首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barley (Hordeum vulgare L.) produces a leucine-derived cyanogenic β-d-glucoside, epiheterodendrin that accumulates specifically in leaf epidermis. Barley leaves are not cyanogenic, i.e. they do not possess the ability to release hydrogen cyanide, because they lack a cyanide releasing β-d-glucosidase. Cyanogenesis was reconstituted in barley leaf epidermal cells through single cell expression of a cDNA encoding dhurrinase-2, a cyanogenic β-d-glucosidase from sorghum. This resulted in a 35–60% reduction in colonization rate by an obligate parasite Blumeria graminis f. sp. hordei, the causal agent of barley powdery mildew. A database search for barley homologues of dhurrinase-2 identified a (1,4)-β-d-glucan exohydrolase isozyme βII that is located in the starchy endosperm of barley grain. The purified barley (1,4)-β-d-glucan exohydrolase isozyme βII was found to hydrolyze the cyanogenic β-d-glucosides, epiheterodendrin and dhurrin. Molecular modelling of its active site based on the crystal structure of linamarase from white clover, demonstrated that the disposition of the catalytic active amino acid residues was structurally conserved. Epiheterodendrin stimulated appressoria and appressorial hook formation of B. graminis in vitro, suggesting that loss of cyanogenesis in barley leaves has enabled the fungus to utilize the presence of epiheterodendrin to facilitate host recognition and to establish infection.  相似文献   

2.
When Phanerochaete chrysosporium was grown with laminarin (a β-1,3/1,6-glucan) as the sole carbon source, a β-1,3-glucanase with a molecular mass of 36 kDa was produced as a major extracellular protein. The cDNA encoding this enzyme was cloned, and the deduced amino acid sequence revealed that this enzyme belongs to glycoside hydrolase family 16; it was named Lam16A. Recombinant Lam16A, expressed in the methylotrophic yeast Pichia pastoris, randomly hydrolyzes linear β-1,3-glucan, branched β-1,3/1,6-glucan, and β-1,3-1,4-glucan, suggesting that the enzyme is a typical endo-1,3(4)-β-glucanase (EC 3.2.1.6) with broad substrate specificity for β-1,3-glucans. When laminarin and lichenan were used as substrates, Lam16A produced 6-O-glucosyl-laminaritriose (β-d-Glcp-(1–>6)-β-d-Glcp-(1–>3)-β-d-Glcp-(1–>3)-d-Glc) and 4-O-glucosyl-laminaribiose (β-d-Glcp-(1–>4)-β-d-Glcp-(1–>3)-d-Glc), respectively, as one of the major products. These results suggested that the enzyme strictly recognizes β-d-Glcp-(1–>3)-d-Glcp at subsites −2 and −1, whereas it permits 6-O-glucosyl substitution at subsite +1 and a β-1,4-glucosidic linkage at the catalytic site. Consequently, Lam16A generates non-branched oligosaccharide from branched β-1,3/1,6-glucan and, thus, may contribute to the effective degradation of such molecules in combination with other extracellular β-1,3-glucanases.  相似文献   

3.
A bacterium (strain HC1) capable of assimilating rice bran hemicellulose was isolated from a soil and identified as belonging to the genus Paenibacillus through taxonomical and 16S rDNA sequence analysis. Strain HC1 cells grown on rice bran hemicellulose as a sole carbon source inducibly produced extracellular xylanase and intracellular glycosidases such as β-d-glucosidase and β-d-arabinosidase. One of them, β-d-glucosidase was further analyzed. A genomic DNA library of the bacterium was constructed in Escherichia coli and gene coding for β-d-glucosidase was cloned by screening for β-d-glucoside-degrading phenotype in E. coli cells. Nucleotide sequence determination indicated that the gene for the enzyme contained an open reading frame consisting of 1,347 bp coding for a polypeptide with a molecular mass of 51.4 kDa. The polypeptide exhibits significant homology with other bacterial β-d-glucosidases and belongs to glycoside hydrolase family 1. β-d-Glucosidase purified from E. coli cells was a monomeric enzyme with a molecular mass of 50 kDa most active at around pH 7.0 and 37°C. Strain HC1 glycosidases responsible for degradation of rice bran hemicellulose are expected to be useful for structurally determining and molecularly modifying rice bran hemicellulose and its derivatives.  相似文献   

