首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Invasive species are recognized as a primary driver of native species endangerment and their removal is often a key component of a conservation strategy. Removing invasive species is not always a straightforward task, however, especially when they interact with other species in complex ways to negatively influence native species. Because unintended consequences may arise if all invasive species cannot be removed simultaneously, the order of their removal is of paramount importance to ecological restoration. In the mid-1990s, three subspecies of the island fox Urocyon littoralis were driven to near extinction on the northern California Channel Islands owing to heightened predation by golden eagles Aquila chrysaetos. Eagles were lured to the islands by an abundant supply of feral pigs Sus scrofa and through the process of apparent competition pigs indirectly facilitated the decline in foxes. As a consequence, both pigs and eagles had to be removed to recover the critically endangered fox. Complete removal of pigs was problematic: removing pigs first could force eagles to concentrate on the remaining foxes, increasing their probability of extinction. Removing eagles first was difficult: eagles are not easily captured and lethal removal was politically distasteful.

Methodology/Principal Findings

Using prey remains collected from eagle nests both before and after the eradication of pigs, we show that one pair of eagles that eluded capture did indeed focus more on foxes. These results support the premise that if the threat of eagle predation had not been mitigated prior to pig removal, fox extinction would have been a more likely outcome.

Conclusions/Significance

If complete eradication of all interacting invasive species is not possible, the order in which they are removed requires careful consideration. If overlooked, unexpected consequences may result that could impede restoration.  相似文献   

2.
In the past century, our understanding of the processes driving plant invasion and its consequences for natural and anthropogenic systems has increased considerably. However, the management of invasive plants remains a challenge despite ever more resources being allocated to their removal. Often invasive plants targeted for ‘eradication’ are well‐established, have multiple modes of reproduction, long‐term seed banks, and strong associations with native and non‐native mutualists that ensure dispersal and facilitate spread. The pantropical weed, Lantana camara (Lantana), is one of the most invasive woody plants globally. We illustrate that, for Lantana, eradication is an unrealistic management goal given the short‐term removal approaches, irrespective of the effectiveness of removal methods. We assessed the role of dispersal by avian frugivores in the recolonization of managed areas by Lantana in the seasonally dry, tropical forests of northern and southern India. We estimated the distribution of Lantana, its dispersal potential and the proximity between managed areas and source populations. We found that Lantana was dispersed by many generalist frugivorous birds and that most managed areas were well within the median dispersal distance from source plants facilitating rapid recolonization of managed areas. We conclude that given the difficulty of eradicating long‐established invasive plants, management practices should entail long‐term monitoring and control in priority areas for as long as Lantana occurs in the landscape.  相似文献   

3.
Understanding the factors that encourage or inhibit plant invasions is vital to focusing limited invasive control efforts within areas where they are most practical and cost-effective. To extend the range of contexts in which invasibility is studied and aid the development of practical strategies to limit damaging plant invasions, we set out to test the relative importance of native species richness, native seedling density, and invasive propagule pressure, on the invasibility of artificial assemblages of naturally occurring tropical woody seedling communities. Our greenhouse mesocosms included a species pool of twelve trees and woody shrubs native to South Florida's tropical hardwood hammocks, and an increasingly prevalent noxious woody invader of this system, Ardisia elliptica. We found that invader propagule pressure was the single most important factor determining community invasibility. We also revealed a positive relationship between invasibility and native species richness in our polyculture mesocosms. Because A. elliptica biomass production significantly differed among different native monocultures and was not related to overyielding in native polycultures, we suggest that the effect of species richness on invasibility in this experiment was the result of sampling effects rather than a true effect of diversity.Three broad findings hold potential for application in preventing and controlling plant invasions, especially in the seedling layers of tropical dry forests: (1) effective invasive control efforts will likely benefit from measures to minimize propagule pressure; (2) managers might do well to prioritize invasive monitoring and removal efforts on the most diverse habitats within a management region; and (3) while more data are necessary to further understand our finding of a lack of association between productivity and invasibility, management regimes aimed at maximizing primary productivity might not increase invasibility, and in fact, strategies for controlling invasive plants via the management of ecosystem productivity may be ineffective.  相似文献   

