首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of spatial forest patterns have traditionally focused on habitat remnants within a landscape, but few have explicitly accounted for natural habitat patterns inherent to those landscapes. At broader scales, all cover types are to some degree subdivided. In boreal forest landscapes, forests, peat lands and water bodies form a variety of different spatial structures depending on their proportions and arrangement. To assess the spatial arrangement of forest patches relevant to organisms and ecological processes, we systematically sampled and analysed 57 boreal forest landscapes (10,000 ha in size) in central Finland. Our results show that even though forest is spatially very subdivided into discrete patches in boreal landscapes it becomes generally well-connected if narrow non-forested gaps are ignored. The proportion of forest cover varied from 17.8 to 75.3% and the number of discrete forest patches from 37 to 213. The average percolation threshold for forest cover was 46.8%. If ≤100 m wide non-forested gaps were ignored and forest patches were joined, the percolation threshold dropped to 33.3%. There were on average 13 discrete clusters of forest patches if forest patches within 200 m distance were combined. These results suggest that if a boreal forest species is able to cross even relatively narrow non-forested gaps, it is likely to perceive these boreal forest landscapes as continuous. Even though our present analysis was based on static forest cover patterns, it is important to consider landscape pattern domains when assessing habitat fragmentation and its consequences to populations of organisms.  相似文献   

2.
Ilse Storch 《Oecologia》1993,95(2):257-265
The use of habitat by female and male adult capercaillie Tetrao urogallus during summer and autumn was studied by comparing the distribution of radio locations of birds with the availability of habitat at forest stand, home range and landscape level in an area of the Bavarian Alps, Germany. Capercaillie preferred forests with structural features typical of their main distribution range, the boreal forest: they selected large patches of old forest with moderate canopy cover of about 50%, and a well developed field layer with high proportions of bilberry Vaccinium myrtillus. Hens selected both home ranges and sites within home ranges in old forest. Ranges selected by cocks did not differ from availability in the study area, but they preferred old forest within their ranges. The size of home ranges was negatively related to bilberry cover both in hens and cocks. The distribution of bilberry also determined habitat use by capercaillie at the landscape scale. The study demonstrated that bilberry is the major determinant of the selection of habitat by capercaillie in landscapes with sparse and fragmentary cover of ericaceous shrubs, such as central Europe.  相似文献   

3.
An area of research that has recently gained more attention is to understand how species respond to environmental change such as the landscape structure and fragmentation. Movement is crucial to select habitats but the landscape structure influences the movement patterns of animals. Characterising the movement characteristics, utilisation distribution (UD) and habitat selection of a single species in different landscapes can provide important insights into species response to changes in the landscape. We investigate these three fields in female red deer (Cervus elaphus) in southern Sweden, in order to understand how landscape structure influences their movement and feeding patterns. Movements are compared between two regions, one dominated by a fragmented agriculture–forest mosaic and the other by managed homogenous forest. Red deer in the agriculture-dominated landscape had larger UDs compared to those in the forest-dominated area, moved larger distances between feeding and resting and left cover later in the day but used a similar duration for their movements, suggesting faster travelling speeds between resting and feeding locations. The habitat selection patterns of red deer indicate a trade-off between forage and cover, selecting for habitats that provide shelter during the day and forage by night. However, the level of trade-off, mediated through movement and space use patterns, is influenced by the landscape structure. Our approach provides further understanding of the link between individual animal space use and changing landscapes and can be applied to many species able to carry tracking devices.  相似文献   

