首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last four decades the world has been losing biodiversity at an alarming rate despite the increasing number of protected areas (PAs). Certified forest management may complement the role of PAs in protecting biodiversity. Forest certification aims to promote sustainable forest management and to maintain or enhance the conservation value of certified forests. The area of forest under certified forest management has grown quickly over the past decade. Forest Stewardship Council (FSC) certification, for example, currently covers 148 million hectares, i.e., 3.7 % of the world’s forests. In spite of such increase there is, however, a dearth of information on how forest certification is related to biodiversity. In this study we assessed if FSC certification is being applied in high biodiversity areas in cork oak savannas in Portugal by comparing biodiversity values of certified and non-certified areas for birds, reptiles and amphibians. We calculated the relative species richness and irreplaceability value for each group of species in certified and non-certified areas and compared them using randomization tests. The biodiversity value of certified areas was not significantly greater than that of non-certified areas. Since FSC certification is expanding quickly in cork oak savannas it is important to consider the biodiversity value of these areas during this process. Prioritizing areas of high biodiversity value would enhance the conservation value of forest certification and facilitate integrating certification with other conservation initiatives.  相似文献   

2.
Mechanical clearing of understory vegetation is increasingly used in Euro-Mediterranean forests to reduce fire hazard, yet its long-term consequences for biodiversity remain poorly understood. This study analysed the influence of time since understory management and management frequency, on herbaceous species richness, cover and composition, functional richness and composition, and richness and cover within functional groups (life and growth forms, dispersal strategy, clonality, and plant height), using a chronosequence of cork oak (Quercus suber) stands spanning about 70 years. Overall species richness was virtually constant over time, but the richness of species with annual life form and plasticity in height was much higher in recently and recurrently treated stands; the opposite was found for perennial (mainly hemicryptophytes and chamaephytes), tussock-forming and clonal species richness, and functional richness. Overall herbaceous cover and that of annual, semi-basal, non-clonal and plastic species (in height) were favoured by recent and recurrent fuel treatments; cover by perennial (hemicryptophytes and chamaephytes), short basal, tussock-forming, and clonal species tended to increase for >10–20 years after management, and declined with management frequency. There was a marked shift in species and functional composition associated with time since understory management and management frequency. These findings suggest that widespread fuel management at <10 year intervals may shift understory herb communities to early-successional stages, impairing the persistence of species and functional groups recovering slowly after disturbance. Fuel management needs to balance the dual goals of fire hazard reduction and biodiversity conservation, retaining undisturbed patches in landscapes otherwise managed to reduce fuel accumulation.  相似文献   

3.
The cork oak forest of Ma'amora in north-western Morocco was the largest cork oak forest in the world until the beginning of the 20th century. Due to growing land use for agriculture and urbanization, however, this forest has become fragmented into relatively small and isolated patches. The effects of this fragmentation on the diversity of wild animal communities have never been investigated despite the importance of such investigations in elaborating long-term conservation plans of the biodiversity of this forest system. In this study of a sample of 44 forest patches we assessed the relationships between species numbers of wintering, breeding and spring migrant birds and patch size, shape, isolation and vegetation structure. We found that species richnesses of the three studied bird assemblages were strongly related to local vegetation structure, namely to the diversity and abundance of trees and bushes. Patches with higher diversity and cover of trees and bushes support higher numbers of bird species. However, patch size, shape and isolation were not significant predictors of bird richness. These results suggest that bird communities in the studied forest patches were more likely shaped by local habitat suitability rather than the amount of habitat or patch isolation. The results also demonstrate negative effects of current human pressures, namely logging, grazing and disturbance, on the diversity of bird communities in this forest system. This emphasizes the need for urgent management efforts aiming at reducing the negative impacts of forest use by humans on bird diversity in this forest system.  相似文献   

