首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Rhizobium leguminosarum bv. viciae establishes symbiotic nitrogen fixing partnerships with plant species belonging to the Tribe Vicieae, which includes the genera Vicia, Lathyrus, Pisum and Lens. Motility and chemotaxis are important in the ecology of R. leguminosarum to provide a competitive advantage during the early steps of nodulation, but the mechanisms of motility and flagellar assembly remain poorly studied. This paper addresses the role of the seven flagellin genes in producing a functional flagellum.

Results

R. leguminosarum strains 3841 and VF39SM have seven flagellin genes (flaA, flaB, flaC, flaD, flaE, flaH, and flaG), which are transcribed separately. The predicted flagellins of 3841 are highly similar or identical to the corresponding flagellins in VF39SM. flaA, flaB, flaC, and flaD are in tandem array and are located in the main flagellar gene cluster. flaH and flaG are located outside of the flagellar/motility region while flaE is plasmid-borne. Five flagellin subunits (FlaA, FlaB, FlaC, FlaE, and FlaG) are highly similar to each other, whereas FlaD and FlaH are more distantly related. All flagellins exhibit conserved amino acid residues at the N- and C-terminal ends and are variable in the central regions. Strain 3841 has 1-3 plain subpolar flagella while strain VF39SM exhibits 4-7 plain peritrichous flagella. Three flagellins (FlaA/B/C) and five flagellins (FlaA/B/C/E/G) were detected by mass spectrometry in the flagellar filaments of strains 3841 and VF39SM, respectively. Mutation of flaA resulted in non-motile VF39SM and extremely reduced motility in 3841. Individual mutations of flaB and flaC resulted in shorter flagellar filaments and consequently reduced swimming and swarming motility for both strains. Mutant VF39SM strains carrying individual mutations in flaD, flaE, flaH, and flaG were not significantly affected in motility and filament morphology. The flagellar filament and the motility of 3841 strains with mutations in flaD and flaG were not significantly affected while flaE and flaH mutants exhibited shortened filaments and reduced swimming motility.

Conclusion

The results obtained from this study demonstrate that FlaA, FlaB, and FlaC are major components of the flagellar filament while FlaD and FlaG are minor components for R. leguminosarum strains 3841 and VF39SM. We also observed differences between the two strains, wherein FlaE and FlaH appear to be minor components of the flagellar filaments in VF39SM but these flagellin subunits may play more important roles in 3841. This paper also demonstrates that the flagellins of 3841 and VF39SM are possibly glycosylated.  相似文献   

2.
Methanococcus voltae possesses four flagellin genes, two of which (flaB1 and flaB2) have previously been reported to encode major components of the flagellar filament. The remaining two flagellin genes, flaA and flaB3, are transcribed at lower levels, and the corresponding proteins remained undetected prior to this work. Electron microscopy examination of flagella isolated by detergent extraction of whole cells revealed a curved, hook-like region of varying length at the end of a long filament. Enrichment of the curved region of the flagella resulted in the identification of FlaB3 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and N-terminal sequencing, and the localization of this flagellin to the cell-proximal portion of the flagellum was confirmed through immunoblotting and immunoelectron microscopy with FlaB3-specific antibodies, indicating that FlaB3 likely composes the curved portion of the flagella. This could represent a unique case of a flagellin performing the role of the bacterial hook protein. FlaA-specific antibodies were used in immunoblotting to determine that FlaA is found throughout the flagellar filament. M. voltae cells were transformed with a modified flaA gene containing a hemagglutinin (HA) tag introduced into the variable region. Transformants that had replaced the wild-type copy of the flaA gene with the HA-tagged version incorporated the HA-tagged version of FlaA into flagella which appeared normal by electron microscopy.  相似文献   