4.
Fallows (i.e. fields temporarily taken out of production) provide important habitat for flower-visiting insects in intensively cultivated agricultural landscapes. Cost-efficiency of fallowing schemes could be enhanced through improved understanding of key characteristics of fallows and surrounding landscape that determine community composition and provide support for species of conservation concern. Impacts of fallow characteristics and landscape structure on the species composition of butterflies and bumblebees were studied in two types of perennial fallows in boreal farmland. To understand species’ responses to environmental factors from a conservation perspective, community composition was examined with respect to two species traits—niche breadth and dispersal capacity. Whereas overall species composition of butterflies and bumblebees was strongly affected by forest cover in the surrounding landscape, the studied species traits were most related to fallow type and the cover of perennial grasslands. Habitat breadth of butterflies was narrowest in long-term grassland fallows in landscapes with high grassland cover. Dispersal capacity of butterflies was also lowest in grassland-rich landscapes. Diet breadth of bumblebees was narrower in long-term grassland fallows than in short-term fallows. The results confirm that the diversity of butterflies and bumblebees can be enhanced by establishing and managing fallows both in open and forested landscapes. For conservation of habitat specialists and less mobile species, retention of long-term fallows in grassland-rich landscapes is apparently the best option. The results provide no justification for exempting forested regions or farms with high grassland cover from the ecological focus area requirement under the European Union’s current agricultural policy.  相似文献   

5.
城市生态网络功能性连接辨识方法   总被引:7,自引:5,他引:2  
城市生态网络是景观生态学应用领域研究的热点和重点之一,识别、评估生境之间的连接是构建生态网络的关键环节。在总结已有连接辨识方法的基础上,提出采用最小费用模型和图论分析相结合的方法,探讨功能性连接的辨识和优先恢复途径。以新西兰基督城为案例,分别利用景观发展强度指数建立阻力面,新西兰鸡毛松(Dacrycarpus dacrydioides)种子最大传播距离作为连接阈值来模拟、评价网络连接。结果表明:在1200 m距离阈值下,共有408条连接,其重要性分为10类。其中Richmond—Petrie公园,Hansons—Auburn保护地,Centaurus公园—King George保护地是整个生态网络的关键连接;若去除,景观整体连接度将下降31.73%。此外,研究发现连接重要值与两端的源面积之和没有显著相关性,即面积大的源斑块之间的连接不一定对网络构建起关键作用,这一结论还有待进一步证明。针对缺少动物迁移资料的城市环境,改进最小费用模型和网络连接分析的部分参数;可操作性与实用性强,对中国城市区域生态恢复建设、栖息地选择具有借鉴意义。  相似文献   

6.
Seed dispersal constitutes a pivotal process in an increasingly fragmented world, promoting population connectivity, colonization and range shifts in plants. Unveiling how multiple frugivore species disperse seeds through fragmented landscapes, operating as mobile links, has remained elusive owing to methodological constraints for monitoring seed dispersal events. We combine for the first time DNA barcoding and DNA microsatellites to identify, respectively, the frugivore species and the source trees of animal‐dispersed seeds in forest and matrix of a fragmented landscape. We found a high functional complementarity among frugivores in terms of seed deposition at different habitats (forest vs. matrix), perches (isolated trees vs. electricity pylons) and matrix sectors (close vs. far from the forest edge), cross‐habitat seed fluxes, dispersal distances and canopy‐cover dependency. Seed rain at the landscape‐scale, from forest to distant matrix sectors, was characterized by turnovers in the contribution of frugivores and source‐tree habitats: open‐habitat frugivores replaced forest‐dependent frugivores, whereas matrix trees replaced forest trees. As a result of such turnovers, the magnitude of seed rain was evenly distributed between habitats and landscape sectors. We thus uncover key mechanisms behind “biodiversity–ecosystem function” relationships, in this case, the relationship between frugivore diversity and landscape‐scale seed dispersal. Our results reveal the importance of open‐habitat frugivores, isolated fruiting trees and anthropogenic perching sites (infrastructures) in generating seed dispersal events far from the remnant forest, highlighting their potential to drive regeneration dynamics through the matrix. This study helps to broaden the “mobile‐link” concept in seed dispersal studies by providing a comprehensive and integrative view of the way in which multiple frugivore species disseminate seeds through real‐world landscapes.  相似文献   