4.
European forest management guidelines include conservation and enhancement of biodiversity. Within plantation forestry, trackways provide contiguous permanent open-habitat with potential to enhance biodiversity. We examined the ground-active spider assemblage in the trackway network of Thetford Forest, Eastern England, the largest lowland conifer forest in the UK, created by afforestation of heathland and farmland. Results are relevant to other forests in heath regions across Europe. We used pitfall trapping to sample the spider assemblage of trackways within thicket-aged stands (n = 17), mature stands (n = 13) and heathland reference sites (n = 9). A total of 9,314 individuals of 71 species were recorded. Spider assemblages of the trackway network were distinct from those of the heathland reference sites; however, trackways were found to support specialist species associated with grass-heath habitats, including nationally scarce species. Richness of grass-heath species was similar for trackways in thicket-aged forest and heathland reference sites, although the abundance of individuals was three times greater in the reference sites. Trackways in mature stands had lower grass-heath species richness and abundance than both thicket trackways and heath reference sites. Wide trackways within thicket stands contained greater richness and abundance of specialist xeric species than narrower trackways. However, fewer xeric individuals were found in trackways compared to heathland reference sites. Either inferior habitat quality in trackways or poor dispersal ability of specialist xeric species may largely restrict these to relict areas of heathland. Targeted widening of trackways to allow permanent unshaded habitat and creating early successional stages by mechanical disturbance regimes could improve trackway suitability for specialist species, helping to restore connectivity networks for grass-heath biodiversity.  相似文献   

5.
Recent reports of pollinator declines have stirred interest in investigating the impacts of habitat exploitation on the conservation of pollinator and plant communities. An important prerequisite to tailor conservation action is to understand the drivers and patterns of species-rich communities, and how they change in space and time during a whole season. To account for this, we surveyed wild bees and flowering plants using standardized transects in 11 natural habitat fragments of an IUCN important plant area along the coast of Israel. We used phylogeny- and taxon-based methods of community structure analyses to study the assembly processes of bee communities, and investigated the effects of several landscape parameters on bee diversity using generalized linear models (GLMs). Our results illustrate that natural habitat sites comprised significantly higher species richness compared to disturbed habitat sites, and show that even the smallest habitat fragments harbored unique bee assemblages, with significant species replacement (turnover) found in both space and time. Our GLMs indicated that flower diversity, and semi-natural habitat within 500 m of habitat fragments were important drivers of bee diversity, but we found no evidence for a species—area relationship among sites. Finally, we document a case of phylogenetic overdispersion despite low species richness, which highlights the importance of accounting for phylogenetic diversity rather than only species richness to reach a more fine-grained understanding of pollinator diversity. This, in turn, is pivotal to developing conservation actions to protect these essential pollinators and their interaction with rare and endemic plant species in this highly threatened ecosystem.  相似文献   

6.
Deadwood-associated species are increasingly targeted in forest biodiversity conservation. In order to improve structural biodiversity indicators and sustainable management guidelines, we need to elucidate ecological and anthropogenic drivers of saproxylic diversity. Herein we aim to disentangle the effects of local habitat attributes which presumably drive saproxylic beetle communities in temperate lowland deciduous forests. We collected data on saproxylic beetles in 104 oak and 49 beech stands in seven French lowland forests and used deadwood, microhabitat and stand features (large trees, openness) as predictor variables to describe local forest conditions. Deadwood diversity and stand openness were consistent key habitat features for species richness and composition in deciduous forests. Large downed deadwood volume was a significant predictor of beetle species richness in oak forests only. In addition, the density of cavity- and fungus-bearing trees had weak but significant effects. We recommend that forest managers favor the local diversification of deadwood types, especially the number of combinations of deadwood positions and tree species, the retention of large downed deadwood and microhabitat-bearing trees in order to maximize the saproxylic beetle diversity at the stand scale in deciduous forests. To improve our understanding of deadwood-biodiversity relationships, further research should be based on targeted surveys on species-microhabitat relationships and should investigate the role of landscape-scale deadwood resources and of historical gaps in continuity of key features availability at the local scale.  相似文献   

