首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
This study aimed to prepare a novel quartz crystal microbalance (QCM) sensor for the detection of pirimicarb. Pirimicarb‐imprinted poly (ethylene glycol dimethacrylate‐N‐metacryloyl‐(l )‐tryptophan methyl ester) [p (EGDMA‐MATrp)] nanofilm (MIP) on the gold surface of a QCM chip was synthesized using the molecular imprinting technique. A nonimprinted p (EGDMA‐MATrp) nanofilm (NIP) was also synthesized using the same experimental technique. The MIP and NIP nanofilms were characterized via Fourier transform infrared spectroscopy attenuated total reflectance spectroscopy, contact angle, atomic force microscopy, and an ellipsometer. A competitive adsorption experiment on the sensor was performed to display the selectivity of the nanofilm. An analysis of the QCM sensor showed that the MIP nanofilm exhibited high sensitivity and selectivity for pirimicarb determination. A liquid chromatography‐tandem mass spectrometry method was prepared and validated to determine the accuracy and precision of the QCM sensor. The accuracy and precision of both methods were determined by a comparison of six replicates at three different concentrations to tomato samples extracted by using a Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method. The limit of detection of the QCM sensor was found to be 0.028 nM. In conclusion, the QCM sensor showed good accuracy, with recovery percentages between 91 and 94%. Also, the pirimicarb‐imprinted QCM sensor exhibited a fast response time, reusability, high selectivity and sensitivity, and a low limit of detection. Therefore, it offers a serious alternative to the traditional analytical methods for pesticide detection in both natural sources and aqueous solutions.  相似文献   

2.
The effect of differences in the degree of hydrophobicity of protein patches/fragments on the adsorption behaviour of the protein is investigated. The adsorption isotherm of a monoclonal mouse anti-human immunoglobulin G (isotype 2b) onto hydrophobic Teflon particles is measured using a depletion method. The adsorption-induced denaturation of the immunoglobulin as a function of the adsorbed amount is studied by differential scanning calorimetry, and the corresponding rearrangements in the secondary structure of the whole IgG molecule and its F(ab) and F(c) fragments are determined by circular dichroism spectroscopy. The effects of adsorption on the F(ab) and F(c) fragments in the intact IgG molecule occur independently. Adsorption of the whole IgG molecule leads to denaturation of the F(ab) fragments, whereas the F(c) fragment remains unperturbed; adsorption of the isolated fragments results in structural changes in both F(ab) and F(c). The surface hydrophobicity of the isolated fragments was studied by HPLC. These experiments support the hypothesis that differences in the degree of denaturation between F(ab) and F(c) are due to the higher degree of hydrophobicity of the F(ab) fragment. The adsorption-induced changes in the secondary structure are more prominent for the isolated fragments as compared to intact IgG. This is ascribed to the higher flexibility of the isolated fragment, as compared to the fragment in the whole molecule.  相似文献   

3.
The unfolding and further denaturation of IgG and its F(ab) and F(c) fragments were studied both on a macroscopic and molecular level, using differential scanning calorimetry and circular dichroism spectroscopy, respectively. It was shown that the structural integrity of the F(ab) and F(c) units was retained after fragmentation of the IgG. The F(ab) fragment denatured at approximately 61 degrees C and the F(c) fragment at 71 degrees C. The structural transitions observed in the whole IgG is the sum effect of those determined for the isolated F(ab) and F(c) fragments.  相似文献   

4.
This study reports a microfluidic chip integrated with an arrayed immunoassay for surface plasmon resonance (SPR) phase imaging of specific bio-samples. The SPR phase imaging system uses a surface-sensitive optical technique to detect two-dimensional (2D) spatial phase variation caused by rabbit immunoglobulin G (IgG) adsorbed on an anti-rabbit IgG film. The microfluidic chip was fabricated by using micro-electro-mechanical-systems (MEMS) technology on glass and polydimethylsiloxane (PDMS) substrates to facilitate well-controlled and reproducible sample delivery and detection. Since SPR detection is very sensitive to temperature variation, a micromachine-based temperature control module comprising micro-heaters and temperature sensors was used to maintain a uniform temperature distribution inside the arrayed detection area with a variation of less than 0.3 degrees C. A self-assembled monolayer (SAM) technique was used to pattern the surface chemistry on a gold layer to immobilize anti-rabbit IgG on the modified substrates. The microfluidic chip is capable of transporting a precise amount of IgG solution by using micropumps/valves to the arrayed detection area such that highly sensitive, highly specific bio-sensing can be achieved. The developed microfluidic chips, which employed SPR phase imaging for immunoassay analysis, could successfully detect the interaction of anti-rabbit IgG and IgG. The interactions between immobilized anti-rabbit IgG and IgG with various concentrations have been measured. The detection limit is experimentally found to be 1 x 10(-4)mg/ml (0.67 nM). The specificity of the arrayed immunoassay was also explored. Experimental data show that only the rabbit IgG can be detected and the porcine IgG cannot be adsorbed. The developed microfluidic system is promising for various applications including medical diagnostics, microarray detection and observing protein-protein interactions.  相似文献   

