首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroimaging biomarkers that precede cognitive decline have the potential to aid early diagnosis of Alzheimer's disease (AD). A body of diffusion tensor imaging (DTI) work has demonstrated declines in white matter (WM) microstructure in AD and its typical prodromal state, amnestic mild cognitive impairment. The present review summarizes recent evidence suggesting that WM integrity declines are present in individuals at high AD-risk, prior to cognitive decline. The available data suggest that AD-risk is associated with WM integrity declines in a subset of tracts showing decline in symptomatic AD. Specifically, AD-risk has been associated with WM integrity declines in tracts that connect gray matter structures associated with memory function. These tracts include parahippocampal WM, the cingulum, the inferior fronto-occipital fasciculus, and the splenium of the corpus callosum. Preliminary evidence suggests that some AD-risk declines are characterized by increases of radial diffusivity, raising the possibility that a myelin-related pathology may contribute to AD onset. These findings justify future research aimed at a more complete understanding of the neurobiological bases of DTI-based declines in AD. With continued refinement of imaging methods, DTI holds promise as a method to aid identification of presymptomatic AD. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

2.
Aging is associated with declining cognitive performance as well as structural changes in brain gray and white matter (WM). The WM deterioration contributes to a disconnection among distributed brain networks and may thus mediate age-related cognitive decline. The present diffusion tensor imaging (DTI) study investigated age-related differences in WM microstructure and their relation to cognition (episodic memory, visuospatial processing, fluency, and speed) in a large group of healthy subjects (n = 287) covering 6 decades of the human life span. Age related decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were observed across the entire WM skeleton as well as in specific WM tracts, supporting the WM degeneration hypothesis. The anterior section of the corpus callosum was more susceptible to aging compared to the posterior section, lending support to the anterior-posterior gradient of WM integrity in the corpus callosum. Finally, and of critical interest, WM integrity differences were found to mediate age-related reductions in processing speed but no significant mediation was found for episodic memory, visuospatial ability, or fluency. These findings suggest that compromised WM integrity is not a major contributing factor to declining cognitive performance in normal aging. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

3.
In this article we review recent research on diffusion tensor imaging (DTI) of white matter (WM) integrity and the implications for age-related differences in cognition. Neurobiological mechanisms defined from DTI analyses suggest that a primary dimension of age-related decline in WM is a decline in the structural integrity of myelin, particularly in brain regions that myelinate later developmentally. Research integrating behavioral measures with DTI indicates that WM integrity supports the communication among cortical networks, particularly those involving executive function, perceptual speed, and memory (i.e., fluid cognition). In the absence of significant disease, age shares a substantial portion of the variance associated with the relation between WM integrity and fluid cognition. Current data are consistent with one model in which age-related decline in WM integrity contributes to a decreased efficiency of communication among networks for fluid cognitive abilities. Neurocognitive disorders for which older adults are at risk, such as depression, further modulate the relation between WM and cognition, in ways that are not as yet entirely clear. Developments in DTI technology are providing a new insight into both the neurobiological mechanisms of aging WM and the potential contribution of DTI to understanding functional measures of brain activity. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

4.
Compared to normal aging adults, individuals with amnestic mild cognitive impairment (aMCI) have significantly increased risk for progressing into Alzheimer’s disease (AD). Autopsy studies found that most of the brains of aMCI cases showed anatomical features associated with AD pathology. The recent development of non-invasive neuroimaging technique, such as diffusion tensor imaging (DTI), makes it possible to investigate the microstructures of the cerebral white matter in vivo. We hypothesized that disrupted white matter (WM) integrity existed in aMCI. So we used DTI technique, by measuring fractional anisotropy (FA) and mean diffusivity (MD), to test the brain structures involved in patients with aMCI. DTI scans were collected from 40 patients with aMCI, and 28 normal controls (NC). Tract-based spatial statistics (TBSS) analyses of whole-brain FA and MD images in each individual and group comparisons were carried out. Compared to NC, aMCI patients showed significant FA reduction bilaterally, in the association and projection fibers of frontal, parietal, and temporal lobes, corpus callosum, bilateral corona radiation, right posterior thalamic radiation and right sagittal stratum. aMCI patients also showed significantly increased MD widespreadly in the association and projection fibers of frontal, parietal and temporal lobes, and corpus callosum. Assessment of the WM integrity of the frontal, parietal, temporal lobes, and corpus callosum by using DTI measures may aid early diagnosis of aMCI.  相似文献   