7.
8.
9.
Habitat loss is the main driver of the current biodiversity crisis, a landscape-scale process that affects the survival of spatially-structured populations. Although it is well-established that species responses to habitat loss can be abrupt, the existence of a biodiversity threshold is still the cause of much controversy in the literature and would require that most species respond similarly to the loss of native vegetation. Here we test the existence of a biodiversity threshold, i.e. an abrupt decline in species richness, with habitat loss. We draw on a spatially-replicated dataset on Atlantic forest small mammals, consisting of 16 sampling sites divided between forests and matrix habitats in each of five 3600-ha landscapes (varying from 5% to 45% forest cover), and on an a priori classification of species into habitat requirement categories (forest specialists, habitat generalists and open-area specialists). Forest specialists declined abruptly below 30% of forest cover, and spillover to the matrix occurred only in more forested landscapes. Generalists responded positively to landscape heterogeneity, peaking at intermediary levels of forest cover. Open area specialists dominated the matrix and did not spillover to forests. As a result of these distinct responses, we observed a biodiversity threshold for the small mammal community below 30% forest cover, and a peak in species richness just above this threshold. Our results highlight that cross habitat spillover may be asymmetrical and contingent on landscape context, occurring mainly from forests to the matrix and only in more forested landscapes. Moreover, they indicate the potential for biodiversity thresholds in human-modified landscapes, and the importance of landscape heterogeneity to biodiversity. Since forest loss affected not only the conservation value of forest patches, but also the potential for biodiversity-mediated services in anthropogenic habitats, our work indicates the importance of proactive measures to avoid human-modified landscapes to cross this threshold.  相似文献   

10.
Effects of habitat loss and fragmentation on the behavior of individual organisms may have direct consequences on population viability in altered forest ecosystems. The American marten (Martes americana) is a forest specialist considered as one of the most sensitive species to human-induced disturbances. As some studies have shown that martens cannot tolerate >30–40% clear-cuts within their home range, we investigated marten space use (home range size and overlap) and habitat selection in landscapes fragmented by 2 different patterns of timber harvesting in the black spruce boreal forest: dispersed-cut landscapes (10–80 ha cut-blocks) and clustered-cut landscapes (50–200 ha cut-blocks). We installed radio-collars on female martens and determined 20 winter home ranges (100% minimum convex polygons and 60–90% kernels) in dispersed-cut (n = 8) and clustered-cut (n = 12) landscapes. Home range size was not related to the proportion of clear-cuts (i.e., habitat loss), but rather to the proportion of mixedwood stands 70–120 years old. However, female body condition was correlated to habitat condition inside their home ranges (i.e., amount of residual forest and recent clear-cuts). At the home range scale, we determined that mixedwood forests were also among the most used forest stands and the least used were recent clear-cuts and forested bogs, using resource selection functions. At the landscape scale, home ranges included more mixedwood forests than random polygons and marten high activity zones were composed of more residual forest and less human-induced disturbances (clear-cuts, edges, and roads). These results suggest that mixedwood forests, which occupy approximately 10% of the study area, play a critical role for martens in this conifer-dominated boreal landscape. We recommend permanent retention or special management considerations for these isolated stands, as harvesting mixedwood often leads to forest composition conversion that would reduce the availability of this highly used habitat. © The Wildlife Society, 2013  相似文献   

11.
Habitat loss and fragmentation can have detrimental effects on all levels of biodiversity, including genetic variation. Most studies that investigate genetic effects of habitat loss and fragmentation focus on analysing genetic data from a single landscape. However, our understanding of habitat loss effects on landscape-wide patterns of biodiversity would benefit from studies that are based on quantitative comparisons among multiple study landscapes. Here, we use such a landscape-level study design to compare genetic variation in the forest-specialist marsupial Marmosops incanus from four 10,000-hectare Atlantic forest landscapes which differ in the amount of their remaining native forest cover (86, 49, 31, 11 %). Additionally, we used a model selection framework to evaluate the influence of patch characteristics on genetic variation within each landscape. We genotyped 529 individuals with 12 microsatellites to statistically compare estimates of genetic diversity and genetic differentiation in populations inhabiting different forest patches within the landscapes. Our study indicates that before the extinction of the specialist species (here in the 11 % landscape) genetic diversity is significantly reduced in the 31 % landscape, while genetic differentiation is significantly higher in the 49 and 31 % landscapes compared to the 86 % landscape. Results further provide evidence for non-proportional responses of genetic diversity and differentiation to increasing habitat loss, and suggest that local patch isolation impacts gene flow and genetic connectivity only in the 31 % landscape. These results have high relevance for analysing landscape genetic relationships and emphasize the importance of landscape-level study designs for understanding habitat loss effects on all levels of biodiversity.  相似文献   