5.
Functional histone antibody fragments traverse the nuclear envelope   总被引:10,自引:5,他引:5       下载免费PDF全文
Factors important in the translocation process of proteins across the nuclear membrane were studied by microinjecting either fluoresceinated nonimmune IgG and F(ab)2 or the corresponding molecules, prepared from antisera to histones, into the nucleus and cytoplasm of human fibroblasts. Intact IgG from both preparations remained at the site of injection regardless of whether it was injected into the nucleus or the cytoplasm. In contrast, nonimmune F(ab)2 distributed uniformly throughout the cell. The F(ab)2 derived from affinity-pure antihistone moves into the nucleus after cytoplasmic injection and remains in the nucleus after nuclear microinjection. The migration of the antihistone F(ab)2 into the nucleus results in inhibition of uridine incorporation in the nuclei of the microinjected cells. We conclude that non-nuclear proteins, devoid of specific signal sequences, traverse the nuclear membrane and accumulate in the nucleus provided their radius of gyration is less than 55A and the nucleus contains binding sites for these molecules. These findings support the model of "quasibifunctional binding sites" as a driving force for nuclear accumulation of proteins. The results also indicate that active F(ab)2 fragments, microinjected into somatic cells, can bind to their antigenic sites suggesting that microinjection of active antibody fragments can be used to study the location and function of nuclear components in living cells.  相似文献   

6.
Surface plasmon resonance spectroscopy (SPR) was used to measure the adsorption kinetics and isotherms of dansylated amino acids onto surface-confined molecularly imprinted polymer films (MIP-Fs) and the corresponding non-imprinted polymer control films (NIP-Fs). The surface-confined polymer films were grafted from flat gold surfaces using atom transfer radical polymerization (ATRP). This approach allowed uniform nanothin films to be grown, thereby ensuring that the amino acids see a uniform surface during adsorption. N,N'-Didansyl-l-cystine (DDC) and didansyl-l-lysine (DDK) were used as the template molecules to form the MIP-Fs. Adsorption kinetics data were analyzed using single- and dual-site Langmuir adsorption models. It was found that, within the experimental measurement range, adsorption isotherm data were well described by any of four isotherm models: Langmuir, dual-site Langmuir, Freundlich, or Langmuir-Freundlich (LF). The relatively high heterogeneity index values regressed using the Freundlich and LF isotherms suggest the formation of fairly homogeneous MIP-Fs; although Scatchard analysis reveals binding site heterogeneity does exist. Selectivity studies showed that the MIP-Fs display cross-reactivity between DDC and DDK; nevertheless, MIP-Fs prepared against one template showed selectivity for that template. Solution pH and polymer layer thickness were studied as independent parameters to determine their impacts on amino acid adsorption, as monitored by SPR.  相似文献   

7.
A glycoprotein extract prepared from the plasma membranes of L1210 cells was passed over columns of Sepharose 4B to which either heat-aggregated human IgG or F(ab′)2 fragments had been coupled. The intact IgG column bound 35.7% of the applied counts, whereas the F(ab′)2 columns bound 2.8%. The bound glycoproteins were eluted with citrate buffer (pH 3.2) and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three peaks with apparent molecular weights of 65,000, 45,000, and 28,000 daltons were identified and purified by electroelution from polyacrylamide gels. The isolated proteins were able to bind to the same subclasses of mouse IgG myeloma proteins as the intact L1210 cells, indicating that these molecules are related to L1210 surface Fc receptors. Amino acid analyses of the 3 proteins were markedly similar suggesting that the observed molecular heterogeneity might be due to carbohydrate differences. Neuraminidase digestion of the isolated proteins resulted in mobility shifts on polyacrylamide gel electrophoresis which were consistent with the interpretation that either the isolated proteins have considerably different sialic acid contents, or that removal of the sialic acid results in disaggregation of an Fc receptor molecule.  相似文献   