5.
Alzheimeŕs disease (AD) represents the most prevalent neurodegenerative disorder that causes cognitive decline in old age. In its early stages, AD is associated with microstructural abnormalities in white matter (WM). In the current study, multiple indices of diffusion tensor imaging (DTI) and brain volumetric measurements were employed to comprehensively investigate the landscape of AD pathology. The sample comprised 58 individuals including cognitively normal subjects (controls), amnestic mild cognitive impairment (MCI) and AD patients. Relative to controls, both MCI and AD subjects showed widespread changes of anisotropic fraction (FA) in the corpus callosum, cingulate and uncinate fasciculus. Mean diffusivity and radial changes were also observed in AD patients in comparison with controls. After controlling for the gray matter atrophy the number of regions of significantly lower FA in AD patients relative to controls was decreased; nonetheless, unique areas of microstructural damage remained, e.g., the corpus callosum and uncinate fasciculus. Despite sample size limitations, the current results suggest that a combination of secondary and primary degeneration occurrs in MCI and AD, although the secondary degeneration appears to have a more critical role during the stages of disease involving dementia.  相似文献   

6.
Existing work demonstrates that obesity is independently associated with cognitive dysfunction and macrostructural brain changes; however, little is known about the association between obesity and white matter (WM) integrity. We explore this relationship in a large cohort of otherwise healthy subjects. The present study classified 103 adult participants from the Brain Resource International Database between 21 and 86 years of age without history of neurological, medical, or psychiatric illness according to BMI (normal weight, overweight, obese) and subjected them to diffusion tensor imaging (DTI). Resulting fractional anisotropy (FA) indexes for the corpus callosum and fornix were examined in relation to BMI and age in a multiple regression framework. Results indicated that increasing BMI was independently associated with lower FA in the genu, splenium, and fornix, and a BMI × age interaction emerged for FA in the splenium and body of the corpus callosum. When categorized, obese persons demonstrated lower FA than normal and overweight persons for all WM indexes, but no FA differences emerged between overweight and normal persons. Results indicate both a direct association between obesity and reduced WM tract integrity and an interaction between obesity and aging processes on certain WM tracts in otherwise healthy adults. While such findings suggest a possible role for adiposity in WM dysfunction and associated cognitive deficits, prospective studies are needed to clarify the nature of these relationships and elucidate underlying mechanisms.  相似文献   

7.
Microvascular disease leads to alterations of cerebral vasculature including the formation of microembolic (ME) strokes. Though ME are associated with changes in mood and the severity and progression of cognitive decline, the effect of ME strokes on cerebral microstructure and its relationship to behavioral endpoints is unknown. Here, we used adult and aged male rats to test the hypotheses that ME lesions result in subtle changes to white and gray matter integrity as detected by high-throughput diffusion tensor imaging (DTI) and that these structural disruptions correspond to behavioral deficits. Two weeks post-surgery, aged animals showed depressive-like behaviors in the sucrose consumption test in the absence of altered cerebral diffusivity as assessed by ex-vivo DTI. Furthermore, DTI indices did not correlate with the degree of behavioral disruption in aged animals or in a subset of animals with observed tissue cavitation and subtle DTI alterations. Together, data suggest that behavioral deficits are not the result of damage to brain regions or white matter tracts, rather the activity of other systems may underlie functional disruption and recovery.  相似文献   

8.
Increasing evidence has demonstrated that white matter (WM) disruptions, due to the injury of the axon and myelin, play an important role in the pathogenesis of Alzheimer’s disease (AD). Diffusion tensor imaging (DTI) is a sensitive modality to evaluate the WM integrity in both AD patients and animal models. In this study, an advanced DTI modality, employing a 7.0-T magnetic resonance imaging system, was used to analyze WM changes across the whole brain of an amyloid precursor protein/presenilin 1 (APP/PS1) mouse model. A voxel-based analysis was used to compare the quantitative DTI parameters automatically in both APP/PS1 mice (n?=?9) and wild-type (WT) controls (n?=?9). After DTI examination, the ultrastructure analysis was compared with DTI findings. Compared with WT controls, gray matter (GM) areas in APP/PS1 mice such as the cingulate cortex and the striatum showed significant fractional anisotropy (FA) and axial diffusivity (DA) increase, while the thalamus only showed a significant FA increase (p?<?0.01). Similarly, a significant mean diffusivity, DA, and radial diffusivity increase was observed in the bilateral neocortex (p?<?0.01). The left hippocampus only showed significant FA increase in APP/PS1 mice (p?<?0.01). The changes in WM regions were detected in the forceps minor of the corpus callosum, the anterior part of the anterior commissure, and the internal capsule, with a significant FA or DA increase (p?<?0.01). Abnormalities derived from diffusion measurements were in-line with the ultrastructure findings, including extensive pathological damage of the neurons, neutrophils, and vessels. In conclusion, voxel-based diffusion tensor imaging can detect diffusion alterations not only in GM but also in WM areas in AD models, reflecting the extensive pathological changes of AD.  相似文献   