4.
Invasive species are capable of causing change in native plant communities, but invasion is often associated with other anthropogenic impacts on natural areas, such as habitat fragmentation and associated dispersal limitation for native species. Consequently, invasive species removal alone may not always be sufficient to meet restoration objectives. We tested if invasion and dispersal limitation interact to limit plant community restoration within a forest fragment invaded by Euonymus fortunei. Removal of Euonymus alone did not lead to the recolonization of native plant species. However, planting seedlings increased total native cover in invaded, Euonymus removal, and uninvaded control treatments. The consistent establishment of native plant seedlings across all treatments indicates that Euonymus invasion may have limited ability to displace established plants. In contrast, plant species that we added as seed were unable to establish in invaded plots, indicating that Euonymus invasion limits recruitment of native plant species from seed. Over the course of our experiment, a number of setbacks and surprises occurred, including high levels of herbivory, a windstorm, and extreme drought, all of which likely limited restoration success. Overall, our results indicate that Euonymus may contribute to native species declines, but other factors are important. Thus, invasive species removal alone may not be sufficient to reestablish a diverse native plant community. Instead, impacts on natural areas may need to be mitigated along with invasive species removal for restoration to be successful.  相似文献   

5.
Since the discovery of the emerald ash borer in 2002, eradication efforts have been implemented in an attempt to eliminate or contain the spread of this invasive beetle. The eradication protocol called for the removal of every ash tree within a 0.8 km radius around an infested tree. In 2005 this study was established to identify environmental changes attributed to the eradication program and measure subsequent shifts in forest community composition and structure. We conducted this study in Ohio and compared areas that received the eradication treatment (ash trees cut down), to areas that were left uncut, (ash still standing). The goal of this project was to identify how the plant community is responding in these two areas. The eradication protocol accelerated the formation and size of gaps within the forest and thus increased the duration and intensity of light penetrating through to the forest floor. In addition, the use of track vehicles for removal of cut trees resulted in significant soil compaction. The resultant plant community had greater species diversity (H′). When specific species composition differences were compared, an increase in the establishment of invasive plant species was detected in areas that received eradication efforts compared to those that did not. Invasive species accounted for 18.7% of the total herbaceous cover in this highly disturbed environment which included Cirsium arvense, Rhamnus cathartica and 2 species of Lonicera. In contrast, invasive species accounted for <1% of the total herbaceous cover in the undisturbed uncut areas.  相似文献   

6.
Five main drivers of population declines have been identified: climate change, habitat degradation, invasive alien species (IAS), overexploitation and pollution. Each of these drivers interacts with the others, and also with the intrinsic traits of individual species, to determine species’ distribution and range dynamics. We explored the relative importance of life-history and resource-use traits, climate, habitat, and the IAS Harmonia axyridis in driving local extinction and colonisation dynamics across 25 ladybird species (Coleoptera: Coccinellidae).Species were classified as continually present, continually absent, extinct, or colonising in each of 4,642 1-km2 grid squares. The spatial distribution of local extinction and colonisation events (in the grid squares) across all species’ ranges were related to ecological traits, overlap with H. axyridis, climate, and habitat factors within generalised linear models (GLMs). GLMs were also used to relate species’ traits, range characteristics, and niche overlap with H. axyridis to extinction and colonisation rates summarised at the species level. Bayesian model averaging was used to account for model uncertainty, and produce reduced sets of models which were well-supported by data. Species with a high degree of niche overlap with H. axyridis suffered higher extinction rates in both analyses, while at the spatial scale extinctions were more likely and colonisations less likely in areas with a high proportion of urban land cover. In the spatial analysis, polymorphic species with large range sizes were more likely to colonise and less likely to go extinct, and sunny grid squares were more likely to be colonised. Large, multivoltine species and rainy grid squares were less likely to colonise or be colonised. In conclusion for ladybirds, extinction and colonisation dynamics are influenced by several factors. The only factor that both increased the local extinction likelihood and reduced colonisation likelihood was urban land cover, while ecological overlap with H. axyridis greatly increased extinction rates. Continued spread of H. axyridis is likely to adversely affect native species and urban areas may be particularly vulnerable.  相似文献   

