首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Abstract.  The Indian meal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae) may enter diapause in the last larval instar in response to the photoperiod during the preceding instars. An hourglass-type photoperiodic clock may measure night length for this purpose. The present study describes the resetting of the hourglass by light pulse(s) in the early scotophase and by scanning the subsequent clock phase by another light pulse (P). When the lights-off time of a first light pulse is fixed at 4 h after dusk under LD 4 : 20 h and LD 6 : 18 h photoperiods and its duration is increased from 1 to 3 h, the critical night length (CNL) from dawn is decreased, but that from dusk to P increases. A 3-h first light pulse efficiently resets the time measuring system. If this 3-h light pulse is split into two 1-h light pulses (L1 and L2) by 1 h of darkness, the dark-time measuring function appears to be impeded and CNL from P to dawn disappears, but that from L2 to P is expressed. This indicates that the receptivity to light pulses varies among individual insects.  相似文献   

2.
The diapause-programming response to photoperiod in Plodia interpunctella was analyzed by exposing larvae to various 24-h and non-24-h regimes of light and darkness. The response to 24-h regimes indicated three photoperiodic parameters—a critical scotophase, a minimal photophase, and a minimal scotophase for a full expression of the response. The critical response was based on dark-time measurement, because disruption of the scotophase abolished the response and the diapause incidence varied as a function of scotophase in non-24-h regimes. The critical scotophase varied with the duration of the preceding photophase. Prevention of diapause by single or double-night interruptions of long scotophases could be explained by resetting of the dark-time measurement. The effect of a light pulse was modified by the quantitative interaction of light and dark reactions. The sensitivity to resetting by a light pulse seemed to be decreased in the early scotophase with an increasing duration of the preceding light period. Therefore, the significance of light in the photoperiodic response was something more than delimiting scotophase for the time measurement.  相似文献   

3.
Abstract.The photoperiodic response in Plodia interpunctella collected at Toyama (36.7°N) was of long-day type and highly sensitive to temperature. The critical photoperiod giving 50% diapause was between 14 and 16 h at 20°C, between 12 and 14 h at 25°C and between 6 and 8 h at 30°C. Effects of night interruption by a 2-h light pulse on the diapause response were examined at 25°C on different background photoperiods ranging from LD 12:12 h to LD 2:22 h. Percentage diapause was very low when the middle portion of dark period was interrupted, so that U- or V-shaped response curves were obtained with background scotophases longer than 12 h. In these curves, the descending slopes were less steep than the ascending slopes. The critical dark period measured from dusk to an interrupting light pulse was about 1.5 h longer than the critical dark period ( c . 10 h) in the normal photoperiodic response. The critical dark period from the interrupting light pulse to dawn, on the other hand, was not parallel to dawn but shorter than the normal critical period in LD 12:12 h and LD 10:14 h and longer than that in LD 7:17 h to LD 4:20 h, indicating that the priming effects of the light pulse might be under the influence of the photophase.  相似文献   

4.
Abstract:  Dendrolimus tabulaeformis overwinters as third to fourth instar larvae at short days in autumn. Using 24-h light–dark cycles, the photoperiodic response curves were similar at 24 and 28°C. The critical night length was 9 h 20 min at 24°C and 9 h 50 min at 28°C. Under non-24 h light–dark cycles, duration of scotophase proved crucial in the determination of diapause. In night interruption experiments using 24-h light–dark cycle, a 1-h light pulse falling 8 h in the darkness strongly averted diapause in comparison with other light pulses. Nanda–Hamner experiments showed two weak troughs of diapause inhibition, suggesting the possible involvement of the circadian system. However, Bünsow experiments did not support the evidence of the involvement of circadian oscillatory system in photoperiodic time measurement. These results suggest that photoperiodic time measurement in this moth shows a non-oscillatory 'hourglass-like' response model or a rapidly damping oscillator model.  相似文献   