9.

Background

A relevant fraction of patients with amyotrophic lateral sclerosis (ALS) exhibit a fronto-temporal pattern of cognitive and behavioural disturbances with pronounced deficits in executive functioning and cognitive control of behaviour. Structural imaging shows a decline in fronto-temporal brain areas, but most brain imaging studies did not evaluate cognitive status. We investigated microstructural white matter changes underlying cognitive impairment using diffusion tensor imaging (DTI) in a large cohort of ALS patients.

Methods

We assessed 72 non-demented ALS patients and 65 matched healthy control subjects using a comprehensive neuropsychological test battery and DTI. We compared DTI measures of fiber tract integrity using tract-based spatial statistics among ALS patients with and without cognitive impairment and healthy controls. Neuropsychological performance and behavioural measures were correlated with DTI measures.

Results

Patients without cognitive impairment demonstrated white matter changes predominantly in motor tracts, including the corticospinal tract and the body of corpus callosum. Those with impairments (ca. 30%) additionally presented significant white matter alterations in extra-motor regions, particularly the frontal lobe. Executive and memory performance and behavioural measures were correlated with fiber tract integrity in large association tracts.

Conclusion

In non-demented cognitively impaired ALS patients, white matter changes measured by DTI are related to disturbances of executive and memory functions, including prefrontal and temporal regions. In a group comparison, DTI is able to observe differences between cognitively unimpaired and impaired ALS patients.  相似文献   

10.

Background

Alzheimer’s disease (AD) is generally considered to be characterized by pathology in gray matter of the brain, but convergent evidence suggests that white matter degradation also plays a vital role in its pathogenesis. The evolution of white matter deterioration and its relationship with gray matter atrophy remains elusive in amnestic mild cognitive impairment (aMCI), a prodromal stage of AD.

Methods

We studied 155 cognitively normal (CN) and 27 ‘late’ aMCI individuals with stable diagnosis over 2 years, and 39 ‘early’ aMCI individuals who had converted from CN to aMCI at 2-year follow up. Diffusion tensor imaging (DTI) tractography was used to reconstruct six white matter tracts three limbic tracts critical for episodic memory function - the fornix, the parahippocampal cingulum, and the uncinate fasciculus; two cortico-cortical association fiber tracts - superior longitudinal fasciculus and inferior longitudinal fasciculus; and one projection fiber tract - corticospinal tract. Microstructural integrity as measured by fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AxD) was assessed for these tracts.

Results

Compared with CN, late aMCI had lower white matter integrity in the fornix, the parahippocampal cingulum, and the uncinate fasciculus, while early aMCI showed white matter damage in the fornix. In addition, fornical measures were correlated with hippocampal atrophy in late aMCI, whereas abnormality of the fornix in early aMCI occurred in the absence of hippocampal atrophy and did not correlate with hippocampal volumes.

Conclusions

Limbic white matter tracts are preferentially affected in the early stages of cognitive dysfunction. Microstructural degradation of the fornix preceding hippocampal atrophy may serve as a novel imaging marker for aMCI at an early stage.  相似文献   