7.
Cytisus scoparius is a global invasive species that affects local flora and fauna at the intercontinental level. Its natural distribution spans across Europe, but seeds have also been moved among countries, mixing plants of native and non‐native genetic origins. Hybridization between the introduced and native gene pool is likely to threaten both the native gene pool and the local flora. In this study, we address the potential threat of invasive C. scoparius to local gene pools in vulnerable heathlands. We used nuclear single nucleotide polymorphic (SNP) and simple sequence repeat (SSR) markers together with plastid SSR and indel markers to investigate the level and direction of gene flow between invasive and native heathland C. scoparius. Analyses of population structures confirmed the presence of two gene pools: one native and the other invasive. The nuclear genome of the native types was highly introgressed with the invasive genome, and we observed advanced‐generation hybrids, suggesting that hybridization has been occurring for several generations. There is asymmetrical gene flow from the invasive to the native gene pool, which can be attributed to higher fecundity in the invasive individuals, measured by the number of flowers and seed pods. Strong spatial genetic structure in plastid markers and weaker structure in nuclear markers suggest that seeds spread over relatively short distances and that gene flow over longer distances is mainly facilitated by pollen dispersal. We further show that the growth habits of heathland plants become more vigorous with increased introgression from the invaders. Implications of the findings are discussed in relation to future management of invading C. scoparius.  相似文献   

8.
Programs to conserve native fauna in invaded ecosystems often aim to reduce the impacts of alien predators. This approach can lead to unexpected outcomes in the native and the remaining invasive components of restored ecosystems. In New Zealand, suppression and eradication of invasive mammalian predators are well‐established conservation strategies, particularly on offshore islands and in mainland ecosanctuaries. Predator control has achieved important conservation gains over increasingly large areas but these can be offset by the ecological release of other uncontrolled pest species. In addition, novel ecosystems created by selective predator control and reintroductions of locally extinct or depleted native species may have unexpected trajectories as they evolve. Effective conservation requires new techniques for controlling entire suites of invasive predators over large areas, routine monitoring of the conservation outcomes of predator control, and better understanding of how modified, and in some cases reconstructed, seminatural ecosystems change when invasive predators are removed.  相似文献   

9.
Invasive plant species reduce biodiversity, alter ecosystem processes, and cause economic losses. Control of invasive plants is therefore highly desired by land managers and policy makers. However, invasive plant control strategies frequently fail, partly because management often concentrates only on the eradication of invasive plants and not on revegetation with native species that use the available resources and prevent reinvasion. In this study, we focused on the intracontinental invader Rumex alpinus L., which was introduced by humans from the Alps to the lower mountains of Central Europe, where it has spread to semi-natural meadows, suppresses local biodiversity, and reduces the quality of hay used as cattle fodder. The species can be effectively removed using herbicide, but this leaves behind a persistent seed bank. Without further treatment, the invader rapidly regenerates and reinvades the area. We supplemented the herbicide treatment by adding the seeds of native grasses. Addition of native-seed effectively suppressed the regeneration of the invader from the seed bank, reduced its biomass, and consequently, prevented massive reinvasion. While the invader removal was successful, the restored community remained species-poor because the dense sward of native grasses blocked the regeneration of native forbs from the seed bank. Nevertheless, the addition of native seed proved to be an effective tool in preventing reinvasion after the eradication of the invasive plant.  相似文献   