5.
Plodia interpunctella Hübner (Lepidoptera: Pyralidae) comprises a model insect to analyse the photoperiodic time‐measuring system controlling its larval diapause. In the present study, the effective length of light pulse in night interruption experiments is determined at 25 °C. Various lengths of light pulse are tested by inserting them at the midnight of an LD 12 : 12 h photoperiod. When the light pulse is 15 or 30 min, the incidence of diapause is 86%. To inhibit the induction of diapause effectively, a light pulse of 1.75–2 h is needed. The incidence of diapause is 12% under an LD 12 : 5 : 2 : 5 h photoperiod. To determine the precise role of the light pulse, 2‐h light pulses placed at the midnight of an LD 12 : 12 h photoperiod are disrupted systematically by darkness. When a 2‐h light pulse is disrupted by 15 min of darkness, diapause is generally prevented (< 29%) regardless of the temporal position of darkness. Longer disruption by darkness induces diapause moderately (37–67%). A Bünsow experiment is also conducted at 25 and 20 °C, in which the main photophase of 12 h of light is combined with 24–72‐h scotophases scanned by a 2‐h light pulse. The photoperiodic cycle length tested, therefore, varies in the range 36–84 h. In each cycle length, the incidence of diapause fluctuates as the light pulse moves toward dawn. However, no regular and circadian changes in the percentage diapause are observed in relation to diapause determination.  相似文献   

6.
Wei X  Xue F  Li A 《Journal of insect physiology》2001,47(12):1367-1375
Pseudopidorus fasciata enters diapause as fourth instar larvae at short day lengths. Using 24-h light-dark cycles, the photoperiodic response curves in this species appeared to be similar with a critical night length of 10.5h at temperatures below 30 degrees C. At an average temperature of 30.5 degrees C, the critical night length had shifted to between 15 and 17h. In experiments using non-24-h light-dark cycles, it was clearly demonstrated that the dark period (scotophase) was the decisive phase for a diapause determination. In night interruption experiments using 24-h light-dark cycles, a 1-h light pulse at LD12:12 completely reversed the long night effect and averted diapause in all treatments. At LD 9:15 light pulses of 1-h, 30- or 15-min also averted diapause effectively when both the pre-interruption (D(1)) or the post-interruption scotophases (D(2)) did not exceed the critical night length. If D(1) or D(2) exceeded the critical night length diapause was induced. The most crucial event for the photoperiodic time measurement in this species is the length of the scotophase. A 10-min light pulse placed in the most photosensitive phase reversed diapause in over 50% of the individuals. Night interruption experiments under non-24-h light-dark cycles indicated that the photoperiodic clock measured only D(1) regardless of the length of D(2), suggesting that the most inductive cycles are often those in which L+D are close to 24h. In resonance experiments, this species showed a circadian periodicity at temperatures of 24.5 or 26 degrees C, but not at 30.5 and 23.3 degrees C. On the other hand, Bünsow and skeleton photoperiod experiments failed to reveal the involvement of a circadian system in this photoperiodic clock. These results suggest the photoperiodic clock in this species is a long-night measuring hourglass and the circadian effect found in the final expression of the photoperiodic response in the resonance experiments may be caused by a disturbing effect of the circadian system in unnatural regimes.  相似文献   

7.
When a light pulse of 1 h duration was given 3 h after lights off in a photoperiod of 11 h light : 13 h dark (LD 11 : 13) at 20°C, the phase of the major peak of locomotor activity rhythm in Delia antiqua was delayed for approximately 0.6 h. In contrast, it was advanced by approximately 0.6 h by a light pulse given 9 h after lights off. It is suggested that in the circadian clock, a pulse falling in the early scotophase is taken as a new dusk and a pulse falling in the late scotophase is taken as a new dawn. Although a sharply defined critical photoperiod did not exist in the diapause response to photoperiod in D. antiqua, the percentage of pupal diapause decreased by these pulses in LD 11 : 13 at 20°C. The effect of a 15 min light pulse on both locomotor activity rhythm and pupal diapause induction was stronger at 3 h than at 9 h after lights off, while a 1 min light pulse was ineffective at both times. The parallel effects of light pulse on locomotor activity rhythm and diapause response might be based on the same chronobiological functions.  相似文献   