11.
Bipolar disorder (BD) is associated with signs of widespread disruption of white matter (WM) integrity. A polymorphism in the promoter of the serotonin transporter (5‐HTTLPR) influenced functional cortico‐limbic connectivity in healthy subjects and course of illness in BD, with the short (s) allele being associated with lower functional connectivity, and with earlier onset of illness and poor response to treatment. We tested the effects of 5‐HTTLPR on diffusion tensor imaging (DTI) measures of WM microstructure in 140 inpatients, affected by a major depressive episode in course of BD, of Italian descent. We used whole brain tract‐based spatial statistics in the WM skeleton with threshold‐free cluster enhancement of DTI measures of WM microstructure: axial, radial and mean diffusivity and fractional anisotropy. Compared with l/l homozygotes, 5‐HTTLPR*s carriers showed significantly increased radial and mean diffusivity in several brain WM tracts, including corpus callosum, cingulum bundle, uncinate fasciculus, corona radiata, thalamic radiation, inferior and superior longitudinal fasciculus and inferior fronto‐occipital fasciculus. An increase of mean and radial diffusivity, perpendicular to the main axis of the WM tract, is thought to signify increased space between fibers, thus suggesting demyelination or dysmyelination, or loss of bundle coherence. The effects of 5‐HTTLPR on the anomalous emotional processing in BD might be mediated by changes of WM microstructure in key WM tracts contributing to the functional integrity of the brain.  相似文献   

12.
Disruption of large-scale brain systems in advanced aging   总被引:9,自引:0,他引:9  
Cognitive decline is commonly observed in advanced aging even in the absence of disease. Here we explore the possibility that normal aging is accompanied by disruptive alterations in the coordination of large-scale brain systems that support high-level cognition. In 93 adults aged 18 to 93, we demonstrate that aging is characterized by marked reductions in normally present functional correlations within two higher-order brain systems. Anterior to posterior components within the default network were most severely disrupted with age. Furthermore, correlation reductions were severe in older adults free from Alzheimer's disease (AD) pathology as determined by amyloid imaging, suggesting that functional disruptions were not the result of AD. Instead, reduced correlations were associated with disruptions in white matter integrity and poor cognitive performance across a range of domains. These results suggest that cognitive decline in normal aging arises from functional disruption in the coordination of large-scale brain systems that support cognition.  相似文献   

13.

Background

White matter disruption has been suggested as one of anatomical features associated with Alzheimer''s disease (AD). Diffusion tensor imaging (DTI), which has been widely used in AD studies, obtains new insights into the white matter structure.

Methods

We introduced surface-based geometric models of the deep white matter tracts extracted from DTI, allowing the characterization of their shape variations relative to an atlas as well as fractional anisotropy (FA) variations on the atlas surface through large deformation diffeomorphic metric mapping (LDDMM). We applied it to assess local shapes and FA variations of twenty-three deep white matter tracts in 13 patients with AD and 19 healthy control subjects.

Results

Our results showed regionally-specific shape abnormalities and FA reduction in the cingulum tract and the sagittal stratum tract in AD, suggesting that disruption in the white matter tracts near the temporal lobe may represent the secondary consequence of the medial temporal lobe pathology in AD. Moreover, the regionally-specific patterns of FA and shape of the white matter tracts were shown to be of sufficient sensitivity to robustly differentiate patients with AD from healthy comparison controls when compared with the mean FA and volumes within the regions of the white matter tracts. Finally, greater FA or deformation abnormalities of the white matter tracts were associated with lower MMSE scores.

Conclusion

The regionally-specific shape and FA patterns could be potential imaging markers for differentiating AD from normal aging.  相似文献   

14.
White matter (WM) abnormalities have already been shown in presymptomatic (Pre-HD) and symptomatic HD subjects using Magnetic Resonance Imaging (MRI). In the present study, we examined the microstructure of the long-range large deep WM tracts by applying two different MRI approaches: Diffusion Tensor Imaging (DTI) -based tractography, and T2*weighted (iron sensitive) imaging. We collected Pre-HD subjects (n = 25), HD patients (n = 25) and healthy control subjects (n = 50). Results revealed increased axial (AD) and radial diffusivity (RD) and iron levels in Pre-HD subjects compared to controls. Fractional anisotropy decreased between the Pre-HD and HD phase and AD/RD increased and although impairment was pervasive in HD, degeneration occurred in a pattern in Pre-HD. Furthermore, iron levels dropped for HD patients. As increased iron levels are associated with remyelination, the data suggests that Pre-HD subjects attempt to repair damaged deep WM years before symptoms occur but this process fails with disease progression.  相似文献   

15.

Background

Mild cognitive impairment (MCI) may represent an early stage of dementia conferring a particularly high annual risk of 15–20% of conversion to Alzheimer’s disease (AD). Recent findings suggest that not only gray matter (GM) loss but also a decline in white matter (WM) integrity may be associated with imminent conversion from MCI to AD.

Objective

In this study we used Voxel-based morphometry (VBM) to examine if gray matter loss and/or an increase of the apparent diffusion coefficient (ADC) reflecting mean diffusivity (MD) are an early marker of conversion from MCI to AD in a high risk population.

