首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Integral proteins in the outer membrane of mitochondria control all aspects of organelle biogenesis, being required for protein import, mitochondrial fission, and, in metazoans, mitochondrial aspects of programmed cell death. How these integral proteins are assembled in the outer membrane had been unclear. In bacteria, Omp85 is an essential component of the protein insertion machinery, and we show that members of the Omp85 protein family are also found in eukaryotes ranging from plants to humans. In eukaryotes, Omp85 is present in the mitochondrial outer membrane. The gene encoding Omp85 is essential for cell viability in yeast, and conditional omp85 mutants have defects that arise from compromised insertion of integral proteins like voltage-dependent anion channel (VDAC) and components of the translocase in the outer membrane of mitochondria (TOM) complex into the mitochondrial outer membrane.  相似文献   

2.
The Omp85 family of proteins has been found in all Gram-negative bacteria and even several eukaryotic organisms. The previously uncharacterized Escherichia coli member of this family is YaeT. The results of this study, consistent with previous Omp85 studies, show that the yaeT gene encodes for an essential cellular function. Direct examinations of the outer membrane fraction and protein assembly revealed that cells depleted for YaeT are severely defective in the biogenesis of outer membrane proteins (OMPs). Interestingly, assemblies of the two distinct groups of OMPs that follow either SurA- and lipopolysaccharide-dependent (OmpF/C) or -independent (TolC) folding pathways were affected, suggesting that YaeT may act as a general OMP assembly factor. Depletion of cells for YaeT led to the accumulation of OMPs in the fraction enriched for periplasm, thus indicating that YaeT facilitates the insertion of soluble assembly intermediates from the periplasm to the outer membrane. Our data suggest that YaeT's role in the assembly of OMPs is not mediated through a role in lipid biogenesis, as debated for Omp85 in Neisseria, thus advocating a conserved OMP assembly function of Omp85 homologues.  相似文献   

3.
Omp85 is a protein found in Gram-negative bacteria where it serves to integrate proteins into the bacterial outer membrane. Members of the Omp85 family of proteins are defined by the presence of two domains: an N-terminal, periplasmic domain rich in POTRA repeats and a C-terminal beta-barrel domain embedded in the outer membrane. The widespread distribution of Omp85 family members together with their fundamental role in outer membrane assembly suggests the ancestral Omp85 arose early in the evolution of prokaryotic cells. Mitochondria, derived from an ancestral bacterial endosymbiont, also use a member of the Omp85 family to assemble proteins in their outer membranes. More distant relationships are seen between the Omp85 family and both the core proteins in two-partner secretion systems and the Toc75 family of protein translocases found in plastid outer envelopes. Aspects of the ancestry and molecular architecture of the Omp85 family of proteins is providing insight into the mechanism by which proteins might be integrated and assembled into bacterial outer membranes.  相似文献   

4.
Bos MP  Robert V  Tommassen J 《EMBO reports》2007,8(12):1149-1154
beta-Barrel proteins are present in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The central component of their assembly machinery is called Omp85 in bacteria. Omp85 is predicted to consist of an integral membrane domain and an amino-terminal periplasmic extension containing five polypeptide-transport-associated (POTRA) domains. We have addressed the function of these domains by creating POTRA domain deletions in Omp85 of Neisseria meningitidis. Four POTRA domains could be deleted with only slight defects in Omp85 function. Only the most carboxy-terminal POTRA domain was essential, as was the membrane domain. Thus, similar to the mitochondrial Omp85 homologue, the functional core of bacterial Omp85 consists of its membrane domain and a single POTRA domain, that is, POTRA5.  相似文献   