7.
The ecological behaviors of a network of pure evergreen oak stands (Quercus suber L. and Quercus ilex L.) in the Central-Western Mediterranean Basin were investigated toward climatic and edaphic factors implemented with the application of topographic wetness index (TWI). A Categorical Principal Component Analysis (Catpca) using climatic and soil physico-chemical parameters was performed on 23 cork oak and holm oak pure stands with the aim to understand better the effectiveness of TWI for characterizing soil ecology of the two species. Catpca pointed out that, although cork oak and holm oak are able to growth in similar Mediterranean conditions, they show different behaviors in terms of needs and tolerance to soil water content. TWI confirmed such results at local scale, allowing highlighting some interesting features of the species differential ecology. Although both species confirmed to be drought-tolerant, the heliophilous cork oak revealed to dominate the landscape on wettest soils with high TWI values—indicating the capacity to tolerate stresses due to periods of waterlogging—, while the shade-tolerant holm oak prevails for low-medium TWI values—drier and mesophilous sites. Despite the application of TWI to vegetation science and ecology is relatively recent, results are encouraging and suggest considering this user-friendly and synthetic index in ecological investigations and modeling.  相似文献   

8.
The main goal of Natura 2000 network is to guarantee the favourable conservation status of habitats and species ensuring European biodiversity. As a result, certain forest areas have been included in this network listed as 9230-Quercus pyrenaica habitat and 9340-Quercus ilex subsp. rotundifolia forest habitat. These areas were previously used for firewood extraction or livestock grazing and browsing. Nowadays these habitats are coppice forests with asexual regeneration, which is far from the desired conservation status. Traditional timber harvesting plans do not take account of the new objectives required for these Natura sites, which attempt to ensure biodiversity and recreational uses instead of simply focusing on timber production. This paper proposes a flexible methodology (applied to the study area “Dehesa Boyal” in ávila, Spain) for managing Natura 2000 forest sites by stands for sustainable forest management and the new requirements. The methodology has two phases. The first, “Division of the forest area into stands”, defines homogeneous patches of vegetation distinct in species composition, physiognomic structure and future management. The second, “Conservation status assessment of stands”, quantifies the conservation status of each previously classified stand considering a series of factors such as: functional health, restoration, floral richness and structure. A total value integrating the conservation status of stands is then calculated for the habitat. Both phases use Geographic Information System tools for managing information and visualizing results. The proposed methodology provides forest managers with a good knowledge of the territory and subsequently enables them to take appropriate conservation measures to maintain biodiversity.  相似文献   

9.
Novel or emergent ecosystems arising from human action present both threats and opportunities for biodiversity. It has been suggested that exotic species can “facilitate” or “inhibit” native biodiversity through habitat modification. In Britain, there is a discussion over the contribution to biodiversity of plantations of exotic conifer species as these are commonly thought to have little relevancy as a habitat for native biodiversity. To address this we compared the species richness of a range of different taxonomic groups (lichens, bryophytes, fungi, vascular plants, invertebrates and songbirds) in exotic and native forest stands of differing structural stages in northern and southern Britain. In terms of overall native species-richness there was no significant difference between the exotic and the native stands. In the north, six species groups showed higher values in the exotic Sitka spruce (Picea sitchensis) stands with the remaining six showing higher values in the native Scots pine (Pinus sylvestris) stands. Most notably, lichen species richness was much lower in the exotic stands compared to the native stands, whereas bryophyte and fungal species richness was proportionately higher in the exotic stands. In the south, five species groups (all invertebrate taxa) showed higher species richness in exotic Norway spruce (Picea abies) stands compared to native oak (Quercus robur) stands. Five species groups had higher species-richness in the oak stands, in particular lichens and fungi. It is concluded that emergent ecosystems of exotic conifer species are not irrelevant to biodiversity. Where already well-established they can provide habitat for native species particularly if native woodland is scarce and biodiversity restoration is an immediate priority.  相似文献   