8.
Rabbits immunized with herpes virus were bled periodically and bivalent and univalent fragments of IgG from each serum sample were prepared by enzymatic digestion. The 2-week F(ab′)2 showed a low neutralizing activity only after addition of anti-IgG. F(ab′)2 of the 4-week serum retained almost all of the neutralizing activity of IgG, while its univalent fragments demonstrated none even when tested with anti-IgG. In contrast to these early IgG fragments, univalent fragments of the 9-week and 20-week IgG neutralized the virus to considerable extents in the absence of anti-IgG; after addition of anti-IgG the activity equaled that of intact IgG in the cases of Fab′ and Fab-II, though the activity of Fab-I was relatively low. The three univalent fragments were all sensitive to heating at 70 C and to ultraviolet irradiation, whereas intact IgG resisted these treatments. F(ab′)2 was resistant to the heating and less sensitive to ultraviolet irradiation than univalent fragments. Neutralization kinetic curve experiments to test blocking effects of IgG fragments against the neutralization by intact IgG suggested that the early Fab′ did combine with the virus and that the late Fab′ exerted a higher blocking effect than the early Fab′.  相似文献   

9.
A surface plasmon resonance (SPR) sensor using a molecularly imprinted polymer-coated sensor chip for the detection of sialic acid was developed. The thinly coated polymer was prepared by co-polymerizing N,N,N-trimethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate and ethyleneglycol dimethacrylate in the presence of p-vinylbenzeneboronic acid ester with sialic acid. The sensor showed a selective response to ganglioside of which sialic acid is located at the non-reducing end and gave a linear relationship from 0.1 to 1.0 mg of ganglioside.  相似文献   

10.
M R Miller  C Seighman  R G Ulrich 《Biochemistry》1985,24(25):7440-7445
The effect of monoclonal anti-(DNA polymerase alpha) immunoglobulin G (IgG) and F(ab) fragments on DNA replication in lysolecithin-permeabilized human cells and on DNA polymerase alpha activity was determined. DNA polymerase alpha activity in vitro was inhibited equally by the same concentrations of monoclonal IgGs and F(ab) fragments. However, the IgGs and F(ab) fragments were not equally potent in inhibiting DNA replication in permeable cells. In general, the F(ab) fragments were approximately equal to 10-fold more potent than IgGs in inhibiting DNA replication, suggesting the F(ab) fragments cross the nuclear membrane more readily than IgGs. Immunocytochemical studies demonstrated that at least a fraction of anti-(DNA polymerase alpha) IgGs entered the nucleus of permeable cells. For most antibodies tested, the IgG or F(ab) concentration needed to inhibit replication was several orders of magnitude higher than that needed to neutralize polymerase alpha activity extracted from the same number of cells. Anti-(DNA polymerase alpha) F(ab) fragments were shown to inhibit the discontinuous synthesis of Okazaki DNA, as well as the maturation of Okazaki DNA to larger DNA, thereby implicating DNA polymerase alpha in both of these processes.  相似文献   

11.
In this paper the development and feasibility of a novel detection system for a low molecular weight chemical, in which a peptide was utilized as a binding molecule, are described. Surface plasmon resonance (SPR) apparatus was used as a transducer. The porphyrin binding peptide, PSP2, was used as a model peptide ligand, while a porphyrin derivative, H2TMpyP, was used as a model low-molecular-weight chemical. PSP2 was covalently immobilized onto the SPR sensor chip and SPR measurement using the PSP2-immobilized chip for various concentrations of porphyrin was carried out. H2TMpyP was detectable in the range from 100 ng ml−1 to 10 μg ml−1 with a linear correlation and good precision and the PSP2-immobilized chip could be regenerated within 1 min after measurement in this system. From comparison of the detection manners of three porphyrin derivatives, the ability of a short peptide to discriminate between differences in molecular structure was demonstrated. Moreover, the self-assembled monolayer (SAM) of PSP2 was successfully prepared on the gold substrate and H2TMpyP could be detected using the PSP2-SAM chip.  相似文献   