5.
AIMS: To clone, sequence and characterize the gene encoding the Omp48, a major outer membrane protein from Aeromonas veronii. METHODS AND RESULTS: A genomic library of Aer. veronii was constructed and screened to detect omp48 gene sequences, but no positive clones were identified, even under low stringency conditions. The cloned gene probably was toxic to the host Escherichia coli strain, so the cloning of omp48 was achieved by inverse PCR. The nucleotide sequence of omp48 consisted of an open reading frame of 1278 base pairs. The predicted primary protein is composed of 426 amino acids, with a 25-amino-acid signal peptide and common Ala-X-Ala cleavage site. The mature protein is composed of 401 amino acids with a molecular mass of 44,256 Da. CONCLUSIONS: The omp48 gene from Aer. veronii was cloned, sequenced and characterized in detail. BLAST analysis of Omp48 protein showed sequence similarity (over 50%) to the LamB porin family from other pathogenic Gram-negative bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacterial diseases are a major economic problem for the fish farming industry. Outer membrane proteins are potentially important vaccine components. The characterization of omp48 gene will allow further investigation of the potential of Omp48 as recombinant or DNA vaccine component to prevent Aer. veronii and related species infections in reared fish.  相似文献   

6.
The expression of haemin-binding proteins (HBPs) in the outer membrane is one of the strategies used by Gram-negative bacteria to obtain iron from the host. No HBP has been described in Brucella spp. We investigated whether Omp31, an outer membrane protein from Brucella with homology to HBPs from Bartonella quintana, is an HBP. Soluble recombinant Omp31 bound specifically to haemin-agarose, while an unrelated Brucella protein (SurA) did not. A similar experiment showed that native Omp31 found in the Brucella suis membrane fraction also binds to haemin-agarose. Recombinant Omp31 was electrophoresed by SDS-PAGE, transferred to nitrocellulose, and incubated with a haemin solution. Haemin bound to Omp31 and to albumin (positive control) but not to SurA. IPTG-induced recombinant Escherichia coli cells expressing Omp31 on their membrane bound significantly more haemin than uninduced cells or controls carrying a similar plasmid without the omp31 gene, showing that Omp31 also binds haemin in a bacterial membrane environment. Viable Brucella ovis cells bound haemin in solution, and this binding was markedly inhibited by preincubation of cells with antibodies to Omp31 and to an exposed prominent loop of the protein, thus showing that Omp31 functions as an HBP in brucellae. To test whether the expression of Omp31 is iron-regulated, B. suis was grown in trypticase-soy broth (TSB) and in iron-depleted TSB. The expression of Omp31, as assessed by Western blot, was significantly higher in bacteria grown under iron limitation. Overall, these results show that Omp31 from B. suis, B. melitensis and B. ovis is an HBP, whose expression seems to be induced by iron limitation.  相似文献   

7.
The envelope of Gram-negative bacteria is composed of two distinct lipid membranes: an inner membrane and outer membrane. The outer membrane is an asymmetric bilayer with an inner leaflet of phospholipids and an outer leaflet of lipopolysaccharide. Most of the steps of lipid synthesis occur within the cytoplasmic compartment of the cell. Lipids must then be transported across the inner membrane and delivered to the outer membrane. These topological features combined with the ability to apply the tools of biochemistry and genetics make the Gram-negative envelope a fascinating model for the study of lipid trafficking. In addition, as lipopolysaccharide is essential for growth of most strains and is a potent inducer of the mammalian innate immune response via activation of Toll-like receptors, Gram-negative lipid transport is also a promising target for the development of novel antibacterial and anti-inflammatory compounds. This review focuses on recent developments in our understanding of lipid transport across the inner membrane and to the outer membrane of Gram-negative bacteria.  相似文献   

8.
Proteins belonging to the Omp85 family are involved in the assembly of beta-barrel outer membrane proteins or in the translocation of proteins across the outer membrane in bacteria, mitochondria, and chloroplasts. The cell envelope of the thermophilic bacterium Thermus thermophilus HB27 is multilayered, including an outer membrane that is not well characterized. Neither the precise lipid composition nor much about integral membrane proteins is known. The genome of HB27 encodes one Omp85-like protein, Omp85(Tt), representing an ancestral type of this family. We overexpressed Omp85(Tt) in T. thermophilus and purified it from the native outer membranes. In the presence of detergent, purified Omp85(Tt) existed mainly as a monomer, composed of two stable protease-resistant modules. Circular dichroism spectroscopy indicated predominantly beta-sheet secondary structure. Electron microscopy of negatively stained lipid-embedded Omp85(Tt) revealed ring-like structures with a central cavity of approximately 1.5 nm in diameter. Single-channel conductance recordings indicated that Omp85(Tt) forms ion channels with two different conducting states, characterized by conductances of approximately 0.4 nS and approximately 0.65 nS, respectively.  相似文献   