10.
Conflicting values: ecosystem services and invasive tree management   总被引:1,自引:0,他引:1  
Tree species have been planted widely beyond their native ranges to provide or enhance ecosystem services such as timber and fibre production, erosion control, and aesthetic or amenity benefits. At the same time, non-native tree species can have strongly negative impacts on ecosystem services when they naturalize and subsequently become invasive and disrupt or transform communities and ecosystems. The dichotomy between positive and negative effects on ecosystem services has led to significant conflicts over the removal of non-native invasive tree species worldwide. These conflicts are often viewed in only a local context but we suggest that a global synthesis sheds important light on the dimensions of the phenomenon. We collated examples of conflict surrounding the control or management of tree invasions where conflict has caused delay, increased cost, or cessation of projects aimed at invasive tree removal. We found that conflicts span a diverse range of taxa, systems and countries, and that most conflicts emerge around three areas: urban and near-urban trees; trees that provide direct economic benefits; and invasive trees that are used by native species for habitat or food. We suggest that such conflict should be seen as a normal occurrence in invasive tree removal. Assessing both positive and negative effects of invasive species on multiple ecosystem services may provide a useful framework for the resolution of conflicts.  相似文献   

11.
Anolis sagrei, a Cuba and Bahama native lizard, is a successful invader in Florida and adjacent areas. Herein, we focus on conservatism in its climate niche axes and possible congruencies with its natural history properties. The not mutually exclusive hypotheses of the present study explaining its northern range limit are: (1) climatic conditions within species' native and invasive ranges are identical; (2) the species is pre‐adapted to novel conditions as a result of historical climate variations; and (3) only some niche axes limit the species' invasive distribution and the observed pattern is explained by an interplay between the potential niche within its native range and life‐history. Species distribution models for native and invasive distributions were built on ten bioclimatic variables. Using Schoener's niche overlap index, the degree of niche conservatism among variables was identified. Significances of hypothesis (1) were tested using null‐model approaches. Possible climatic pre‐adaptations were evaluated by comparing its actual tolerance within its invasive range with that of the Last Glacial Maximum (LGM) within its native range (hypothesis 2). Results of (1) and (2) are discussed in relation to natural history, approaching hypothesis 3. We detect varying overlaps in niche axes, indicating that natural history properties are associated with conservative niche axes. Climatic comparisons with LGM of native and current conditions of invasive range suggest that pre‐adaptations are unlikely. Possible shifts in the fundamental niche of the species may have been facilitated by enhanced genetic diversity in northern invasive populations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 943–954.  相似文献   

12.
Insects on the brink of a major discontinuity   总被引:2,自引:0,他引:2  
Population surges and local extinctions are not uncommon among insects. In response to climatic changes in the past, insects have often shifted their ranges. This long-term range shifting and the vagaries of short-term weather makes reserve selection unrealistically rigid for many species. Although some insect species are surviving in reserves, others have disappeared from such small areas because of adverse weather. In contrast, many other insects depend on localized disturbance for survival. In response to anthropogenic disturbance, some native insects have become more abundant and widespread, such as Orthoptera in response to grazing and burning, and some Odonata in response to aquatic weeds and water impoundment. The effect of some exotic invasive insects on some native ecosystems is of major concern. Human-induced insect population crashes and species extinctions are becoming more common and widespread, and exacerbated by the synergistic effect of the various local impacts with global changes. A major insect population and species extinction discontinuity is beginning to take place. Yet, there is also an increase in range and abundance of some other insects. The world is becoming increasingly species-poorer and more homogenous in its insect fauna.  相似文献   

13.
Understanding how insular ecosystems recover or are restructured after the eradication of an invasive species is crucial in evaluating conservation success and prioritizing island conservation efforts. Globally, herbivores have been removed from 762 islands, most with limited active restoration actions following eradication. Few studies have documented the effects of invasive herbivore removal after multiple decades of passive recovery. Here we evaluate recovery of vegetation on Santa Cruz Island, California, after the removal of feral sheep (Ovis aries) in 1984. We repeat a study conducted in 1980, and examine vegetation changes 28 years after the eradication. Before eradication, grazed areas were characterized by reduced plant cover, high exposure of bare ground, and erosion. After 28 years of passive recovery, transect data showed a 23% increase in woody overstory, whereas analysis of photographs from landscapes photographed pre‐ and post‐eradication showed a 26% increase in woody vegetation. Whole island vegetation maps similarly showed a transition from grass/bare ground (74.3% of cover) to woody plants (77.2% of cover), indicating the transition away from predominantly exotic annual grassland toward a community similar to the overstory of coastal scrubland but with an understory dominated by non‐native annual grasses. We estimate that replacement of grasses/bare ground by native woody vegetation has led to 70 and 17% increases in the stored carbon and nitrogen pools on the island, respectively. Our results demonstrate that these island ecosystems can experience significant recovery of native floral communities without intensive post‐eradication restoration, and results of recovery may take decades to be realized.  相似文献   