3.
The genome of a halophilic archaeon Haloarcula marismortui carries two flagellin genes, flaA2 and flaB. Previously, we demonstrated that the helical flagellar filaments of H. marismortui were composed primarily of flagellin FlaB molecules, while the other flagellin (FlaA2) was present in minor amounts. Mutant H. marismortui strains with either flagellin gene inactivated were obtained. It was shown that inactivation of the flaA2 gene did not lead to changes in cell motility and helicity of the filaments, while the cells with inactivated flaB lost their motility and flagella synthesis was stopped. Two FlaB flagellin forms having different sensitivities to proteolysis were found in the flagellar filament structure. It is speculated that these flagellin forms may ensure the helical filament formation. Moreover, the flagella of a psychrotrophic haloarchaeon Halorubrum lacusprofundi were isolated and characterized for the first time. H. lacusprofundi filaments were helical and exhibited morphological polymorphism, although the genome contained a single flagellin gene. These results suggest that the mechanisms of flagellar helicity may differ in different halophilic archaea, and sometimes the presence of two flagellin genes, in contrast to Halobacterium salinarum, is not necessary for the formation of a functional helical flagellum.  相似文献   

4.
The highly conserved nature of the 5′-termini of all archaeal flagellin genes was exploited by polymerase chain reaction (PCR) techniques to amplify the sequence of a portion of a flagellin gene family from the archaeon Methanococcus vannielii. Subsequent inverse PCR experiments generated fragments that permitted the sequencing of a total of three flagellin genes, which, by comparison with flagellin genes that have been sequenced, from other archaea appear to be equivalent to flaB1, flaB2, and flaB3 of M. voltae. Analysis of purified M. vannielii flagellar filaments by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed two major flagellins (Mr= 30 800 and 28 600), whose N-terminal sequences identified them as the products of the flaB1 and flaB2 genes, respectively. The gene product of flaB3 could not be detected in flagellar filaments by SDS-PAGE. The protein sequence data, coupled with the DNA sequences, demonstrated that both FlaB1 and FlaB2 flagellins are translated with a 12-amino acid signal peptide which is absent from the mature protein incorporated into the flagellar filament. These data suggest that archaeal flagellin export differs significantly from that of bacterial flagellins.  相似文献   

5.
The archaeal flagellum is a unique motility apparatus in the prokaryotic domain, distinct from the bacterial flagellum. Most of the currently recognized archaeal flagella-associated genes fall into a single fla operon that contains the genes for the flagellin proteins (two or more genes designated as flaA or flaB ), some variation of a set of conserved proteins of unknown function ( flaC , flaD , flaE , flaF , flaG and flaH ), an ATPase ( flaI ) and a membrane protein ( flaJ ). In addition, the flaD gene has been demonstrated to encode two proteins: a full-length gene product and a truncated product derived from an alternate, internal start site. A systematic deletion approach was taken using the methanogen Methanococcus maripaludis to investigate the requirement and a possible role for these proposed flagella-associated genes. Markerless in-frame deletion strains were created for most of the genes in the M. maripaludis fla operon. In addition, a strain lacking the truncated FlaD protein [FlaD M(191)I] was also created. DNA sequencing and Southern blot analysis confirmed each mutant strain, and the integrity of the remaining operon was confirmed by immunoblot. With the exception of the ΔFlaB3 and FlaD M(191)I strains, all mutants were non-motile by light microscopy and non-flagellated by electron microscopy. A detailed examination of the ΔFlaB3 mutant flagella revealed that these structures had no hook region, while the FlaD M(191)I strain appeared identical to wild type. Each deletion strain was complemented, and motility and flagellation was restored. Collectively, these results demonstrate for first time that these fla operon genes are directly involved and critically required for proper archaeal flagella assembly and function.  相似文献   

6.
7.
The highly conserved nature of the 5′-termini of all archaeal flagellin genes was exploited by polymerase chain reaction (PCR) techniques to amplify the sequence of a portion of a flagellin gene family from the archaeon Methanococcus vannielii. Subsequent inverse PCR experiments generated fragments that permitted the sequencing of a total of three flagellin genes, which, by comparison with flagellin genes that have been sequenced, from other archaea appear to be equivalent to flaB1, flaB2, and flaB3 of M. voltae. Analysis of purified M. vannielii flagellar filaments by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed two major flagellins (Mr= 30 800 and 28 600), whose N-terminal sequences identified them as the products of the flaB1 and flaB2 genes, respectively. The gene product of flaB3 could not be detected in flagellar filaments by SDS-PAGE. The protein sequence data, coupled with the DNA sequences, demonstrated that both FlaB1 and FlaB2 flagellins are translated with a 12-amino acid signal peptide which is absent from the mature protein incorporated into the flagellar filament. These data suggest that archaeal flagellin export differs significantly from that of bacterial flagellins. Received: 27 November 1997 / Accepted: 19 March 1998  相似文献   