9.
Omp85-like proteins are evolutionary ancient components of bacterial outer membranes and their evolutionary offspring. As a consequence, proteins of this family can be found in the outer membrane systems of Gram-negative bacteria and endosymbiotically derived organelles. In the different membranes, they perform distinct functions such as catalyzing protein insertion into or protein transport across the bilayer. Here, the knowledge on the Omp85-like proteins in the eukaryotic system with regard to structural properties and physiological behavior is summarized.  相似文献   

10.
The lipopolysaccharide transport system (Lpt) in Gram-negative bacteria is responsible for transporting lipopolysaccharide (LPS) from the cytoplasmic surface of the inner membrane, where it is assembled, across the inner membrane, periplasm and outer membrane, to the surface where it is then inserted in the outer leaflet of the asymmetric lipid bilayer. The Lpt system consists of seven known LPS transport proteins (LptA-G) spanning from the cytoplasm to the cell surface. We have shown that the periplasmic component, LptA is able to form a stable complex with the inner membrane anchored LptC but does not interact with the outer membrane anchored LptE. This suggests that the LptC component of the LptBFGC complex may act as a dock for LptA, allowing it to bind LPS after it has been assembled at the inner membrane. That no interaction between LptA and LptE has been observed supports the theory that LptA binds LptD in the LptDE homodimeric complex at the outer membrane.  相似文献   

11.
Integral outer membrane transporters of the Omp85/TpsB superfamily mediate the translocation of proteins across, or their integration into, the outer membranes of Gram-negative bacteria, chloroplasts, and mitochondria. The Bordetella pertussis FhaC/FHA couple serves as a model for the two-partner secretion pathway in Gram-negative bacteria, with the TpsB protein, FhaC, being the specific transporter of its TpsA partner, FHA, across the outer membrane. In this work, we have investigated the structure/function relationship of FhaC by analyzing the ion channel properties of the wild type protein and a collection of mutants with varied FHA secretion activities. We demonstrated that the channel is formed by the C-terminal two-thirds of FhaC most likely folding into a beta-barrel domain predicted to be conserved throughout the family. A C-proximal motif that represents the family signature appears essential for pore function. The N-terminal 200 residues of FhaC constitute a functionally distinct domain that modulates the pore properties and may participate in FHA recognition.  相似文献   

12.
beta-Barrel membrane proteins have several important functions in outer membranes of Gram-negative bacteria and in the organelles of endosymbiotic origin, mitochondria and chloroplasts. The biogenesis of beta-barrel membrane proteins was, until recently, an unresolved process. A breakthrough was achieved when a specific pathway for the insertion of beta-barrel outer-membrane proteins was identified in both mitochondria and Gram-negative bacteria. The key component of this pathway is Tob55 (also known as Sam50) in mitochondria and Omp85 in bacteria, both beta-barrel membrane proteins themselves. Tob55 is part of the hetero-oligomeric TOB (topogenesis of mitochondrial outer-membrane beta-barrel proteins) or SAM (sorting and assembly of mitochondria) complex, which is present in the mitochondrial outer membrane. Tob55 belongs to an evolutionarily conserved protein family, the members of which are present in almost all eukaryotes and in Gram-negative bacteria and chloroplasts. Thus, is it emphasized that the insertion pathway of mitochondrial beta-barrel membrane proteins was conserved during evolution of mitochondria from endosymbiotic bacterial ancestors.  相似文献   

