首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we reported potent and small-sized beta-secretase (BACE1) inhibitors KMI-420 and KMI-429 in which we replaced the Glu residue at the P4 position of KMI-260 and KMI-360, respectively, with a 1H-tetrazole-5-carbonyl DAP (L-alpha,beta-diaminopropionic acid) residue. At the P1' position, these compounds contain one or two carboxylic acid groups, which are unfavorable for crossing the blood-brain barrier. Herein, we report BACE1 inhibitors with P1' carboxylic acid bioisosteres in order to develop practical anti-Alzheimer's disease drugs. Among them, tetrazole ring-containing compounds, KMI-570 (IC50=4.8 nM) and KMI-684 (IC50=1.2 nM), exhibited significantly potent BACE1 inhibitory activities.  相似文献   

2.
Recently, we reported substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent inhibitory activities in enzymatic and cell assays. We also designed and synthesized non-peptidic and small-sized inhibitors possessing a heterocyclic scaffold at the P(2) position. By studying the structure-activity relationship of these inhibitors, we found that the σ-π interaction of an inhibitor with the BACE1-Arg235 side chain played a key role in the inhibition mechanism. Hence, we optimized the inhibitors with a focus on their P(2) regions. In this Letter, a series of novel BACE1 inhibitors possessing a 5-nitroisophthalic scaffold at the P(2) position are described along with the results of the related structure-activity relationship study. These small-sized inhibitors are expected improved membrane permeability and bioavailability.  相似文献   

3.
Recently, we reported potent substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. Because these inhibitors contained some natural amino acids, we would need to improve their enzymatic stability in vivo and permeability across the blood–brain barrier, so that they become practically useful. Subsequently, non-peptidic and small-sized BACE1 inhibitors possessing a heterocyclic scaffold, 2,6-pyridenedicarboxylic, chelidamic or chelidonic moiety, at the P2 position were reported. These inhibitors were designed based on the conformer of docked inhibitor in BACE1. In this study, we discuss the role and significance of interactions between Arg235 of BACE1 and its inhibitor in BACE1 inhibitory mechanism. Moreover, we designed more potent small-sized BACE1 inhibitors with a 2,6-pyridinedicarboxylic scaffold at the P2 position, that were optimized for the interactions with Arg235 of BACE1.  相似文献   

4.
Recently, we reported substrate-based beta-secretase (BACE1) inhibitors with a hydroxymethylcarbonyl (HMC) isostere as a substrate transition-state mimic. These inhibitors showed potent BACE1 inhibitory activities (approximately 1.2 nM IC(50)). In order to improve in vivo enzymatic stability and permeability across the blood-brain barrier, these penta-peptidic inhibitors would need to be further optimized. On the other hand, non-peptidic inhibitors possessing isophthalic residue at the P(2) position were reported from other research groups. We selected isophthalic-type aromatic residues at the P(2) position and an HMC isostere at the P(1) position as lead compounds. On the basis of the design approach focused on the conformer of docked inhibitor in BACE1, we found novel non-peptidic and small-sized BACE1 inhibitors possessing a 2,6-pyridinedicarboxylic, chelidamic or chelidonic residue at the P(2) position.  相似文献   

5.
Recently, we reported potent BACE1 inhibitors KMI-429, -684, and -574 possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent inhibitory activities in enzymatic and cell assays, especially, KMI-429 was confirmed to significantly inhibit Abeta production in vivo. However, acidic moieties at the P(4) and P(1)' positions of KMI-compounds were thought to be unfavorable for membrane permeability across the blood-brain barrier. Herein, we replaced acidic moieties at the P(4) position with other hydrogen bond acceptor groups, and these inhibitors exhibited improved BACE1 inhibitory activities in cultured cells. In this study, we replaced the acidic moieties at the P(1)' position with non-acidic and low molecular sized moieties.  相似文献   

6.
We have previously reported potent substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. While these inhibitors exhibited potent activities in enzymatic and cellular assays (KMI-429 in particular inhibited Aβ production in vivo), these inhibitors contained some natural amino acids that seemed to be required to improve enzymatic stability in vivo and permeability across the blood–brain barrier, so as to be practical drug. Recently, we synthesized non-peptidic and small-sized BACE1 inhibitors possessing a heterocyclic scaffold at the P2 position. Herein we report the SAR study of BACE1 inhibitors possessing this heterocyclic scaffold, a chelidonic or 2,6-pyridinedicarboxylic moiety.  相似文献   

7.
Recently, we reported potent and small-sized beta-secretase (BACE1) inhibitors KMI-570 and KMI-684 in which we replaced carboxylic acid groups at the P(1)(') position of KMI-420 and KMI-429, respectively, with tetrazole derivatives as carboxylic acid bioisosteres. These modifications improved significantly BACE1 inhibitory activity and chemical stability. In this study, the acidic tetrazole ring of the P(4) position of KMI-420 and KMI-570, respectively, was replaced with various hydrogen bond acceptor groups. We found BACE1 inhibitor KMI-574 that exhibited potent inhibitory activity in cultured cells as well as in vitro enzymatic assay.  相似文献   

