloride. As expected, the change in heat capacity upon unfolding was similar for both proteins at 3.5 and 3.7 kcal mol(-1) K(-1) for Concanavalin A and WBA II, respectively. Although the deltaG(H20) at the maximum stability of both proteins is around 16 kcal/mol, Concanavalin A exhibits greater stability at higher temperatures. The T(g) obtained for Concanavalin A and WBA II were 21 degrees C apart at 87.2 and 66.6 degrees C, respectively. The higher conformational stability at higher temperatures and the T(g) of Concanavalin A as compared to that of WBA II are largely due to substantial differences in the degree of subunit contact in these dimeric proteins. Ionic interactions and hydrogen bonding between the monomers of the two proteins also seem to play a significant role in the observed stability differences between these two proteins.  相似文献   

16.
S100 proteins constitute a large subfamily of the EF-hand superfamily of calcium binding proteins. They possess one classical EF-hand Ca2+-binding domain and an atypical EF-hand domain. Most of the S100 proteins form stable symmetric homodimers. An analysis of literature data on S100 proteins showed that their physiological concentrations could be much lower than dissociation constants of their dimeric forms. It means that just monomeric forms of these proteins are important for their functioning. In the present work, thermal denaturation of apo-S100P protein monitored by intrinsic tyrosine fluorescence has been studied at various protein concentrations within the region from 0.04–10 μM. A transition from the dimeric to monomeric form results in a decrease in protein thermal stability shifting the mid-transition temperature from 85 to 75 °C. Monomeric S100P immobilized on the surface of a sensor chip of a surface plasmon resonance instrument forms calcium dependent 1 to 1 complexes with human interleukin-11 (equilibrium dissociation constant 1.2 nM). In contrast, immobilized interleukin-11 binds two molecules of dimeric S100P with dissociation constants of 32 nM and 288 nM. Since effective dissociation constant of dimeric S100P protein is very low (0.5 μM as evaluated from our data) the sensitivity of the existing physical methods does not allow carrying out a detailed study of S100P monomer properties. For this reason, we have used molecular dynamics methods to evaluate structural changes in S100P upon its transition from the dimeric to monomeric state. 80-ns molecular dynamics simulations of kinetics of formation of S100P, S100B and S100A11 monomers from the corresponding dimers have been carried out. It was found that during the transition from the homo-dimer to monomer form, the three S100 monomer structures undergo the following changes: (1) the helices in the four-helix bundles within each monomer rotate in order to shield the exposed non-polar residues; (2) almost all lost contacts at the dimer interface are substituted with equivalent and newly formed interactions inside each monomer, and new stabilizing interactions are formed; and (3) all monomers recreate functional hydrophobic cores. The results of the present study show that both dimeric and monomeric forms of S100 proteins can be functional.  相似文献   

17.
Gupta G  Sinha S  Surolia A 《Proteins》2008,72(2):754-760
The unfolding pathway of banana lectin from Musa paradisiaca was determined by isothermal denaturation induced by the chaotrope GdnCl. The unfolding was found to be a reversible process. The data obtained by isothermal denaturation provided information on conformational stability of banana lectin. The high values of DeltaG of unfolding at various temperatures indicated the strength of intersubunit interactions. It was found that banana lectin is a very stable and denatures at high chaotrope concentrations only. The basis of the stability may be attributed to strong hydrogen bonds of the order 2.5-3.1 A at the dimeric interface along with the presence of water bridges. This is perhaps very unique example in proteins where subunit association is not a consequence of the predominance of hydrophobic interactions.  相似文献   

18.
Histone interactions in solution may depend upon treatments used for purification. Optical rotatory dispersion and sedimentation-velocity measurements have been made in a reference solvent, before and after exposure to various treatments, to investigate histone susceptibility to irreversible denaturation. Some acid conditions and urea and guanidine solutions may denature. Interaction studies performed on nondenatured histones indicate that the dimer, (H4)(H3), and tetramer, (H4)2(H3)2, dissociate to monomers at low ionic strength. Sedimentation-velocity experiments suggest a model for the (H4)2(H3)2 tetramer, with a compact semispherical center and four protruding amino-terminal regions. Fractions H2a and H2b interact to form the mixed dimer in equilibrium with monomers. Fraction H2a self-associates readily to dimers, tetramers, and octamers, while fraction H1 associates only weakly to form dimers.  相似文献   

19.
Factor for inversion stimulation (FIS), a 98-residue homodimeric protein, does not contain tryptophan (Trp) residues but has four tyrosine (Tyr) residues located at positions 38, 51, 69, and 95. The equilibrium denaturation of a P61A mutant of FIS appears to occur via a three-state (N2 ⇆ I2 ⇆ 2U) process involving a dimeric intermediate (I2). Although it was suggested that this intermediate had a denatured C-terminus, direct evidence was lacking. Therefore, three FIS double mutants, P61A/Y38W, P61A/Y69W, and P61A/Y95W were made, and their denaturation was monitored by circular dichroism and Trp fluorescence. Surprisingly, the P61A/Y38W mutant best monitored the N2 ⇆ I2 transition, even though Trp38 is buried within the dimer removed from the C-terminus. In addition, although Trp69 is located on the protein surface, the P61A/Y69W FIS mutant exhibited clearly biphasic denaturation curves. In contrast, P61A/Y95W FIS was the least effective in decoupling the two transitions, exhibiting a monophasic fluorescence transition with modest concentration-dependence. When considering the local environment of the Trp residues and the effect of each mutation on protein stability, these results not only confirm that P61A FIS denatures via a dimeric intermediate involving a disrupted C-terminus but also suggest the occurrence of conformational changes near Tyr38. Thus, the P61A mutation appears to compromise the denaturation cooperativity of FIS by failing to propagate stability to those regions involved mostly in intramolecular interactions. Furthermore, our results highlight the challenge of anticipating the optimal location to engineer a Trp residue for investigating the denaturation mechanism of even small proteins.  相似文献   

20.
Here we report the conformational stability of homodimeric desulfoferrodoxin (dfx) from Desulfovibrio desulfuricans (ATCC 27774). The dimer is formed by two dfx monomers linked through beta-strand interactions in two domains; in addition, each monomer contains two different iron centers: one Fe-(S-Cys)(4) center and one Fe-[S-Cys+(N-His)(4)] center. The dissociation constant for dfx was determined to be 1 microM (DeltaG = 34 kJ/mol of dimer) from the concentration dependence of aromatic residue emission. Upon addition of the chemical denaturant guanidine hydrochloride (GuHCl) to dfx, a reversible fluorescence change occurred at 2-3 M GuHCl. This transition was dependent upon protein concentration, in accord with a dimer to monomer reaction [DeltaG(H(2)O) = 46 kJ/mol of dimer]. The secondary structure did not disappear, according to far-UV circular dichroism (CD), until 6 M GuHCl was added; this transition was reversible (for incubation times of < 1 h) and independent of dfx concentration [DeltaG(H(2)O) = 50 kJ/mol of monomer]. Thus, dfx equilibrium unfolding is at least three-state, involving a monomeric intermediate with native-like secondary structure. Only after complete polypeptide unfolding (and incubation times of > 1 h) did the iron centers dissociate, as monitored by disappearance of ligand-to-metal charge transfer absorption, fluorescence of an iron indicator, and reactivity of cysteines to Ellman's reagent. Iron dissociation took place over several hours and resulted in an irreversibly denatured dfx. It appears as if the presence of the iron centers, the amino acid composition, and, to a lesser extent, the dimeric structure are factors that aid in facilitating dfx's unusually high thermodynamic stability for a mesophilic protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号