10.
The effects of black-locust invasion on plant forest diversity are still poorly investigated. Vascular plants are likely to be influenced by increasing nutrient availability associated with the nitrogen-fixing activity of black-locust, whereas it is not clear if, along with stand aging, black-locust formations regain forest species. The main aim of the present study was to test whether the increase of black-locust stand age promoted a plant variation in mature stands leading to assemblages similar to those of native forests. Therefore, plant richness and composition of stands dominated by native trees were compared with pure black-locust stands of different successional stages. Our study confirmed that the replacement of native forests by pure black-locust stands causes both plant richness loss and shifts in species composition. In black-locust stands plant communities are dominated by nitrophilous species and lack many of the oligothrophic and acidophilus species typical of native forests. Plant communities of native forests are more diverse with respect to pure black-locust stands, suggesting that black-locust invasion also causes a homogenization of the plant forest biota. We did not detect differences across the successional gradient of black-locust stands, and mature stands do not recover the diversity of plant species which are lost by the replacement of the native forests by black-locust. Accordingly some efforts in reducing the negative impacts of black-locust invasion on plant forest biota should be focused at least in those areas where conservation is among management priorities, such in the case of habitats included in the Habitat Directive (92/43 ECE).  相似文献   

11.
Habitat patches, depending on the degree of differentiation from the matrix, can add few or many elements to the species pool of a particular landscape. Their importance to biodiversity is particularly relevant in areas with complex landscapes, where natural, naturalized, or managed habitats are interspersed by small patches of habitat types with very different biophysical characteristics; e.g., fruit orchards and riparian areas. This is the case of the montado landscape, a cork oak agroforestry system that largely covers south-western Portugal. We evaluated whether the high mammalian biodiversity found in this system is, in part, the cumulative result of the species found in the non-matrix habitats. Our results indicate that in areas where there are inclusions of orchards/olive yards and riparian vegetation in the cork oak woodland, a significantly higher number of mammalian species are present. We further detected a positive effect of low human disturbance on mammal diversity. Ultimately, our results can be used by managers to augment their management options, since we show that the inclusion and maintenance of non-matrix habitat patches in cork oak agro-silvo-forestry systems can help to maximize mammal biodiversity without compromising services associated with agriculture and forestry.  相似文献   

12.
13.
Urbanization poses a serious threat to local biodiversity, yet towns and cities with abundant natural features may harbor important species populations and communities. While the contribution of urban greenspaces to conservation has been demonstrated by numerous studies within temperate regions, few consider the bird communities associated with different landcovers in Neotropical cities. To begin to fill this knowledge gap, we examined how the avifauna of a wetland city in northern Amazonia varied across six urban landcover types (coastal bluespace; urban bluespace; managed greenspace; unmanaged greenspace; dense urban; and sparse urban). We measured detections, species richness, and a series of ground cover variables that characterized the heterogeneity of each landcover, at 114 locations across the city. We recorded >10% (98) of Guyana's bird species in Georgetown, including taxa of conservation interest. Avian detections, richness, and community composition differed with landcover type. Indicator species analysis identified 29 species from across dietary guilds, which could be driving community composition. Comparing landcovers, species richness was highest in managed greenspaces and lowest in dense urban areas. The canal network had comparable levels of species richness to greenspaces. The waterways are likely to play a key role in enhancing habitat connectivity as they traverse densely urbanized areas. Both species and landcover information should be integrated into urban land-use planning in the rapidly urbanizing Neotropics to maximize the conservation value of cities. This is imperative in the tropics, where anthropogenic pressures on species are growing significantly, and action needs to be taken to prevent biodiversity collapse.  相似文献   