8.
Previously reported pentapeptidic BACE1 inhibitors, designed using a substrate-based approach, were used as lead compounds for the further design of non-peptidic BACE1 inhibitors. Although these peptidic and non-peptidic inhibitors, with a hydroxymethylcarbonyl isostere as a substrate transition-state mimic, exhibited potent BACE1 inhibitory activities, their molecular-sizes appeared a little too big (molecular weight of >600daltons) for developing practical anti-Alzheimer's disease drugs. To develop lower weight BACE1 inhibitors, a series of tripeptidic BACE1 inhibitors were devised using a design approach based on the conformation of a virtual inhibitor bound to the BACE1 active site, also called 'in-silico conformational structure-based design'. Although these tripeptidic BACE1 inhibitors contained some natural amino acid residues, they are expected to be useful as lead compounds for developing the next generation BACE1 inhibitors, due to their low molecular size and unique structural features compared with previously reported inhibitors.  相似文献   

9.
The proteolytic enzyme β-secretase (BACE1) plays a central role in the synthesis of the pathogenic β-amyloid in Alzheimer's disease. SAR studies of the S2' region of the BACE1 ligand binding pocket with pyrazolyl and thienyl P2' side chains are reported. These analogs exhibit low nanomolar potency for BACE1, and demonstrate >50- to 100-fold selectivity for the structurally related aspartyl proteases BACE2 and cathepsin D. Small groups attached at the nitrogen of the P2' pyrazolyl moiety, together with the P3 pyrimidine nucleus projecting into the S3 region of the binding pocket, are critical components to ligand's potency and selectivity. P2' thiophene side chain analogs are highly potent BACE1 inhibitors with excellent selectivity against cathepsin D, but only modest selectivity against BACE2. The cell-based activity of these new analogs tracked well with their increased molecular binding with EC(50) values of 0.07-0.2 μM in the ELISA assay for the most potent analogs.  相似文献   

10.
We have reported potent peptidic and non-peptidic BACE1 inhibitors with a hydroxymethylcarbonyl (HMC) isostere as a substrate transition-state mimic. However, our potent inhibitors possess a tetrazole ring at the P1′ position. It is desirable that central nervous system (CNS) drugs do not possess an acidic moiety. In this study, we synthesized non-acidic BACE1 inhibitors with heterocyclic derivatives at the P1′ position. KMI-1764 (27) exhibited potent inhibitory activity (IC50 = 27 nM). Interestingly, these non-acidic inhibitors tended to follow the quantitative structure–activity relationship (QSAR) equation and interacted with BACE1-Arg235 in the binding model.  相似文献   

11.
The human beta-secretase enzyme, BACE1, mediates a critical step in the production of A beta(40) and A beta(42) peptides which are responsible for the severe neuronal cell death and insoluble amyloid plaques of Alzheimer's disease (AD). Several lines of evidence suggest that potent BACE1 inhibitors represent an attractive A beta-lowering strategy for AD. We designed a simple homogeneous time-resolved fluorescence (HTRF) assay which utilizes the fluorescence resonance energy transfer (FRET) pair europium and allophycocyanin for measuring BACE1 enzymatic activity in a high-throughput manner. Robust FRET was observed when an 18-amino-acid APP Swedish-synthetic peptide that was N-terminally labeled with europium cryptate and C-terminally biotinylated was incubated with streptavidin-coupled cross-linked allophycocyanin (SA-XL665). Purified BACE1 enzyme caused a time- and concentration-dependent linear change in FRET at low nanomolar enzyme concentrations. This assay was used to compare the autoprocessed "mature" BACE1 enzyme (sautoBACe1) and the soluble proBACE1 for activity and inhibition by selected peptidic BACE inhibitors. sautoBACE1 displayed only a modest increase in activity compared to sproBACE1 and this activity was uninhibited by the BACE1 prodomain peptide. Interestingly, the BACE1 prodomain peptide was able to partially inhibit sproBACE1 activity. IC(50s) for a P10-P4' statine BACE1 inhibitor, OM99-2, and OM-003 determined using the HTRF assay were in good agreement with those reported in the literature. The primary advantages of the HTRF-formatted BACE1 protease assay include appropriate reflection of native BACE1 activity, high sensitivity, low variability, and intrinsic quench correction afforded by ratiometric measurements made between EuK and SA-XL665 fluorophores.  相似文献   

12.
We describe herein the syntheses and evaluation of a series of C-termini pyridyl containing Phe*-Ala-based BACE inhibitors (5-19). In conjunction with four fixed residues at the P1 (Phe), P1' (Ala), P2' (Val), and P2' cap (Pyr.), rather detailed SAR modifications at P2 and P3 positions were pursued. The promising inhibitors emerging from this SAR investigation, 12 and 17 demonstrated very good enzyme potency (IC(50)=45 nM) and cellular activity (IC(50)=0.4 microM).  相似文献   