8.
Summary The last two days of embryonic development are crucial in programming pupal diapause in the flesh fly,Sarcophaga crassipalpis. Short daylength (greater than 10 1/2h of darkness) during this interval permits expression of diapause while long daylength during this brief sensitive stage eliminates the potential for diapause. Length of scotophase rather than photophase programs the diapause although three hours of light is needed to separate tandem dark periods. Early in the scotophase, photosensitivity is restricted to blue light (less than 540 nm). The scotophase can be divided into 4 phases according to the effect of light breaks on diapause expression. During Phase I (0–6 h after scotophase onset) embryos are highly sensitive to light interruption and diapause is effectively eliminated. A period of insensitivity to light, Phase II, extends from 6–hh after onset of scotophase. Light breaks at 10–11h coincide with the critical scotophase length and result in a partial reduction of diapause. In Phase IV, the scotophase reaction is complete and diapause competence is preserved even in the presence of light. Although light breaks result in elimination of diapause throughout Phase I, recovery time from a 1 h light break (length of darkness needed to counter the effect of a light break) differs dramatically depending upon when the light break is presented. Early in Phase I (0–3h) recovery from light interruption is rapid, while late in Phase I (4–6h), the effects of light are not readily reversible. The scotophase reaction thus appears to follow a step-wise progression rather than represent a simple linear response. We present a molecular model that could account for the dynamics of the scotophase reaction.  相似文献   

9.
Photoperiodic control of diapause induction was investigated in the short-day species, Colaphellus bowringi, which enters summer and winter diapause as adult in the soil. Photoperiodic responses at 25 and 28 degrees C revealed a critical night length between 10 and 12 h; night lengths > or =12 h prevented diapause, whereas night lengths <12 h induced summer diapause in different degree. Experiments using non-24-h light-dark cycles showed that the duration of scotophase played an essential role in the determination of diapause. Night-interruption experiments with T=24 h showed that diapause was effectively induced by a 2-h light pulse in most scotophases; whereas day-interruption experiments by a 2-h dark break had a little effect on the incidence of diapause. The experiments of alternating short-night cycles (LD 16:8) and long-night cycles (LD 12:12) during the sensitive larval period showed that the information of short nights as well as long nights could be accumulated. Nanda-Hamner experiments showed three declining peaks of diapause at 24 h circadian intervals. Bünsow experiments showed two very weak peaks for diapause induction, one being 8 h after lights-off, and another 8 h before lights-on, but it did not show peaks of diapause at a 24 h interval. These results suggest that the circadian oscillatory system constitutes a part of the photoperiodic clock of this beetle but plays a limited role in its photoperiodic time measurement.  相似文献   

10.
The mature larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae) enters facultative diapause in response to short‐day conditions in the autumn (August–September). Diapause induction and photoperiodic clock mechanism were investigated in C. suppressalis larvae reared on an artificial diet in the present study. The critical night length for diapause induction was about 9 h 53 min to 10 h 39 min at 22 to 28°C. The third‐instar larvae were found to be relatively sensitive to diapause induction. Photoperiodic response under non‐24‐h light–dark cycles showed that scotophase length played an essential role in the induction of larval diapause in C. suppressalis, and consecutive exposure to long‐night cycles was necessary for a high diapause incidence. In the Nanda–Hamner experiment, diapause incidence peaked at scotophase of 12 h and dropped rapidly at scotophases > 24 h. In the Bünsow experiment, diapause incidence was clearly suppressed, especially at the light pulse located 8 h in the scotophase. Both the Nanda–Hamner and Bünsow experiments showed no rhythmic fluctuations with a period of about 24 h; thus the photoperiodic clock in C. suppressalis is a non‐oscillatory hourglass timer or a rapidly damping circadian oscillator.  相似文献   