12.
Loss, fragmentation and decreasing quality of habitats have been proposed as major threats to biodiversity world‐wide, but relatively little is known about biodiversity responses to multiple pressures, particularly at very large spatial scales. We evaluated the relative contributions of four landscape variables (habitat cover, diversity, fragmentation and productivity) in determining different components of avian diversity across Europe. We sampled breeding birds in multiple 1‐km2 landscapes, from high forest cover to intensive agricultural land, in eight countries during 2001?2002. We predicted that the total diversity would peak at intermediate levels of forest cover and fragmentation, and respond positively to increasing habitat diversity and productivity; forest and open‐habitat specialists would show threshold conditions along gradients of forest cover and fragmentation, and respond positively to increasing habitat diversity and productivity; resident species would be more strongly impacted by forest cover and fragmentation than migratory species; and generalists and urban species would show weak responses. Measures of total diversity did not peak at intermediate levels of forest cover or fragmentation. Rarefaction‐standardized species richness decreased marginally and linearly with increasing forest cover and increased non‐linearly with productivity, whereas all measures increased linearly with increasing fragmentation and landscape diversity. Forest and open‐habitat specialists responded approximately linearly to forest cover and also weakly to habitat diversity, fragmentation and productivity. Generalists and urban species responded weakly to the landscape variables, but some groups responded non‐linearly to productivity and marginally to habitat diversity. Resident species were not consistently more sensitive than migratory species to any of the landscape variables. These findings are relevant to landscapes with relatively long histories of human land‐use, and they highlight that habitat loss, fragmentation and habitat‐type diversity must all be considered in land‐use planning and landscape modeling of avian communities.  相似文献   

13.
《Ecography》2002,25(2):161-172
Fire is a key mechanism creating and maintaining habitat heterogeneity in Mediterranean landscapes by turning continuous woody landscapes into mosaics of forests and shrublands. Due to the long historical role of fires in the Mediterranean, we hypothesised a moderate negative effect of this type of perturbation on forest bird distribution at a landscape level. We conducted point bird censuses in Aleppo pine forest patches surrounded by burnt shrublands and studied the relationships between three ecological groups of bird species (forest canopy species, forest understorey species, and ubiquitous species) and the features of local habitat, whole patch and surrounding landscape. We used a multi-scale approach to assess the effects of landscape variables at increasing spatial scales on point bird richness. Regarding local habitat components, canopy species were positively associated with tall pines while understorey species with the cover of shrubs and plants from holm-oak forests. Forest birds were positively related to patch size and irregular forest shapes, that is, with high perimeter/size ratios. Thus, these species did not seem to perceive edges as low quality but rather favourable microhabitats. We did not detect any negative effect of isolation or cover of woodlands in the landscape on the presence of forest species after local habitat factors had been accounted for. Finally, only local habitat factors entered the model for ubiquitous species. We suggest that mosaic-like landscapes shaped by fires in the Mediterranean basin are not strongly associated with negative effects fragmentation on forest birds other than those related with habitat loss.  相似文献   

14.
We explore the effect of differences in landscape structure, arising from habitat loss, on the fine-scale movement behaviors of two congeneric damselflies – Calopteryx aequabilis and C. maculata . Both species require streams for breeding and naiad development and both often use forest for foraging. We compare movement behaviors across three types of landscape: forested landscapes, where stream and forest habitat are adjacent; partially forested landscapes, where streams and forest habitat are disjunct, and non-forested landscapes, where little to no forest habitat is available. We employ a reciprocal transplant experiment to determine the extent to which movement along and away from streams is influenced by landscape structure and historical behavior or morphological adaptations. For both species, we show that both the propensity to move away from streams and rates of net displacement differ among landscape types. Both species move away from streams on landscapes with high or moderate levels of forest cover but neither moves away from streams on landscapes with little or no forest. Furthermore, C. maculata native to predominantly forested landscapes are more likely to move away from streams, regardless of the landscape structure they encounter, than are individuals native to moderately forested or non-forested landscapes. There was no effect of natal landscape on C. aequabilis . Comparisons with microlandscape studies suggest that there may be some general similarities among the different systems but these are clouded by uncertainty regarding the similarity of the underlying processes responsible for observed behavioral responses to landscape structure. Despite this uncertainty, animal movement behaviors are contingent upon the structure of the broader landscape, regardless of the absolute scale of the landscape.  相似文献   