12.
Particle ingestion by polymorphonuclear leukocytes (PMN) is promoted by cell surface recognition and binding of fragments of the third component of complement (C3) and Fc regions of certain immunoglobulin (IgG) molecules. In order to determine the influence of these specific ligandsurface membrane interactions upon other PMN functions, we have employed nonphagocytosable particles (serum-treated Sepharose beads) coated with fragments of C3 and/or IgG, and have investigated whether these provide a sufficient stimulus for the metabolic changes and degranulation that ordinarly accompany phagocytosis by PMN. Sepharose 4B activates complement in fresh normal serum and consequently is coated with fragments of C3 (confirmed by immunoelectrophoretic evidence of factor B and C3 conversion and by immunofluorescence). Adsorbed IgG could be removed from serum-treated Sepharose by boiling in 2 M NaCl without significantly influencing bound complement. We have found that normal human PMN recognize and adhere to Sepharose beads coated with fragments of C3 and consequently are stimulated to increase their oxidative metabolism (measured as superoxide anion generation). This PMN response occurred in the absence of IgG but could be amplified if this immunoglobulin was also present on the bead surfaces.Both adherence and metabolic stimulation could be blocked by treatment of the beads with F(ab)2 anti-C3. In contrast to metabolic stimulation, degranulation (selective extracellular release of lysosomal constituents) was observed only when PMN encountered both C3 fragments and IgG on the beads. This response could be blocked by treating beads with either F(ab)2 anti-C3 or F(ab)2 anti-IgG. These results indicate that cell surface stimulation of PMN is not an "all or none" phenomenon and that certain vital functions of these cells may be mediated or modulated independently by immunoglobulins and complement.  相似文献   

13.
A surface plasmon resonance (SPR)-immunosensor for detection of benzo[a]pyrene (BaP) is developed by using a model BaP-hapten compound, BaP-bovine serum albumin conjugate (BaP-BSA), and an anti-BaP-BSA monoclonal antibody. BaP-BSA conjugate is immobilized on a gold thin-film sensor chip by means of simple physical adsorption. The number of BaP-hapten units in BaP-BSA conjugate is estimated to be 28 from the difference in molecular weight (MW) between BaP-BSA conjugate and BSA based on the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) measurement. Anti-BaP-BSA antibody on contact with the BaP-BSA conjugate immobilized sensor chip causes an increase in the incident angle of the sensor chip. Binding of anti-BaP-BSA antibody with surface-immobilized BaP-BSA conjugate is inhibited by the presence of BaP in analyte solution, because of the inhibition effect of BaP. The SPR immunosensor for BaP functioning with the indirect competitive immunoreaction of anti-BaP-BSA antibody between the analyte (BaP) in testing solution and the BaP-BSA conjugate immobilized on the sensor chip provides a rapid determination (response time: ca. 15 min) of BaP in the concentration range of 0.01-1000 ppb. The antibody anchored to the sensor chip by antigen-antibody binding is removed on treatment with a pepsin solution (pH 2.0) for few minutes. The SPR sensor chip is found to be reusable for more than 20 times with a little decrease (<7%) in the sensor response. Detection of BaP by direct competitive immunoreactions is also carried out by enzyme-linked immunosorbent assay (ELISA). The concentration of BaP could be determined as low as 0.01 ppb and 2 ppb using the SPR sensor and the ELISA method, respectively. The SPR sensor is found to detect BaP selectively in the presence of 2-hydroxybiphenyl (HBP); the incident angle shift of the SPR sensor for BaP is found to be same irrespective to the presence or the absence of a same concentration (as much as 30 ppb) of HBP together.  相似文献   

14.
Surface plasmon resonance (SPR) immunosensor using 4-mercaptobenzoic acid (4-MBA) modified gold SPR chip was developed first time for the detection of flagellin specific antibodies of Salmonella typhi (S. typhi). Flagellin protein of S. typhi was prepared by recombinant DNA technology. The modification of gold chip with 4-MBA was in-situ characterized by SPR and electrochemical impedance spectroscopy. By using kinetic evaluation software, K(D) and B(max) values were calculated and found to be 26.3 fM and 62.04 m°, respectively, for the immobilized monoclonal antibody (Moab) of recombinant flagellin (r-fla) protein of S. typhi (r-fla S. typhi). In addition, thermodynamic parameters such as ΔG, ΔH and ΔS were determined first time for r-fla S. typhi and Moab of r-fla S. typhi interactions and the values revealed the interaction between r-fla S. typhi and Moab of r-fla S. typhi as spontaneous, endothermic and entropy driven one. Moreover, healthy human serum samples and patient sera (Widal positive and Widal negative) were subjected to SPR analysis. The present SPR based approach provides an alternative way for S. typhi detection in less than 10 min.  相似文献   