14.
1.  Leaf trait relationships of native and exotic invasive species from a range of habitats were compared to assess consistency across habitats and the role of disturbance.
2.  One hundred and twenty-two native and exotic species were sampled in five habitats in eastern Australia. Specific leaf area, foliar nitrogen ( N mass), assimilation rate ( A mass) and dark respiration ( R mass) were measured for each species. Plants were classified into four types: native undisturbed, native disturbed, exotic invasive undisturbed and exotic invasive disturbed.
3.  All traits were positively correlated and slopes were homogeneous within habitats. Significant differences between plant types in slope elevation were found in only two of 18 cases. There were significant shifts in group means along a common slope between plant types within habitats. These shifts were associated with disturbed vs. undisturbed areas, with plant types from disturbed areas having higher trait values.
4.   Synthesis . Exotic invasive and native species do not have fundamentally different carbon capture strategies. The carbon capture strategy of a species is strongly associated with disturbance, with species from disturbed sites having traits that confer capacity for fast growth. Thus, differences between exotic invasives and natives may reflect differences in the environmental conditions of the sites where they occur rather than differences between exotic invasives and natives per se .  相似文献   

15.
Invasive rats have colonized most of the islands of the world, resulting in strong negative impacts on native biodiversity and on ecosystem functions. As prolific omnivores, invasive rats can cause local extirpation of a wide range of native species, with cascading consequences that can reshape communities and ecosystems. Eradication of rats on islands is now becoming a widespread approach to restore ecosystems, and many native island species show strong numerical responses to rat eradication. However, the effect of rat eradication on other consumers can extend beyond direct numerical effects, to changes in behavior, dietary composition, and other ecological parameters. These behavioral and trophic effects may have strong cascading impacts on the ecology of restored ecosystems, but they have rarely been examined. In this study, we explore how rat eradication has affected the trophic ecology of native land crab communities. Using stable isotope analysis of rats and crabs, we demonstrate that the diet or trophic position of most crabs changed subsequent to rat eradication. Combined with the numerical recovery of two carnivorous land crab species (Geograpsus spp.), this led to a dramatic widening of the crab trophic niche following rat eradication. Given the established importance of land crabs in structuring island communities, particularly plants, this suggests an unappreciated mechanism by which rat eradication may alter island ecology. This study also demonstrates the potential for stable isotope analysis as a complementary monitoring tool to traditional techniques, with the potential to provide more nuanced assessments of the community‐ and ecosystem‐wide effects of restoration.  相似文献   

16.
Biological invasions have a great impact on biodiversity and ecosystem functioning worldwide. Kalanchoe daigremontiana is a noxious invasive plant in arid zones. Besides being toxic for domestic animals and wildlife, this species inhibits the growth of native plants. Its rapid proliferation in Cerro Saroche National Park (Venezuela) is of great concern because this area hosts several species endemic to the scarce arid zones in the Caribbean. The traits of K. daigremontiana that contribute to its invasive success are unknown. Based on empirical data, we derived a stage structured, stochastic and density-dependent model, to identify characteristics relevant for its establishment. Sensitivity analyses revealed that the establishment of K. daigremontiana depends exclusively on plantlet recruitment. Because asexual plantlets reproduce in less than 1 year populations are able to increase rapidly during the initial phases of invasion, when extinction risks are higher. Sexual seedlings, on the contrary, require a minimum of 3 years to reproduce. As a result, seedling recruitment contributes little to the transient dynamics of the population and therefore cannot warrant the successful establishment of the species. Simulations of various management strategies show that eradication through plant removal may only be achieved if harvest begins shortly after introduction. If a rapid response is not possible, reducing the survival and growth rates of plantlets through biological control is an alternative option. Thus, a strict control of dispersal of plantlets by humans and a continuous monitoring of new invasions should be the first priority for reducing further impact on native species.  相似文献   