13.
Recently, we reported potent and small-sized BACE1 inhibitors KMI-358 and KMI-370 in which the Glu residue is replaced by a beta-N-oxalyl-DAP (l-alpha,beta-diaminopropionyl) residue at the P(4) position. The beta-N-oxalyl-DAP group is important for enhancing BACE1 inhibitory activity, but these inhibitors isomerized to alpha-N-oxalyl-DAP derivatives in solvents. Hence, we used a tetrazole moiety as a bioisostere of the free carboxylic acid of the oxalyl group. KMI-420 and KMI-429, containing a tetrazole ring, showed improved stability and potent enzyme inhibitory activity.  相似文献   

14.
β-Secretase (BACE1) is an attractive drug target for Alzheimer disease. However, the design of clinical useful inhibitors targeting its active site has been extremely challenging. To identify alternative drug targeting sites we have generated a panel of BACE1 monoclonal antibodies (mAbs) that interfere with BACE1 activity in various assays and determined their binding epitopes. mAb 1A11 inhibited BACE1 in vitro using a large APP sequence based substrate (IC(50) ~0.76 nm), in primary neurons (EC(50) ~1.8 nm), and in mouse brain after stereotactic injection. Paradoxically, mAb 1A11 increased BACE1 activity in vitro when a short synthetic peptide was used as substrate, indicating that mAb 1A11 does not occupy the active-site. Epitope mapping revealed that mAb 1A11 binds to adjacent loops D and F, which together with nearby helix A, distinguishes BACE1 from other aspartyl proteases. Interestingly, mutagenesis of loop F and helix A decreased or increased BACE1 activity, identifying them as enzymatic regulatory elements and as potential alternative sites for inhibitor design. In contrast, mAb 5G7 was a potent BACE1 inhibitor in cell-free enzymatic assays (IC(50) ~0.47 nm) but displayed no inhibitory effect in primary neurons. Its epitope, a surface helix 299-312, is inaccessible in membrane-anchored BACE1. Remarkably, mutagenesis of helix 299-312 strongly reduced BACE1 ectodomain shedding, suggesting that this helix plays a role in BACE1 cellular biology. In conclusion, this study generated highly selective and potent BACE1 inhibitory mAbs, which recognize unique structural and functional elements in BACE1, and uncovered interesting alternative sites on BACE1 that could become targets for drug development.  相似文献   

15.
A series of cis-1(S)2(R)-amino-2-indanol based compounds with a biphenylmethyl group at the P1' position was found to be potent aggrecanase inhibitors. Both compounds 2j and 2n possessed very high aggrecanase affinity (IC(50)=1.5nM), and showed excellent selectivity over MMP-1 and MMP-9, with moderate selectivity against MMP-2.  相似文献   

16.
Rational design and synthesis of selective BACE-1 inhibitors   总被引:4,自引:0,他引:4  
An effective approach for enhancing the selectivity of beta-site amyloid precursor protein cleaving enzyme (BACE 1) inhibitors is developed based on the unique features of the S1' pocket of the enzyme. A series of low molecular weight (<600) compounds were synthesized with different moieties at the P1' position. The selectivity of BACE 1 inhibitors versus cathepsin D and renin was enhanced 120-fold by replacing the hydrophobic propyl group with a hydrophilic propionic acid group.  相似文献   

17.
P3 cap modified Phe*-Ala series BACE inhibitors   总被引:1,自引:0,他引:1  
With the aim of reducing molecular weight and adjusting log D value of BACE inhibitors to more favorable range for BBB penetration and better bioavailability, we synthesized and evaluated several series of P3 cap modified BACE inhibitors obtained via replacement of the P3NHBoc moiety as seen in 3 with other polar functional groups such as amino, hydroxyl and fluorine. Several promising inhibitors emerging from this P3 cap SAR study (e.g., 15 and 19) demonstrated good enzyme inhibitory potencies (BACE-1 IC(50) <50 nM) and whole cell activities (IC(50) approximately 1 microM).  相似文献   

18.
Structure activity relationships are described for a series of succinyl hydroxamic acids 4a-o as potent and selective inhibitors of matrix metalloprotease-3 (stromelysin-1). Optimisation of P1' and P3' groups gave compound 4j (MMP-3 IC50=5.9nM) which was >140-fold less potent against MMP-1 (IC50=51,000nM), MMP-2 (IC50=1790nM), MMP-9 (IC50=840nM) and MMP-14 (IC50=1900nM).  相似文献   

19.
Recently, we reported a novel substrate-based octapeptide BACE1 inhibitor KMI-008 containing hydroxymethylcarbonyl (HMC) isostere as a transition-state mimic. Using KMI-008 as a lead compound, a small-sized and highly potent BACE1 inhibitor KMI-370 (IC(50)=3.4 nM) was designed and synthesized.  相似文献   

20.
A new series of bis-statine based peptidomimetic inhibitors of human beta-secretase (BACE 1) was developed by structure-based modification of the three regions to the initial lead 3: an N-terminus, a central bis-statine core, and a C-terminus. Introduction of a 4-aminomethylbenzoic acid on the C-terminus resulted in a potent BACE 1 inhibitor with an IC50 value of 21 nM. The general requirements for the optimal substrate-enzyme interaction are disclosed herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号