15.
An 11 gold atom (undecagold) cluster was covalently attached to specific sites on Fab′, F(ab′)2 and whole IgG molecules such that each carried 11–33 gold atoms without significant loss of native immunospecificity. Gold cluster labeled 17-1A monoclonal F(ab′)2 antibody fragments showed 80% immunoreactivity compared to native antibody fragments in binding to human colon carcinoma cells in vitro. Radioactive gold in vivo biodistributions in nude mice with human tumors are also reported. By using clusters, potentially a larger destructive payload can be carried per antibody.  相似文献   

16.
BACKGROUND: Recombinant antibody fragments are valuable tools for SPR-based detection of small molecules such as illicit drugs. However, the multiple structural formats of recombinant antibody fragments are largely uncharacterised with respect to their respective performance in SPR sensing. We have expressed a model anti-M3G antibody in both scFv and chimeric Fab formats to examine its sensitivity and binding profiles in a microplate immunoassay format and Biacore. We have further examined the influence of scFv multimerisation, Fab constant region stability and SPR chip surface coating chemistry, on anti-hapten SPR assay development. RESULTS: Under optimised competition ELISA conditions, the anti-M3G scFv was found to have an IC(50) value of 30 ng/ml, while the most stable Fab construct exhibited an IC(50) value of 2.4 ng/ml. In SPR competition assay on an M3G-OVA-coated SPR chip surface, the two constructs again differed in sensitivity, with IC(50) values of 117 and 19 ng/ml for the scFv and Fab, respectively (the scFv also exhibiting poor linearity of response). However, when the SPR chip surface was directly coated with M3G, both antibody constructs exhibited good linearity of response, similar high sensitivity IC(50) values (scFv 30 ng/ml, Fab 14 ng/ml) and high reproducibility (50 effective regenerations for M3G-OVA, 200 for M3G direct). During SPR assay development it was noticed that scFv and Fab constructs gave differing off-rate profiles. Subsequent HPLC, ELISA and electrophoretic analyses then confirmed that a portion of the scFv population multimerises. Bivalent scFv was found to profoundly affect the dissociation curve for scFv in stringent SPR kinetic analyses, leading to a 40-fold difference in calculated off-rate values (Fab off rate 4.7 x 10(-3)S(-1), scFv off rate 1.03 x 10(-2)S(-1)). CONCLUSION: The structural format of recombinant antibody fragments and chip functionalisation methodology can both profoundly affect the function of anti-M3G SPR assay, with direct coating and Fab format proving to be optimal. The confirmation of scFv multimerisation and resulting changes in SPR kinetics profile, in comparison with a Fab, further suggest that caution must be taken in the interpretation of SPR sensorgrams, which are commonly used in the 'affinity ranking' of scFv panels in which the extent of dimerisation in each sample is unknown.  相似文献   

17.
Sixty-one human myeloma proteins (HMP) from patients with multiple myeloma and Waldenstr?m macroglobulinemia were tested for anti-idiotypic (Id) activity against autoantibodies to double-stranded DNA, small nuclear ribonucleoproteins, and human thyroglobulin (HTg), by competitive radioimmunoassays and enzyme immunoassays. An IgG1, lambda HMP from patient BEN with anti-Id activity against antibodies to HTg is reported. IgG1 BEN was not directed toward human Fc fragments and its activity was not related to allotypic determinants. IgG1 BEN molecules recognized Id determinants (idiotopes) on F(ab')2 anti-HTg fragments, but not idiotopes of F(ab')2 fragments of antibodies of other specificities. This observation supports the general significance of Id network interactions in regulation and diversification of immune responses in man.  相似文献   