11.
Thyrassia penangae enters winter diapause as a prepupa in a cocoon. Photoperiodism of diapause induction was systematically investigated in this moth. The photoperiodic response curves under 24-h light-dark cycles showed that this insect is a typical long-day species. The critical daylength was 13 h 30 min at 25 °C, 13 h at 30 °C and 12 h 20 min at 28 °C. Transferring experiments from a short day (LD 12:12) to a long day (LD 15:9) or vice versa indicated that photoperiodic sensitivity mainly occurs during the larval period. In experiments using non-24-h light-dark cycles, when the length of photophase exceeded the critical daylength (13.5 h), was diapause inhibited effectively, even when the length of scotophase exceeded the critical nightlength (10.5 h). Only when a long scotophase was combined with a short photophase, diapause was induced effectively. This result suggests that daylength measurement is more important than nightlength measurement in T. penangae. Night interruption experiments under 24-h light-dark cycles exhibited two points of apparent light sensitivity, but the photosensitive position was highly influenced by temperature and the length of scotophase. Nanda-Hamner experiments failed to reveal the involvement of a circadian system in this photoperiodic time measurement. All light-dark cycles from LD 12:12 to LD 12:72 resulted in a short day response, and all cycles from LD 14:4 to LD 14:72 resulted in a long day response, suggesting that photoperiodic time measurement in this moth is performed by a day-interval timer or an hourglass-like clock.  相似文献   

12.
The rice stem borer, Chilo suppressalis, enters facultative diapause as fully grown larvae in response to short-day conditions during the autumn. Our results showed that the critical night length for diapause induction in C. suppressalis was between 10 h 22 min and 10 h 45 min at 22, 25 and 28 °C, 11 h 18 min at 31 °C, and between 10 h 5 min and 10 h 20 min under field conditions (average temperature ranged from 27.2 to 30.7 °C). The diapause incidence declined in ultra-long nights (18-22 h scotophases) and DD, and increased in ultra-short nights (2-6 h scotophases) and LL. Moreover, we found that the third instar was the stage most sensitive to the photoperiod, and night length played an essential role in the initiation of diapause. Night-interruption experiments with a 1-h light pulse at LD 12:12 (light 12:dark 12) exhibited two troughs of diapause inhibition, with one occurring in early scotophase and the other in late scotophase. Field observations for six years showed that most larvae entered winter diapause in August in response to declining day lengths, despite the high temperatures prevailing during August. By periodically transferring the field-collected overwintering larvae to different photoperiods and temperatures, the results showed that photoperiod had a significant influence on diapause development during the early phase of diapause, while high temperature significantly accelerated the termination of larval diapause.  相似文献   

13.
Photoperiodic control of diapause induction was systematically investigated in the cabbage butterfly, Pieris melete, which enters summer and winter diapause as a pupa. Summer and winter diapause are induced principally by short and long scotophases, respectively; the intermediate scotophases (11-12 h) permit pupae to develop without diapause. Photoperiodic responses under 24-h light-dark cycles at 16.9, 18, 20 and 22 °C showed that the hibernation response was temperature compensated, whereas aestivation response was strongly temperature-dependent. The incidence of diapause for both aestivation and hibernation showed a decline at the ultra-short and ultra-long scotophases. Experiments using non-24-h light-dark cycles showed that the length of the scotophase played an essential role in the determination of diapause. The highest photosensitivity differed under hibernation and aestivation conditions. With a 3 × LD 12:12 interruption, a maximal inhibition of aestivation occurred in the L3/2 stage, and of hibernation it occurred in the L4/0 stage. A long-night of LD 10:14 induced hibernation diapause but inhibited aestivation diapause and, conversely, a short-night of LD 14:10 inhibited hibernation diapause but induced aestivation diapause. With a 1-h light pulse at LD 11:13, a maximal inhibition of hibernation occurred 3 h before lights-on (late scotophase), whereas, with a 1-h light pulse at LD 12.5:11.5, a maximal induction of aestivation occurred 2-3 h after the onset of darkness (early scotophase). Nanda-Hamner and Bünsow experiments failed to reveal the involvement of a circadian system, suggesting that the photoperiodic time measurement for diapause induction in this butterfly resembles an hourglass-like timer or a damped circadian oscillator.  相似文献   