8.
Bacterial flagella play an essential role in the pathogenesis of numerous enteric pathogens. The flagellum is required for motility, colonization, and in some instances, for the secretion of effector proteins. In contrast to the intensively studied flagella of Escherichia coli and Salmonella typhimurium, the flagella of Campylobacter jejuni, Helicobacter pylori and Vibrio cholerae are less well characterized and composed of multiple flagellin subunits. This study was performed to gain a better understanding of flagellin export from the flagellar type III secretion apparatus of C. jejuni. The flagellar filament of C. jejuni is comprised of two flagellins termed FlaA and FlaB. We demonstrate that the amino‐termini of FlaA and FlaB determine the length of the flagellum and motility of C. jejuni. We also demonstrate that protein‐specific residues in the amino‐terminus of FlaA and FlaB dictate export efficiency from the flagellar type III secretion system (T3SS) of Yersinia enterocolitica. These findings demonstrate that key residues within the amino‐termini of two nearly identical proteins influence protein export efficiency, and that the mechanism governing the efficiency of protein export is conserved among two pathogens belonging to distinct bacterial classes. These findings are of additional interest because C. jejuni utilizes the flagellum to export virulence proteins.  相似文献   

9.
Vibrio anguillarum is the etiological agent of vibriosis, an aquaculture disease that affects a wide range of farmed fish. The genome of V. anguillarum contains five flagellin genes, i.e. flaA, flaB, flaC, flaD, and flaE. In this study, we analyzed the vaccine potential and adjuvanticity of FlaA, FlaB, FlaD, and FlaE in a model of Japanese flounder (Paralichthys olivaceus). For this purpose, recombinant FlaA, FlaB, FlaD, and FlaE were expressed in and purified from Escherichia coli. In vivo immunogenicity analysis showed that antibodies against rFlaA, rFlaB, rFlaD, and rFlaE were detected in rat antiserum raised against live V. anguillarum, with the highest antibody level being that against rFlaB. When administered into flounder via intraperitoneal injection, rFlaA, rFlaD, and rFlaE induced comparable relative percent survival (RPS) rates, which were significantly lower than that induced by rFlaB. Specific serum antibodies were induced by all flagellins, however, the antibody level induced by rFlaB was significantly higher than those induced by other three flagellins. Compared to sera from fish vaccinated with rFlaA, rFlaD, and rFlaE, serum from fish vaccinated with rFlaB significantly reduced the infectivity of V. anguillarum against host cells. To examine the potential adjuvant effect of the flagellins, flounder were immunized with rEsa1, a D15-like surface antigen that induces protective immunity as a subunit vaccine, in the presence or absence of rFlaA, rFlaB, rFlaD, and rFlaE respectively. The results showed that rFlaE, but not other three flagellins, significantly increased the RPS of rEsa1. Compared to fish vaccinated with rEsa1, fish vaccinated with rEsa1 plus rFlaE exhibited a significantly higher level of serum antibodies and enhanced expression of the genes involved in innate and adaptive immunity. Taken together, these results indicate that FlaA, FlaB, FlaD, and FlaE have different immunological properties and, as a result, differ in vaccine and adjuvant potentials.  相似文献   

10.
Many Archaea use rotation of helical flagellar filaments for swimming motility. We isolated and characterized the flagellar filaments of Haloarcula marismortui, an archaeal species previously considered to be nonmotile. Two Haloarcula marismortui phenotypes were discriminated--their filaments are composed predominantly of either FlaB or FlaA2 flagellin, and the corresponding genes are located on different replicons. FlaB and FlaA2 filaments differ in antigenicity and thermostability. FlaA2 filaments are distinctly thicker (20-22 nm) than FlaB filaments (16-18 nm). The observed filaments are nearly twice as thick as those of other characterized euryarchaeal filaments. The results suggest that the helicity of Haloarcula marismortui filaments is provided by a mechanism different from that in the related haloarchaeon Halobacterium salinarum, where 2 different flagellin molecules present in comparable quantities are required to form a helical filament.  相似文献   