14.
Biodiversity positively relates with the provisioning of ecosystem services and preserving areas with elevated diversity of highly-functional species could help to ensure human well-being. Most studies addressed to make these decisions use maps relying on species occurrences, where sites containing several species are proposed as priority conservation areas. These maps, however, may underestimate species richness because of the incompleteness of occurrence data. To improve this methodology, we propose using habitat suitability models to estimate the potential distribution of species from occurrence data, and later shaping richness maps by overlapping these predicted distribution ranges. We tested this proposal with Mexican oaks because they provide several ecosystem services and habitat suitability models of species were calibrated with MaxEnt. We used linear regressions to compare the outputs of these predictive maps with those of maps based on species occurrences only and, for both mapping methods, we assessed how much surface of sites with elevated richness and endemism of oaks is currently included within nature reserves. Both mapping methods indicated that oak species are concentrated in mountain regions of Mexico, but predictive maps based on habitat suitability models indicated higher oak richness and endemism that maps based on species occurrences only. Our results also indicated that nature reserves cover a small fraction of areas harboring elevated richness and endemism of oaks. These results suggest that estimating richness across extensive geographic regions using habitat suitability models quickly provides accurate information to make conservation decisions for highly-functional species groups.  相似文献   

15.
Even though human induced habitat changes are a major driver of biodiversity loss worldwide, our understanding of the impact of land use change on ecological communities remains poor. Yet without such information it is difficult to develop management strategies for maintaining biodiversity in the face of anthropogenic change. To address this gap, we explored how land use practices impacted species richness in a mammalian community in northern Tanzania. Using camera traps, we estimated the number of mammalian species inhabiting three land use types subjected to increasing levels of anthropogenic pressure: (1) Tarangire National Park, (2) pastoral grazing areas; and (3) cultivated areas outside the park. Results showed that land use practice is correlated with different levels of species richness. Interestingly, mammal species richness was highest in the grazing areas and lowest in cultivated areas. When we focused our analyses on carnivores, we found little significant difference in species richness between the park and pastoral grazing areas, however, carnivore richness were significantly lower in the cultivated areas. We found no significant link between species body weight and presence in the three areas considered. Altogether, our results show that biodiversity conservation can be achieved outside national parks, with pastoral grazing areas holding a significant proportion of mammal communities; however increasing cultivation of pastoral rangelands may represent a major threat to mammalian communities.  相似文献   

16.
Historic losses and fragmentation of tallgrass prairie habitat to agriculture and urban development have led to declines in diversity and abundance of plants and birds associated with such habitat. Prescribed burning is a management strategy that has potential for restoring and rejuvenating prairies in fragmented landscapes, and through such restoration, might create habitat for birds dependent upon prairies. To provide improved data for management decision-making regarding the use of prescribed fire in tallgrass prairies, we compared responses of plant and bird communities on five burned and five unburned tallgrass prairie fragments at the DeSoto National Wildlife Refuge, Iowa, USA, from 1995 to 1997. Overall species richness and diversity were unaffected by burning, but individual species of plants and birds were affected by year-treatment interactions, including northern bobwhite (Colinus virginianus) and ring-necked pheasant (Phasianus colchicus), which showed time-delayed increases in density on burned sites. Analyses of species/area relationships indicated that, collectively, many small sites did make significant contributions to plant biodiversity at landscape levels, supporting the overall conservation value of prairie fragments. In contrast, most birds species were present on larger sites. Thus, higher biodiversity in bird communities which contain area-sensitive species might require larger sites able to support larger, more stable populations, greater habitat heterogeneity, and greater opportunity for niche separation.  相似文献   