13.
Omp85 proteins form a ubiquitous protein family, members of which are found in all Gram-negative bacteria. Omp85 of Neisseria meningitidis and YaeT of Escherichia coli are shown to be essential for outer membrane biogenesis. Interestingly, there exists a homologue to YaeT in E. coli and many proteobacteria, denoted YtfM, the function of which has not been described yet. Like YaeT, YtfM is predicted to consist of an amino-terminal periplasmic domain and a membrane-located carboxy-terminal domain. In this study, we present a first characterisation of YtfM by comparison to YaeT concerning structural, biochemical and electrophysiological properties. Furthermore, a knockout strain revealed that ytfM is a non-essential gene and lack of the protein had no effect on outer membrane composition and integrity. The only observable phenotype was strongly reduced growth, indicating an important role of YtfM in vivo.  相似文献   

14.
Omp21, a minor outer membrane protein of the soil bacterium Comamonas acidovorans, was purified from a spontaneous mutant lacking a surface layer and long-chain lipopolysaccharide. Omp21 synthesis is enhanced by oxygen depletion, and the protein has a variable electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis due to its heat-modifiable behavior. The structural gene omp21 encodes a precursor of 204 amino acids with a putative signal peptide of 21 amino acids. Mature Omp21 is a typical outer membrane protein with a high content of β structure as determined by infrared spectroscopy. Sequence comparisons show that it belongs to a new outer membrane protein family, characterized by eight amphipathic β strands, which includes virulence proteins, such as the neisserial opacity proteins, Salmonella typhimurium Rck, and Yersinia enterocolitica Ail, as well as the major outer membrane proteins OmpA from Escherichia coli and OprF from Pseudomonas aeruginosa.  相似文献   

15.
We have discovered a new oligomeric protein component associated with the outer membrane of the ancestral eubacterium Thermotoga maritima. In electron micrographs, the protein, Omp alpha, appears as a rod-shaped spacer that spans the periplasm, connecting the outer membrane to the inner cell body. Purification, biochemical characterization and sequencing of Omp alpha suggest that it is a homodimer composed of two subunits of 380 amino acids with a calculated M(r) of 43,000 and a pI of 4.54. The sequence of the omp alpha gene indicates a tripartite organization of the protein with a globular NH2-terminal domain of 64 residues followed by a putative coiled-coil segment of 300 residues and a COOH-terminal, membrane-spanning segment. The predicted length of the coiled-coil segment (45 nm) correlates closely with the spacing between the inner and outer membranes. Despite sequence similarity to a large number of coiled-coil proteins and high scores in a coiled-coil prediction algorithm, the sequence of the central rod-shaped domain of Omp alpha does not have the typical 3.5 periodicity of coiled-coil proteins but rather has a periodicity of 3.58 residues. Such a periodicity was also found in the central domain of staphylococcal M protein and beta-giardin and might be indicative of a subclass of fibrous proteins with packing interactions that are distinct from the ones seen in other two-stranded coiled-coils.  相似文献   

16.
We report the first 1H, 13C and 15N chemical shift assignments and secondary structure of the Escherichia coli YaeT POTRA domain; a domain found in the Omp85 family of proteins which is critical for insertion and folding of outer membrane proteins in Gram-negative bacteria.  相似文献   

17.
β-Barrel proteins are present only in the outer membranes of Gram-negative bacteria, chloroplasts and mitochondria. Fungal mitochondria were shown to readily import and assemble bacterial β-barrel proteins, but human mitochondria exhibit certain selectivity. Whereas enterobacterial β-barrel proteins are not imported, neisserial ones are. Of those, solely neisserial Omp85 is integrated into the outer membrane of mitochondria. In this study, we wanted to identify the signal that targets neisserial β-barrel proteins to mitochondria. We exchanged parts of neisserial Omp85 and PorB with their Escherichia coli homologues BamA and OmpC. For PorB, we could show that its C-terminal quarter can direct OmpC to mitochondria. In the case of Omp85, we could identify several amino acids of the C-terminal β-sorting signal as crucial for mitochondrial targeting. Additionally, we found that at least two POTRA (polypeptide-transport associated) domains and not only the β-sorting signal of Omp85 are needed for its membrane integration and function in human mitochondria. We conclude that the signal that directs neisserial β-barrel proteins to mitochondria is not conserved between these proteins. Furthermore, a linear mitochondrial targeting signal probably does not exist. It is possible that the secondary structure of β-barrel proteins plays a role in directing these proteins to mitochondria.  相似文献   