18.
After incubation of F1-stripped everted membrane vesicles with antibodies against subunit c of the ATP synthase of Escherichia coli the proton translocation through the open F0 channel was blocked. Rebinding of F1 to those vesicles is affected by the antibody concentration used. In general, the use of F(ab')2 or Fab fragments prepared from anti-c antibodies gave similar results. However, using Fab fragments a higher amount of antigenic binding sites was necessary to block the F0 complex completely, whereas extremely low amounts of Fab fragments were necessary to inhibit the binding of F1. This can be explained by an antigenic determinant of subunit c, which is only accessible to the smaller Fab fragments with a molecular mass of approximately 50,000. Incubation of F1-containing everted membranes with anti-c antibodies showed that the binding of the antibodies resulted in a displacement of F1, while simultaneously the proton translocation through F0 has been blocked. Such a displacement can only be observed after incubation with IgG molecules or F(ab')2 fragments. Fab fragments were not able to displace the F1 part, indicating that the ability of antibodies and F(ab')2 fragments to produce cross-links is responsible for the loss of F1 from the membranes.  相似文献   

19.
A biosensor based on surface plasmon resonance (SPR) is developed for the detection of 2-hydroxybiphenyl (HBP). A monoclonal antibody against HBP (abbreviated hereafter as HBP-mAb) is developed and used for the detection of HBP by competitive SPR-based immunoassay and enzyme linked immunosorbent assay (ELISA) methods. A novel HBP-hapten compound, HBP-bovine serum albumin conjugate (HBP-BSA), derived by binding several HBP units with BSA by an aliphatic chain spacer is used in the development of antibody and for the functionalization of immunoprobes. HBP-BSA linked to the Au surface of the SPR sensor chip undergoes inhibitive immunoreaction with HBP-mAb in the presence of free HBP. The SPR-based immunoassay provides a rapid determination (response time: approximately 20 min) of the concentration of HBP in the range of 0.1-1000 ppb (ng/ml). Regeneration of the sensor chip is gained by treating the antibody-anchored SPR sensor chip with a pepsin solution (100 ppm (microg/ml); pH 2.0) for few minutes. The SPR sensor chip is reusable for the detection of HBP for more than 20 cycles with average loss of 0.35% reactivity per regeneration step. HBP concentration is determined as low as 0.1 and 3 ppb using the SPR sensor and ELISA measurements, respectively. The developed SPR sensor for HBP is free from interference by coexisting benzo[a]pyrene (BaP), 2,4-dichlorophenoxyacetic acid (2,4-D) and benz[a]anthracene; SPR angle shift obtained to the flow of HBP is almost same irrespective to the presence or absence of a same concentration of these carcinogenic polycyclic aromatic hydrocarbons together. The SPR sensor for HBP is proved to be applicable in simultaneous detection of HBP and BaP in parallel with another SPR sensor for BaP.  相似文献   

20.
《MABS-AUSTIN》2013,5(5):1265-1273
We report a chimeric monoclonal antibody (mAb) directed to a neo-epitope that is exposed in the IgG lower hinge following proteolytic cleavage. The mAb, designated 2095–2, displays specificity for IdeS-generated F(ab’)2 fragments, but not for full-length IgG or for closely-related F(ab’)2 fragments generated with other proteases. A critical component of the specificity is provided by the C-terminal amino acid of the epitope corresponding to gly-236 in the IgG1 (also IgG4) hinge. By its ability to bind to IdeS-cleaved anti-CD20 mAb, mAb 2095–2 fully restored antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against WIL2-S cells to the otherwise inactive anti-CD20 IgG1 F(ab’)2 fragment. Similarly, 2095–2 reinstated ADCC against MDA-MB-231 cells to an anti-CD142 IgG1 F(ab’)2 fragment. mAb 2095–2 was also capable of eliciting both CDC and ADCC to IgG4 F(ab’)2 fragments, an IgG subclass that has weaker ADCC and CDC when intact relative to intact IgG1. The in vitro cell-based efficacy of 2095–2 was extended to the in vivo setting using platelets as a cell clearance surrogate. In a canine model, the co-administration of 2095–2 together with IdeS-generated, platelet-targeting anti-CD41/61 F(ab’)2 fragment not only restored platelet clearance, but did so at a rate and extent of clearance that exceeded that of intact anti-CD41/61 IgG at comparable concentrations. To further explore this unexpected amplification effect, we conducted a rat study in which 2095–2 was administered at a series of doses in combination with a fixed dose of anti-CD41/61 F(ab’)2 fragments. Again, the combination, at ratios as low as 1:10 (w/w) 2095–2 to F(ab’)2, proved more effective than the anti-CD41/61 IgG1 alone. These findings suggest a novel mechanism for enhancing antibody-mediated cell-killing effector functions with potential applications in pathologic settings such as tumors and acute infections where protease activity is abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号