17.
Agricultural habitats are assumed to be biodiversity refuges. However, some studies treat agricultural land management as a cause of the biodiversity decline, to which habitat loss and heterogeneity may contribute. Between the crops, the successional habitats appear – ruderal plant communities and bush areas. Their influence on farmland biodiversity is unknown. This research assessed the impact of spatial relationships between agricultural areas, semi-natural meadows and successional habitats on the bird species richness, Shannon diversity index, and Faith’s phylogenetic diversity index. An additional habitat variable was the presence of weeds, i.e., invasive Caucasian hogweeds Heracleum sp., treated as crops in the past. The birds and habitats research was on 74 sites set in pairs (invaded vs control) in south-eastern Poland. Results showed that birds assembling in agricultural and semi-natural areas were more diverse and contained protected farmland species, while birds appearing in overgrown habitats (i.e., successional and invaded) were clumped with their habitat requirements. In the presence of plant invaders, ruderal habitats negatively affected the bird phylogenetic diversity index. In invaded sites, bush areas had no positive effects on the Shannon diversity index and species richness of birds, in contrast with control sites. The presented research suggests the need to re-evaluate the importance of successional non-crop habitats considered positive in agricultural landscapes if those habitats develop in areas with plant invasion.  相似文献   

18.
Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico   总被引:2,自引:0,他引:2  
1  This study documents patterns of rodent and bat diversity related to abiotic and biotic factors along elevational gradients in the Sierra Mazateca (640–2600 m a.s.l.) and Sierra Mixteca (700–3000 m a.s.l.) in Oaxaca, Mexico.
2  The two transects share similar faunas: 17 and 23 rodent species were captured in the sierras Mazateca and Mixteca, respectively, 14 of which occurred on both transects. Rodent species richness was similar in the wet season and the dry season along both transects. Rodent species richness peaked at 1025–1050 m in tropical semi-deciduous forest on both transects. Endemic species were restricted to high-elevation habitats.
3  Sixteen and 17 bat species were captured in the sierras Mazateca and Mixteca, respectively; 11 occurred on both transects. Bat species richness was higher in the wet season than in the dry season in the Sierra Mazateca. Bat species richness peaked at 1850 m in pine–oak forest in the Sierra Mazateca, and at 750 m and 1050 m in tropical semi-deciduous forest in the Sierra Mixteca, decreasing abruptly at higher elevations on both transects.
4  Patterns of trophic diversity of rodents and bats coincided with those of species richness on each transect. Species richness increased with increasing habitat diversity; increased with increasing rainfall and productivity; increased with increasing resource diversity; and increased in areas with high rates of speciation (rodents only).
5  The need for conservation action in Oaxaca is urgent and proponents should promote establishment of protected areas linking lowland habitats with high species richness to high-elevation habitats harbouring large numbers of endemic forms.  相似文献   

19.
Global climate and land-use changes are the most significant causes of the current habitat loss and biodiversity crisis. Although there is information measuring these global changes, we lack a full understanding of how they impact community assemblies and species interactions across ecosystems. Herein, we assessed the potential distribution of eight key woody plant species associated with the habitat of the endangered Lilac-crowned Amazon (Amazon finschi) under global changes scenarios (2050′s and 2070′s), to answer the following questions: (1) how do predicted climate and land-use changes impact these species’ individual distributions and co-distribution patterns?; and (2) how effective is the existing Protected Area network for safeguarding the parrot species, the plant species, and their biological interactions? Our projections were consistent identifying the species that are most vulnerable to climate change. The distribution ranges of most of the species tended to decrease under future climates. These effects were strongly exacerbated when incorporating land-use changes into models. Even within existing protected areas, >50 % of the species’ remaining distribution and sites with the highest plant richness were predicted to be lost in the future under these combined scenarios. Currently, both individual species ranges and sites of highest richness of plants, shelter a high proportion (ca. 40 %) of the Lilac-crowned Amazon distribution. However, this spatial congruence could be reduced in the future, potentially disrupting the ecological associations among these taxa. We provide novel evidence for decision-makers to enhance conservation efforts to attain the long-term protection of this endangered Mexican endemic parrot and its habitat.  相似文献   

20.
European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide sufficiently large areas for butterflies. These findings have important implications for EU agricultural and conservation policy. Most importantly, conservation management needs to consider entire landscapes, and implement appropriate measures at multiple spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号