4.
The gene encoding an α-l-arabinofuranosidase that could biotransform ginsenoside Rc {3-O-[β-d-glucopyranosyl-(1–2)-β-d-glucopyranosyl]-20-O-[α-l-arabinofuranosyl-(1–6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to ginsenoside Rd {3-O-[β-d-glucopyranosyl-(1–2)-β-d-glucopyranosyl]-20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol} was cloned from a soil bacterium, Rhodanobacter ginsenosidimutans strain Gsoil 3054T, and the recombinant enzyme was characterized. The enzyme (AbfA) hydrolyzed the arabinofuranosyl moiety from ginsenoside Rc and was classified as a family 51 glycoside hydrolase based on amino acid sequence analysis. Recombinant AbfA expressed in Escherichia coli hydrolyzed non-reducing arabinofuranoside moieties with apparent K m values of 0.53 ± 0.07 and 0.30 ± 0.07 mM and V max values of 27.1 ± 1.7 and 49.6 ± 4.1 μmol min−1 mg−1 of protein for p-nitrophenyl-α-l-arabinofuranoside and ginsenoside Rc, respectively. The enzyme exhibited preferential substrate specificity of the exo-type mode of action towards polyarabinosides or oligoarabinosides. AbfA demonstrated substrate-specific activity for the bioconversion of ginsenosides, as it hydrolyzed only arabinofuranoside moieties from ginsenoside Rc and its derivatives, and not other sugar groups. These results are the first report of a glycoside hydrolase family 51 α-l-arabinofuranosidase that can transform ginsenoside Rc to Rd.  相似文献   

5.
An open reading frame encoding a putative bi-functional β-d-xylosidase/α-l-arabinosidase (Sso3032) was identified on the genome sequence of Sulfolobus solfataricus P2, the predicted gene product showing high amino-acid sequence similarity to bacterial and eukaryal individual β-d-xylosidases and α-l-arabinosidases as well as bi-functional enzymes such as the protein from Thermoanaerobacter ethanolicus and barley. The sequence was PCR amplified from genomic DNA of S. solfataricus P2 and heterologous gene expression obtained in Escherichia coli, under optimal conditions for overproduction. Specific assays performed at 75°C revealed the presence in the transformed E. coli cell extracts of this archaeal activity involved in sugar hydrolysis and specific for both substrates. The recombinant protein was purified by thermal precipitation of the host proteins and ethanol fractionation and other properties, such as high thermal activity and thermostability could be determined. The protein showed a homo-tetrameric structure with a subunit of molecular mass of 82.0 kDa which was in perfect agreement with that deduced from the cloned gene. Northern blot analysis of the xarS gene indicates that it is specifically induced by xylan and repressed by monosaccharides like d-glucose and l-arabinose.  相似文献   

6.
Mannans are widespread hemicellulosic polysaccharides in plant cell walls. Hydrolysis of the internal β-1,4-d-mannopyranosyl linkage in the backbone of mannans is catalyzed by endo-β-mannanase. Plant endo-β-mannanase has been well studied for its function in seed germination. Its involvement in other plant biological processes, however, remains poorly characterized or elusive. The completed genome sequences of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and poplar (Populus trichocarpa) provide an opportunity to conduct comparative genomic analysis of endo-β-mannanase genes in these three species. In silico sequence analysis led to the identification of eight, nine and 11 endo-β-mannanase genes in the genomes of Arabidopsis, rice, and poplar, respectively. Sequence comparisons revealed the conserved amino acids and motifs that are critical for the active site of endo-β-mannanases. Intron/exon structure analysis in conjunction with phylogenetic analysis implied that both intron gain and intron loss has played roles in the evolution of endo-β-mannanase genes. The phylogenetic analysis that included the endo-β-mannanases from plants and other organisms implied that plant endo-β-mannanases have an ancient evolutionary origin. Comprehensive expression analysis of all Arabidopsis and rice endo-β-mannanase genes showed divergent expression patterns of individual genes, suggesting that the enzymes encoded by these genes, while carrying out the same biochemical reaction, are involved in diverse biological processes.  相似文献   