18.
The multicellular Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N2 in differentiated cells called heterocysts, which exchange nutritional and regulatory compounds with the neighbour photosynthetic vegetative cells. The outer membrane of this bacterium is continuous along the filament defining a continuous periplasmic space. The Anabaena alr0075 , alr2269 and alr4893 gene products were characterized as Omp85-like proteins, which are generally involved in outer membrane protein biogenesis. Open reading frame alr2269 is the first gene of an operon that also carries genes for lipopolysaccharide lipid A biosynthesis including alr2270 (an lpxC homologue). Strains carrying inactivating alr2269 or alr2270 constructs showed enhanced sensitivity to erythromycin, SDS, lysozyme and proteinase K suggesting that they produce an outer membrane with increased permeability. These strains further exhibited increased uptake of sucrose, glutamate and, to a lesser extent, a few other amino acids. Increased uptake of the same metabolites was obtained by mechanical fragmentation of wild-type Anabaena filaments. These results document that the outer membrane is a permeability barrier for metabolites such as sucrose and glutamate, which are subjected to intercellular exchange in the diazotrophic filament of heterocyst-forming cyanobacteria.  相似文献   

19.
Five genes homologous to the well-known omp25 and omp31 genes, that code for two major Brucella spp. outer membrane proteins (OMPs), have been detected in the genome of Brucella melitensis 16M and Brucella suis 1330. In this work we have determined the nucleotide sequence of these five genes, named omp31b, omp25b, omp25c, omp25d and omp22, in the six classical Brucella species reference strains and in representative strains of the recently proposed species Brucella cetaceae and Brucella pinnipediae that classify the Brucella strains isolated in the last years from marine mammals. Although these genes are quite conserved in the genus Brucella, several important differences have been found between species (i) omp31b contains a premature stop codon in B. canis and B. ovis truncating the encoded protein; (ii) the 5' end of omp31b is deleted in the three biovars of B. melitensis which probably prevents synthesis of Omp31b in this species; (iii) only B. melitensis, B. suis and B. neotomae would be able to synthesize the Omp25b protein with the characteristics shared by the Omp25/Omp31 group of proteins (characteristic signal sequence and C-terminal phenylalanine); (iv) a DNA inversion of 1747 bp including omp25b was detected in B. cetaceae strains; (v) a DNA deletion of about 15 kb was detected in all the six B. ovis strains tested. This deletion in B. ovis includes, among other genes, omp25b and wboA, a gene that has been shown to be required for the synthesis of the O-polysaccharide chain of the Brucella spp. smooth lipopolysaccharide. Several features of the DNA region absent from B. ovis suggest that this DNA fragment is a genomic island acquired by the Brucella ancestor by horizontal transfer and later deleted from B. ovis. The DNA polymorphism we have found in this work within the genus Brucella might be involved in the differences in pathogenicity and host preference displayed by the Brucella species.  相似文献   

20.
《Biophysical journal》2020,118(1):138-150
Multidrug-resistant Gram-negative bacteria have increased the prevalence of a variety of serious diseases in modern times. Polymyxins are used as the last-line therapeutic options for the treatment of infections. However, the mechanism of action of polymyxins remains in dispute. In this work, we used a coarse-grained molecular dynamics simulation to investigate the mechanism of the cationic antimicrobial peptide polymyxin B (PmB) interacting with both the inner and outer membrane models of bacteria. Our results show that the binding of PmB disturbs the outer membrane by displacing the counterions, decreasing the orientation order of the lipopolysaccharide tail, and creating more lipopolysaccharide packing defects. Upon binding onto the inner membrane, in contrast to the traditional killing mechanism that antimicrobial peptides usually use to induce holes in the membrane, PmBs do not permeabilize the inner membrane but stiffen it by filling up the lipid packing defect, increasing the lipid tail order and the membrane bending rigidity as well as restricting the lipid diffusion. PmBs also mediate intermembrane contact and adhesion. These joint effects suggest that PmBs deprive the biological activity of Gram-negative bacteria by sterilizing the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号