11.
Vibrio parahaemolyticus possesses two alternate flagellar systems adapted for movement under different circumstances. A single polar flagellum propels the bacterium in liquid (swimming), while multiple lateral flagella move the bacterium over surfaces (swarming). Energy to rotate the polar flagellum is derived from the sodium membrane potential, whereas lateral flagella are powered by the proton motive force. Lateral flagella are arranged peritrichously, and the unsheathed filaments are polymerized from a single flagellin. The polar flagellum is synthesized constitutively, but lateral flagella are produced only under conditions in which the polar flagellum is not functional, e.g., on surfaces. This work initiates characterization of the sheathed, polar flagellum. Four genes encoding flagellins were cloned and found to map in two loci. These genes, as well as three genes encoding proteins resembling HAPs (hook-associated proteins), were sequenced. A potential consensus polar flagellar promoter was identified by using upstream sequences from seven polar genes. It resembled the enterobacterial sigma 28 consensus promoter. Three of the four flagellin genes were expressed in Escherichia coli, and expression was dependent on the product of the fliA gene encoding sigma 28. The fourth flagellin gene may be different regulated. It was not expressed in E. coli, and inspection of upstream sequence revealed a potential sigma 54 consensus promoter. Mutants with single and multiple defects in flagellin genes were constructed in order to determine assembly rules for filament polymerization. HAP mutants displayed new phenotypes, which were different from those of Salmonella typhimurium and most probably were the result of the filament being sheathed.  相似文献   

12.
13.
14.
Caulobacter crescentus incorporates two distinct, but related proteins into the polar flagellar filament: a 27-kilodalton (kDa) flagellin is assembled proximal to the hook and a 25-kDa flagellin forms the distal end of the filament. These two proteins and a third, related flagellin protein of 29 kDa are encoded by three tandem genes (alpha-flagellin cluster) in the flaEY gene cluster (S.A. Minnich and A. Newton, Proc. Natl. Acad. Sci. USA 84: 1142-1146, 1987). Since point mutations in flagellin genes had not been isolated their requirement for flagellum function and fla gene expression was not known. To address these questions, we developed a gene replacement protocol that uses cloned flagellin genes mutagenized by either Tn5 transposons in vivo or the replacement of specific DNA fragments in vitro by the antibiotic resistance omega cassette. Analysis of gene replacement mutants constructed by this procedure led to several conclusions. (i) Mutations in any of the three flagellin genes do not cause complete loss of motility. (ii) Tn5 insertions in the 27-kDa flagellin gene and a deletion mutant of this gene do not synthesize the 27-kDa flagellin, but they do synthesize wild-type levels of the 25-kDa flagellin, which implies that the 27-kDa flagellin is not required for expression and assembly of the 25-kDa flagellin; these mutants show slightly impaired motility on swarm plates. (iii) Mutant PC7810, which is deleted for the three flagellin genes in the flaEY cluster, does not synthesize the 27- or 29-kDa flagellin, and it is significantly more impaired for motility on swarm plates than mutants with defects in only the 27-kDa flagellin gene. The synthesis of essentially normal levels of 25-kDa flagellin by strain PC7810 confirms that additional copies of the 25-kDa flagellin map outside the flaEY cluster (beta-flagellin cluster) and that these flagellin genes are active. Thus, while the 29- and 27-kDa flagellins are not absolutely essential for motility in C. crescentus, their assembly into the flagellar structure is necessary for normal flagellar function.  相似文献   

15.
The production of hook protein and flagellin in 29 Fla- mutants of Escherichia coli K-12 was determined by the complement fixation assay. Six mutants produced hook protein, and four of them also produced flagellin. A flaE mutation was introduced into these fla mutants carrying the hook structure. All of these mutants made polyhooks and were used as hosts for a newly isolated host-range mutant of chi phage that has a high affinity for the hook structure. All except one mutant produced significant amounts of progeny phages. A flaD flaE double mutant was that exception which did not yield significant amounts of progeny by the phage propagation method. All of the flaE double mutants produced comparable amounts of polyhooks, and no qualitative difference was detected between chi-sensitive and chi-insensitive mutants by the complement fixation assay. Accordingly, it was thought that the polyhook of the flaD flaE mutant had a mechanical defect for chi phage infection. This assumption was confirmed by tethered-cell experiments; the flaD flaE mutant did not rotate. These results are well explained by a proposed regulation pathway of flagellar genes. flaE mutants can express other genes which govern the final step of the flagellar morphogenesis, whereas flaD mutants cannot rotate, possibly because the mocha operon is not expressed. The results obtained in E. coli were also found to be applicable to Salmonella typhimurium.  相似文献   