Method

Retrospective neuropsychological and clinical data were collected for fifty-five subjects (MCI converters n = 13, MCI non-converters n = 14, healthy controls n = 28) at baseline and one follow-up visit. All participants underwent diffusion weighted imaging (DWI) and T1-weighted structural magnetic resonance imaging scans at baseline to analyse changes in GM density and WM integrity using VBM.

Results

At baseline MCI converters showed impaired performance in verbal memory and naming compared to MCI non-converters. Further, MCI converters showed decreased WM integrity in the frontal, parietal, occipital, as well as the temporal lobe prior to conversion to AD. Multiple regression analysis showed a positive correlation of gray matter atrophy with specific neuropsychological test results.

Conclusion

Our results suggest that additionally to morphological changes of GM a reduced integrity of WM indicates an imminent progression from MCI stage to AD. Therefore, we suggest that DWI is useful in the early diagnosis of AD.  相似文献   

16.
The integrity of structural connectivity in a functional brain network supports the efficiency of neural processing within relevant brain regions. This study aimed to quantitatively investigate the short- and long-range fibers, and their differential roles in the lower cognitive efficiency in aging and dementia. Three groups of healthy young, healthy older adults and patients with Alzheimer''s disease (AD) participated in this combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study on prospective memory (PM). Short- and long-range fiber tracts within the PM task engaged brain networks were generated. The correlation between the fMRI signal change, PM performance and the DTI characters were calculated. FMRI results showed that the PM-specific frontal activations in three groups were distributed hierarchically along the rostrocaudal axis in the frontal lobe. In an overall PM condition generally activated brain network among the three groups, tractography was used to generate the short-range fibers, and they were found impaired in both healthy older adults and AD patients. However, the long-range fiber tracts were only impaired in AD. Additionally, the mean diffusivity (MD) of short-range but not long-range fibers was positively correlated with fMRI signal change and negatively correlated with the efficiency of PM performance. This study suggests that the disintegrity of short-range fibers may contribute more to the lower cognitive efficiency and higher compensatory brain activation in healthy older adults and more in AD patients.  相似文献   

17.
IntroductionFractionated radiotherapy in brain tumors is commonly associated with several detrimental effects, largely related to the higher radiosensitivity of the white matter (WM) with respect to gray matter. However, no dose constraints are applied to preserve WM structures at present. Magnetic Resonance (MR) Tractography is the only technique that allows to visualize in vivo the course of WM eloquent tracts in the brain. In this study, the feasibility of integrating MR Tractography in tomotherapy treatment planning has been investigated, with the aim to spare eloquent WM regions from the dose delivered during treatment.MethodsNineteen high grade glioma patients treated with fractionated radiotherapy were enrolled. All the patients underwent pre-treatment MR imaging protocol including Diffusion Tensor Imaging (DTI) acquisitions for MR Tractography analysis. Bilateral tracts involved in several motor, language, cognitive functions were reconstructed and these fiber bundles were integrated into the Tomotherapy Treatment planning system. The original plans without tracts were compared with the optimized plans incorporating the fibers, to evaluate doses to WM structures in the two differently optimized plans.ResultsNo significant differences were found between plans in terms of planning target volume (PTV) coverage between the original plans and the optimized plans incorporating fiber tracts. Comparing the mean as well as the maximal dose (Dmean and Dmax), a significant dose reduction was found for most of the tracts. The dose sparing was more relevant for contralateral tracts (P < 0.0001).ConclusionThe integration of MR Tractography into radiotherapy planning is feasible and beneficial to preserve important WM structures without reducing the clinical goal of radiation treatment.  相似文献   