14.
Night interruption experiments were used to investigate the behavior of the clock controlling diapause induction in the mosquito, Aedes atropalpus. The data from these experiments indicated that the clock included a circadian oscillator which was phase set at dusk. Following this event the oscillator proceeded to drive a nightly rhythm of sensitivity to light. This rhythm included a photoinducible phase where light interruption inhibited diapause. The photoinducible phase was fixed, occurring 7 to 9 hr after dusk in all photoperiod regimens tested. The photoinducible phase was followed by a refractory phase, which continued until dawn. During the refractory period light did not inhibit diapause. These observations indicated that the circadian clock behaved like an interval timer which was set at dusk. The rhythm of sensitivity to light, an inherited time scale, limited the induction of diapause to seasonal periods when nights were longer than 9 hr. As a result, diapause was induced only when the daylength dropped below the critical photoperiod of L15:D9 (hours of light:hours of dark).A ‘T’ experimental design was used to confirm the importance of the length of the night in clock controlled induction of diapause in this mosquito.  相似文献   

15.
Animals of the amphipod Orchestia montagui are kept in constant darkness with two short light pulses. One pulse is applied at the beginning of subjective night (around the dusk) and the other one at the end of subjective night (around the dawn). The pulse duration is estimated in the order of one or two hours around the dusk as well as the dawn. The locomotor activity rhythm was monitored in individual animals in summer under constant temperature. Results revealed that whatever the experimental conditions, under continuous or interrupted darkness by pulses, two endogenous components have been highlighted. In fact, Periodogram analysis showed the presence of ultradian and circadian periods around 12 and 24 h, respectively. The shortest circadian period and the most important inter-individual variability was observed under pulse of 2 h around the dusk with mean value equal to τDD+pulse = 24h38′ ± 4h34′. The activity profiles are in majority unimodal. Moreover, the most activity peak showed a slipping of its location from the middle of subjective night under constant darkness to the middle of subjective day under pulse. Globally, the locomotor activity rhythm of O. montagui was better defined under pulses and specimens were significantly more active under continuous darkness. Moreover, a great variability around the activity time was observed especially with pulse of 1 h.  相似文献   

16.
The floral response to various 24-h photoperiodic cycles ofthe short-day plant, Lemna paucicostata 6746 was investigated.No day that had a main photoperiod longer than about 14 h wasable to induce flowers, evidence that the critical day lengthwas ca.14 h. Flowering in the 12-, 9- or 6-h day was inhibitedcompletely by a light pulse inserted daily in the ‘inhibitionzone’ that ranged from about 14 h after the precedingdawn to about 14 h before the next dusk. In the 3- and 1-h days,only the pulse applied 14 h after the dawn completely inhibitedflowering. These results suggest that the daily night interruption prohibitedflowering only when it was linked to either the preceding orthe subsequent main photoperiod to form a skeleton photoperiodwhose length was equal to, or longer than, the critical daylength. Analysis of the floral response to skeleton schedules11:13 and 13:11 on Pittendrigh's model of the photoperiodicclock indicated that light-on circadian oscillation probablyis involved in the day length measurement. 1 Dedicated to the memory of Dr. Joji Ashida. (Received July 13, 1982; Accepted January 17, 1983)  相似文献   

17.
Some diapause characteristics were studied in a strain of the spider mite. Tetranychus urticae. which had been reared on bean plants in the laboratory for over 15 yr. The diapause induction response curve was of the long-day type, showing a sharply defined critical daylength of 13 hr 50 min. In constant darkness no diapause induction occurred, but with a photoperiod of 1L:23D diapause incidence was already complete. A thermoperiod with a 5°C amplitude induced diapause in combination with a short-day photoperiod only when the low phase of the thermoperiod coincided with the scotophase. The same thermoperiod did not induce any diapause in constant darkness. The photoperiodic reaction of the laboratory strain used in these experiments appeared to remain constant over a very long period of time and to be independent of the diapause history of previous generations of mites.Although photoperiodic sensitivity was demonstrated during the whole postembryonic development, sensitivity was maximal at the end of the protonymphal instar and declined rapidly during the deutonymphal instar. Only 2 inductive cycles of 10L:14D were required to induce up to 62% diapause if the mites were kept in continuous darkness during the remainder of their development. Long days or continuous light could reverse the inductive effect of a sequence of short-day cycles previously applied to the mites.Light breaks of 1 hr duration applied at different times during the dark period of a 10L:14D photoperiod generated a sharp bimodal response curve with two discrete points of sensitivity to the light breaks at 10 hr after ‘dusk’ and 10 hr before ‘dawn’, thus showing a remarkable similarity with the results obtained in light break experiments with some species of insects.  相似文献   