16.
17.
Superintegrons (SIs) are chromosomal genetic elements containing assemblies of genes, each flanked by a recombination sequence (attC site) targeted by the integron integrase. SIs may contain hundreds of attC sites and intrinsic instability is anticipated; yet SIs are remarkably stable. This implies that either selective pressure maintains the genes or mechanisms exist which favour their persistence in the absence of selection. Toxin/antitoxin (TA) systems encode a stable toxin and a specific, unstable antitoxin. Once activated, the continued synthesis of the unstable antitoxin is necessary for cell survival. A bioinformatic search of accessible microbial genomes for SIs and TA systems revealed that large SIs harboured TA gene cassettes while smaller SIs did not. We demonstrated the function of TA loci in different genomic contexts where large-scale deletions can occur; in SIs and in a 165 kb dispensable region of the Escherichia coli genome. When devoid of TA loci, large-scale genome loss was evident in both environments. The inclusion of two TA loci, relBE1 and parDE1, which we identified in the Vibrio vulnificus SI rendered these environments refractory to gene loss. Thus, chromosomal TA loci can stabilize massive SI arrays and limit the extensive gene loss that is a hallmark of reductive evolution.  相似文献   

18.
Unlike external flagellated bacteria, spirochetes have periplasmic flagella (PF). Very little is known about how PF are assembled within the periplasm of spirochaetal cells. Herein, we report that FliD (BB0149), a flagellar cap protein (also named hook‐associated protein 2), controls flagellin stability and flagellar filament assembly in the Lyme disease spirochete Borrelia burgdorferi. Deletion of fliD leads to non‐motile mutant cells that are unable to assemble flagellar filaments and pentagon‐shaped caps (10 nm in diameter, 12 nm in length). Interestingly, FlaB, a major flagellin protein of B. burgdorferi, is degraded in the fliD mutant but not in other flagella‐deficient mutants (i.e., in the hook, rod, or MS‐ring). Biochemical and genetic studies reveal that HtrA, a serine protease of B. burgdorferi, controls FlaB turnover. Specifically, HtrA degrades unfolded but not polymerized FlaB, and deletion of htrA increases the level of FlaB in the fliD mutant. Collectively, we propose that the flagellar cap protein FliD promotes flagellin polymerization and filament growth in the periplasm. Deletion of fliD abolishes this process, which leads to leakage of unfolded FlaB proteins into the periplasm where they are degraded by HtrA, a protease that prevents accumulation of toxic products in the periplasm.  相似文献   

19.
20.
Helicobacter mustelae causes chronic gastritis and ulcer disease in ferrets. It is therefore considered an important animal model of human Helicobacter pylori infection. High motility even in a viscous environment is one of the common virulence determinants of Helicobacter species. Their sheathed flagella contain a complex filament that is composed of two distinctly different flagellin subunits, FlaA and FlaB, that are coexpressed in different amounts. Here, we report the cloning and sequence determination of the flaA gene of H. mustelae NCTC12032 from a PCR amplification product. The FlaA protein has a calculated molecular mass of 53 kDa and is 73% homologous to the H. pylori FlaA subunit. Isogenic flaA and flaB mutants of H. mustelae F1 were constructed by means of reverse genetics. A method was established to generate double mutants (flaA flaB) of H. mustelae F1 as well as H. pylori N6. Genotypes, motility properties, and morphologies of the H. mustelae flagellin mutants were determined and compared with those of the H. pylori flaA and flaB mutants described previously. The flagellar organizations of the two Helicobacter species proved to be highly similar. When the flaB genes were disrupted, motility decreased by 30 to 40%. flaA mutants retained weak motility by comparison with strains that were devoid of both flagellin subunits. Weakly positive motility tests of the flaA mutants correlated with the existence of short truncated flagella. In H. mustelae, lateral as well as polar flagella were present in the truncated form. flaA flaB double mutants were completely nonmotile and lacked any form of flagella. These results show that the presence of both flagellin subunits is necessary for complete motility of Helicobacter species. The importance of this flagellar organization for the ability of the bacteria to colonize the gastric mucosa and to persist in the gastric mucus remains to be proven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号