18.
Lin WC  Chou KH  Chen CC  Huang CC  Chen HL  Lu CH  Li SH  Wang YL  Cheng YF  Lin CP 《PloS one》2012,7(4):e33809
Methadone maintenance treatment (MMT) has elevated rates of co-morbid memory deficit and depression that are associated with higher relapse rates for substance abuse. White matter (WM) disruption in MMT patients have been reported but their impact on these co-morbidities is unknown. This study aimed to investigate changes in WM integrity of MMT subjects using diffusion tensor image (DTI), and their relationship with history of heroin and methadone use in treated opiate-dependent individuals. The association between WM integrity changes from direct group comparisons and the severity of memory deficit and depression was also investigated. Differences in WM integrity between 35 MMT patients and 23 healthy controls were evaluated using DTI with tract-based spatial statistical analysis. Differences in DTI indices correlated with diminished memory function, Beck Depression Inventory, duration of heroin use and MMT, and dose of heroin and methadone administration. Changes in WM integrity were found in several WM regions, including the temporal and frontal lobes, pons, cerebellum, and cingulum bundles. The duration of MMT was associated with declining DTI indices in the superior longitudinal fasciculus and para-hippocampus. MMT patients had more memory and emotional deficits than healthy subjects. Worse scores in both depression and memory functions were associated with altered WM integrity in the superior longitudinal fasciculus, para-hippocampus, and middle cerebellar peduncle in MMT. Patients on MMT also had significant WM differences in the reward circuit and in depression- and memory-associated regions. Correlations among decreased DTI indices, disease severity, and accumulation effects of methadone suggest that WM alterations may be involved in the psychopathology and pathophysiology of co-morbidities in MMT.  相似文献   

19.
Human genetic studies have implicated specific genes that constitute the molecular clock in the manifestation of bipolar disorder (BD). Among the clock genes involved in the control system of circadian rhythms, CLOCK 3111 T/C and Period3 (PER3) influence core psychopathological features of mood disorders, such as patterns of sleep, rest, and activity, diurnal preference, cognitive performances after sleep loss, age at the onset of the illness, and response to antidepressant treatment. Furthermore, several studies pointed out that bipolar symptomatology is associated with dysfunctions in white matter (WM) integrity, suggesting these structural alterations as a possible biomarker of the disorder. We hypothesise that CLOCK and PER3 polymorphisms could be potential factors affecting WM microstructure integrity in bipolar patients. The relationship between these clock genes and DTI measures of WM integrity in a sample of 140 (53 M; 87 F) patients affected by BD type I was studied. Tract-based spatial statistics analyses on DTI measures of WM integrity were performed for each clock gene polymorphism, between the genetic groups. We accounted for the effect of nuisance covariates known to influence WM microstructure: age, sex, lithium treatment, age at the onset of the illness, and the number of illness episodes. We found that compared to T homozygotes, CLOCK C carriers showed a widespread increase of the mean diffusivity in several WM tracts. Compared with PER35/5 homozygotes, PER34/4 homozygotes showed significantly increased radial diffusivity and reduced fractional anisotropy in several brain WM tracts. No significant difference was observed between heterozygotes and the other subgroups. Altogether, this pattern of results suggests WM disruption in CLOCK C carrier and in PER34 homozygotes. Sleep promotes myelination and oligodendrocyte precursor cell proliferation and associates with higher expression of genes coding for phospholipid synthesis and myelination in oligodendrocytes. These clock genes play a pivotal role in maintaining circadian rhythms and the sleep-wake cycle. Thus, it may be suggested that CLOCK rs1801260*C and PER34/4 influence myelination processes by regulating sleep quality and quantity.  相似文献   

20.
Neuroimaging studies have demonstrated that patients with Alzheimer’s disease presented disconnection syndrome. However, little is known about the alterations of interhemispheric functional interactions and underlying structural connectivity in the AD patients. In this study, we combined resting-state functional MRI and diffusion tensor imaging (DTI) to investigate interhemispheric functional and structural connectivity in 16 AD, 16 mild cognitive impairment (MCI), as well as 16 cognitive normal healthy subjects (CN). The pattern of the resting state interhemispheric functional connectivity was measured with a voxel-mirrored homotopic connectivity (VMHC) method. Decreased VMHC was observed in AD and MCI subjects in anterior brain regions including the prefrontal cortices and subcortical regions with a pattern of AD<MCI<CN. Increased VMHC was observed in MCI subjects in posterior brain regions with patterns of AD/CN < MCI (sensorimotor cortex) and AD < CN/MCI (occipital gyrus). DTI analysis showed the most significant difference among the three cohorts was the fractional anisotropy in the genu of corpus callosum, which was positively associated with the VMHC of prefrontal and subcortical regions. Across all the three cohorts, the diffusion parameters in the genu of corpus callosum and VMHC in the above brain regions had significant correlation with the cognitive performance. These results demonstrate that there are specific patterns of interhemispheric functional connectivity changes in the AD and MCI, which can be significantly correlated with the integrity changes in the midline white matter structures. These results suggest that VMHC can be used as a biomarker for the degeneration of the interhemispheric connectivity in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号