18.
The fall webworm, Hyphantria cunea (Drury), enters facultative diapause as a pupa in response to short-day conditions during autumn. Photoperiodic response curves showed that the critical day length for diapause induction was 14 h 30 min, 14 h 25 min and 13 h 30 min at 22, 25 and 28°C, respectively. The photoperiodic responses under non-24 h light–dark cycles demonstrated that night length played an essential role in the determination of diapause. Experiments using a short day length interrupted by a 1-h light pulse exhibited two troughs of diapause inhibition and the effect of diapause inhibition was greater in the early scotophase than in the late scotophase. The diapause-inducing short day lengths of 8, 10 and 12 h evoked greater intensities of diapause than did 13 and 14 h. Diapause can be terminated without exposure to chilling, but chilling at 5°C for 90 and 120 d significantly accelerated diapause development, reduced mortality, and synchronized adult emergence. Additionally, the potential for H. cunea from the temperate region (Qingdao) to emerge and overwinter under field conditions in subtropical regions (Nanchang) of China was evaluated. Pupae that were transferred to Nanchang in early July showed a 60% survival rate and extremely dispersed pupal period (from 12 to 82 days), suggesting that some pupae may undergo summer diapause. Diapausing temperate region pupae that were moved out-of-doors in Nanchang during October showed approximately 20% overwintering survival; moreover, those pupae that overwintered successfully emerged the next spring during a period when their host plants would be available. The results indicate that this moth has the potential to expand its range into subtropical regions of China.  相似文献   

19.
高温对环带锦斑蛾幼虫滞育的抑制作用   总被引:3,自引:1,他引:2  
华爱  薛芳森  李峰  朱杏芬 《昆虫学报》2004,47(3):354-359
本文报道了高温(31℃)对环带锦斑蛾幼虫滞育发生的抑制作用。当幼虫暴露于31℃ 时,所有个体都继续发育,与光周期无关。在诱导滞育的光周期条件(L12∶D12)下,光期的高温配合不同的暗期低温(15~28℃),导致几乎所有个体滞育,但当暗期为5℃时,滞育率反而下降;相反,当光期的低温配合不同持续时间的暗期高温(31℃)时,则几乎所有的个体都继续发育,这说明高温在暗期发挥着重要的作用。在暗期给予不同时间长度(2、4、 6、8、10、12 h)的高温处理,结果表明一个2 h的高温处理就能有效地抑制滞育的发生。在暗期的不同时间给予4 h高温处理,显示了幼虫在暗期开始后的第一个4 h (18:00~22:00 )对高温最敏感,完全抑制了滞育的发生。最后讨论了高温调节滞育机制在该虫生活史上的适应意义。  相似文献   

20.
This review discusses possible evolutionary trends in insect photoperiodism, mainly from a chronobiological perspective. A crucial step was the forging of a link between the hormones regulating diapause and the systems of biological rhythms, circadian or circannual, which have independently evolved in eukaryotes to synchronize physiology and behaviour to the daily cycles of light and darkness. In many of these responses a central feature is that the circadian system resets to a constant phase at the beginning of the subjective night, and then ‘measures’ the duration of the next scotophase. In ‘external coincidence’, one version of such a clock, light now has a dual role. First, it serves to entrain the circadian system to the stream of pulses making up the light/dark cycle and, second, it regulates the nondiapause/diapause switch in development by illuminating/not illuminating a specific light sensitive phase falling at the end of the critical night length. Important work by A. D. Lees on the aphid Megoura viciae using so‐called ‘night interruption experiments' demonstrates that pulses falling early in the night lead to long‐day effects that are reversible by a subsequent dark period longer than the critical night length and also show maximal sensitivity in the blue–green range of the spectrum. Pulses falling in the latter half of the night, however, produce long‐day effects that are irreversible by a subsequent long‐night and show a spectral sensitivity extending into the red. With movement to higher latitudes, insects develop genetic clines in various parameters, including critical night length, the number of long‐night cycles needed for diapause induction, the strength of the response, and the ‘depth’ or intensity of the diapause thus induced. Evidence for these and other types of photoperiodic response suggests that they provided strong selective advantages for insect survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号