15.
Most landscape genetic studies assess the impact of landscape elements on species' dispersal and gene flow. Many of these studies perform their analysis on all possible population pairs in a study area and do not explicitly consider the effects of spatial scale and population network topology on their results. Here, we examined the effects of spatial scale and population network topology on the outcome of a landscape genetic analysis. Additionally, we tested whether the relevant spatial scale of landscape genetic analysis could be defined by population network topology or by isolation‐by‐distance (IBD) patterns. A data set of the wetland grasshopper Stethophyma grossum, collected in a fragmented agricultural landscape, was used to analyse population network topology, IBD patterns and dispersal habitats, using least‐cost transect analysis. Landscape genetic analyses neglecting spatial scale and population network topology resulted in models with low fits, with which a most likely dispersal habitat could not be identified. In contrast, analyses considering spatial scale and population network topology resulted in high model fits by restricting landscape genetic analysis to smaller scales (0–3 km) and neighbouring populations, as represented by a Gabriel graph. These models also successfully identified a likely dispersal habitat of S. grossum. The above results suggest that spatial scale and potentially population network topology should be more explicitly considered in future landscape genetic analyses.  相似文献   

16.
Numerous metrics describing landscape patterns have been used to explain landscape-scale habitat selection by birds. The myriad metrics, their complexity, and inconsistent responses to them by birds have led to a lack of clear recommendations for managing land for desired species. The amount of a target land cover type in the landscape (percentage cover) often has been a useful indicator of the likelihood of species occurrence or of habitat selection; is it also a more adequate and parsimonious measure for explaining species distributions than patch size or more complex measures of landscape configuration? We examined responses of 6 woodland-interior bird species to the percentage tree cover within prescribed areas and to patch size, edge density, and other metrics. We examined responses in 2 landscapes: a mixed woodland-savanna and an eastern deciduous forest. For these 6 species, percentage tree cover explained bird occurrence as well as or better than other measures in both study areas. We then repeated the analysis on a larger group of woodland species, including those associated with woodland edges. The bird species we studied had varied responses to landscape metrics, but percentage tree cover was the strongest explanatory variable overall. Although percentage cover estimated from remotely sensed data is an inexact representation of habitat in the landscape, it does appear to be reliable and easy to conceptualize, relative to other measures. We suggest that, at least for woodland habitat, percentage cover is a broadly useful measure that can be helpful in pragmatic questions of explaining responses to landscapes or in anticipating responses to landscape change. © 2011 The Wildlife Society.  相似文献   

17.
Landscape modification and habitat fragmentation: a synthesis   总被引:21,自引:0,他引:21  
Landscape modification and habitat fragmentation are key drivers of global species loss. Their effects may be understood by focusing on: (1) individual species and the processes threatening them, and (2) human-perceived landscape patterns and their correlation with species and assemblages. Individual species may decline as a result of interacting exogenous and endogenous threats, including habitat loss, habitat degradation, habitat isolation, changes in the biology, behaviour, and interactions of species, as well as additional, stochastic threats. Human-perceived landscape patterns that are frequently correlated with species assemblages include the amount and structure of native vegetation, the prevalence of anthropogenic edges, the degree of landscape connectivity, and the structure and heterogeneity of modified areas. Extinction cascades are particularly likely to occur in landscapes with low native vegetation cover, low landscape connectivity, degraded native vegetation and intensive land use in modified areas, especially if keystone species or entire functional groups of species are lost. This review (1) demonstrates that species-oriented and pattern-oriented approaches to understanding the ecology of modified landscapes are highly complementary, (2) clarifies the links between a wide range of interconnected themes, and (3) provides clear and consistent terminology. Tangible research and management priorities are outlined that are likely to benefit the conservation of native species in modified landscapes around the world.  相似文献   