17.
Rapid adaptation to global change can counter vulnerability of species to population declines and extinction. Theoretically, under such circumstances both genetic variation and phenotypic plasticity can maintain population fitness, but empirical support for this is currently limited. Here, we aim to characterize the role of environmental and genetic diversity, and their prior evolutionary history (via haplogroup profiles) in shaping patterns of life history traits during biological invasion. Data were derived from both genetic and life history traits including a morphological analysis of 29 native and invasive populations of topmouth gudgeon Pseudorasbora parva coupled with climatic variables from each location. General additive models were constructed to explain distribution of somatic growth rate (SGR) data across native and invasive ranges, with model selection performed using Akaike's information criteria. Genetic and environmental drivers that structured the life history of populations in their native range were less influential in their invasive populations. For some vertebrates at least, fitness‐related trait shifts do not seem to be dependent on the level of genetic diversity or haplogroup makeup of the initial introduced propagule, nor of the availability of local environmental conditions being similar to those experienced in their native range. As long as local conditions are not beyond the species physiological threshold, its local establishment and invasive potential are likely to be determined by local drivers, such as density‐dependent effects linked to resource availability or to local biotic resistance.  相似文献   

18.
19.
In the native range of the brown trout (Salmo trutta L.) in Europe, the hybridization of native populations by nonnative domesticated strains introduced by stocking is one of the most serious threats to the long-term conservation of diversity within this species. With the objective of conserving and restoring the native gene pool, fishery managers are beginning to implement various management strategies at the local scale. Nevertheless, few case studies have been published that investigate the effectiveness of the various different conservation strategies for native brown trout populations. In the Chevenne Creek, a small French mountain stream, we tested the strategy of removing nonnative individuals by multiple electrofishing carried out by fishery managers in order to evaluate its feasibility and effectiveness for eliminating a nonnative population threatening a native population. Electrofishing produced major reductions in the nonnative population between 2006 and 2009, with 82–100% of nonnative individuals being removed over a period of 4 years. Nevertheless, despite multiple-electrofishing campaigns, this nonnative population was not entirely eradicated, and some natural recruitment persisted. The young of the year and subadults were less effectively removed than the adults. The results suggest that repeated electrofishing campaigns can be used by managers to reduce the nonnative brown trout population with the objective of conserving the native gene pool, but the removal operation must be continued for at least 4 consecutive years. This strategy, which is feasible in small streams, has to be followed by complementary operations to allow the restoration of a new, native, self-sustainable brown trout population.  相似文献   

20.
Biological invasions dramatically affect the distribution, abundance and reproduction of many native species. Because of these ecological effects, exotic species can also influence the evolution of natives exposed to novel interactions with invaders. Evolutionary changes in natives in response to selection from exotics are usually overlooked, yet common responses include altered anti-predator defenses, changes in the spectrum of resources and habitats used, and other adaptations that allow native populations to persist in invaded areas. Whether a native population is capable of responding evolutionarily to selection from invaders will depend on the demographic impact of the invader, the genetic architecture and genetic variability of the native population and potentially the history of previous invasions. In some cases, natives will fail to evolve or otherwise adapt, and local or global extinction will result. In other cases, adaptive change in natives may diminish impacts of invaders and potentially promote coexistence between invaders and natives. Here, we review the evidence for evolutionary responses of native species to novel community members. We also discuss how the effects of introduced species may differ from those caused by natural range expansions of native species. Notably, introduced species may come from remote biotas with no previous evolutionary history with the native community. In addition, the rate of addition of introduced species into communities is much greater than all but the most extreme cases of historical biotic exchange. Understanding the evolutionary component of exotic/native species interactions is critical to recognizing the long-term impacts of biological invasions, and to understanding the role of evolutionary processes in the assembly and dynamics of natural communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号