18.
In Mediterranean landscapes, wildfires and land abandonment lead to major landscape modifications primarily by favouring the presence of open, shrub-like habitats. At present, we know very little of how these changes affect patterns of species occurrence at the landscape scale. In this work, we analyse the impact of these landscape changes on the occurrence patterns of eight open-habitat species by using presence/absence data collected in the Catalan Breeding Bird Atlas (NE Spain). We compared the species occurrence patterns along habitat gradients for three different landscape settings: a semi-permanent farmland–forest landscape (i.e. with variable proportions of farmland and forests) and two landscape settings which mimic those favoured by land abandonment and fire: farmland–shrubland landscapes and mosaic landscapes (i.e. variable proportions of farmland and forest coexisting with a shrubby matrix). In the forest–farmland landscape, we found a dominant negative effect of adjacent forest on species occurrence rates. This overall effect mostly disappeared in farmland–shrubland landscapes composed by two habitats with more similar vegetation structure. In mosaic landscapes, the general negative effect of forest habitats also appeared to be partially compensated by the presence of a shrubby matrix. Our results suggest that landscape gradients induced by fire and to some degree also land abandonment, mainly favouring availability of shrublands may potentially enhance the resilience of threatened open-habitat species at the landscape scale by increasing the range of potential habitats used. The analysis of species-occurrence patterns along predefined habitat gradients appears as a useful tool to predict potential species responses to land use change.  相似文献   

19.
Both forest fragmentation and overhunting have profound effects on the structure of large-vertebrate assemblages in neotropical forests. However, the long-term value of habitat fragments for forest mammals remains poorly understood and few regional scale studies have replicated sampling across spatially independent landscapes. Here, we assess the species occupancy and abundance of midsized to large-bodied mammals within three neighbouring Amazonian forest landscapes varying widely in extent of forest cover. One of these consisted of forest fragments surrounded by semi-natural scrub savannahs that had been occupied by paleoindian populations for at least 7,000 years, whereas forest cover in the other two landscapes was either variegated or continuous. Data on species occurrence and abundance from diurnal and nocturnal line-transect surveys and local interviews in each landscape were used to examine the effects of forest cover and hunting pressure on mammal persistence within forest patches. The extent of forest cover was a key determinant of species persistence across the three landscapes, but populations of large-bodied species were either reduced or driven to local extinction by hunting even in the most forested and least fragmented landscape. Many game and non-game species persisted in forest isolates, even though, individually, these were likely too small to support viable populations. This study indicates that even small, long-term forest fragments may retain significant conservation value if they can be managed within the context of enhanced connectivity across wider fragmented landscapes.  相似文献   

20.
Importance of patch scale vs landscape scale on selected forest birds   总被引:8,自引:0,他引:8  
The management and protection of natural areas have primarily occurred in isolation from surrounding land management. The structure of surrounding land cover, however, may be important to the abundance and reproductive success of birds within a habitat patch. We investigated the relative importance of forest patch area, within patch habitat and surrounding landscape forest cover on the abundance of three Neotropical migrant bird species thought to be area-sensitive (ovenbird [ Seiurus aurocapillus ], wood thrush [ Hylocichla mustelina ] and red-eyed vireo [ Vireo olivaceus ]), and on pairing success of the ovenbird. We selected 31 isolated forest patches of differing sizes, and three 80-ha plots in continuous forest each centered within non-overlapping 200-ha landscapes, such that patch area and landscape forest cover were uncorrelated among landscapes. Each study plot was surveyed to estimate abundances of territorial males and ovenbird pairing success. Landscape forest cover ( p <0.05) explained the most variation in ovenbird abundance, while percent deciduous forest cover within patches ( p <0.05) and patch size ( p <0.05) explained the most variation in red-eyed vireo and wood thrush abundance, respectively. Patch size was a significant ( p <0.05) predictor of abundance for all three study species; however, density for all species decreased significantly ( p <0.05) with patch size. Ovenbird pairing success was higher in continuous forest plots than in forest patches ( p =0.018). This study's findings suggest that the relative importance of within patch characteristics, patch size and landscape forest cover varies for different bird species, and that conservation efforts would benefit from the inclusion of all three factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号