7.
Enzymatic 5′-monophosphorylation and 5′-phosphatidylation of a number of β-l- and β-d-nucleosides was investigated. The first reaction, catalyzed by nucleoside phosphotransferase (NPT) from Erwinia herbicola, consisted of the transfer of the phosphate residue from p-nitrophenylphosphate (p-NPP) to the 5′-hydroxyl group of nucleoside; the second was the phospholipase d (PLD)-catalyzed transphosphatidylation of l-α-lecithin with a series of β-l- and β-d-nucleosides as the phosphatidyl acceptor resulted in the formation of the respective phospholipid-nucleoside conjugates. Some β-l-nucleosides displayed similar or even higher substrate activity compared to the β-d-enantiomers.  相似文献   

8.
A gene encoding a so far uncharacterized β-peptidyl aminopeptidase from the opportunistic human pathogen Pseudomonas aeruginosa PAO1 was cloned and actively expressed in the heterologue host Escherichia coli. The gene was identified in the genome sequence by its homology to the S58 family of peptidases. The sequence revealed an open reading frame of 1,101 bp with a deduced amino acid sequence of 366 amino acids. The gene was amplified by PCR, ligated into pET22b(+) and was successfully expressed in E. coli BL21 (DE3). It was shown that the enzyme consists of two polypeptides (α- and β-subunit), which are processed from the precursor. The enzyme is specific for N-terminal β-alanyl dipeptides (β-Ala-Xaa). BapF hydrolyses efficiently β-alanine at the N-terminal position, including H-β3hAla-pNA, H–D-β3hAla-pNA and β-Ala-l-His (l-carnosine). d- and l-alaninamide were also hydrolysed by the enzyme.  相似文献   

9.
A strictly anaerobic mesophilic chitinolytic bacterial strain identified as Clostridium paraputrificum J4 was isolated from human feces. In response to various types of growth substrates, the bacterium produced an array of chitinolytic enzymes representing significant components of the J4 strain secretome. The excreted active proteins were characterized by estimating the enzymatic activities of endochitinase, exochitinase, and N-acetylglucosaminidase induced by cultivation in medium M-10 with colloidal chitin. The enzyme activities produced by J4 strain cultivated in medium M-10 with glucose were significantly lower. The spectrum of extracellularly excreted proteins was separated by SDS-PAGE. The chitinase variability was confirmed on zymograms of renatured SDS-PAGE. The enzymes were visualized under ultraviolet light by using 4-methylumbelliferyl derivatives of N-acetyl-β-d-glucosaminide, N,N′-diacetyl-β-d-chitobiose, or N,N′,N˝-triacetyl-β-d-chitotriose for β-N-acetylglucosaminidase, chitobiosidase, or endochitinase activities, respectively. Protein components of the secretome were separated by 2D-PAGE analysis. The distinct protein bands were excised, isolated, and subsequently characterized by using MALDI-TOF/TOF tandem mass spectrometry. The final identification was performed according to sequence homology by database searching.  相似文献   

10.
Aspergillus tamarii produced extracellular xylanase and intracellular β-xylosidase inductively in washed glucose-grown mycelia incubated with xylan and methyl β-d-xyloside, a synthetic glycoside. Methyl β-d-xyloside was a more effective inducer than xylan at the same concentration for both enzymes. Glucose and cycloheximide were found to inhibit xylanase production by methyl β-d-xyloside. Methyl β-d-xyloside was hydrolyzed to xylose by mycelial extract in vitro. Received: 23 May 1996 / Received revision: 5 September 1996 / Accepted: 13 October 1996  相似文献   

11.
A psychrotrophic bacterium producing a cold-adapted β-galactosidase upon growth at low temperatures was classified as Arthrobacter sp. 20B. A genomic DNA library of strain 20B introduced into Escherichia coli TOP10F′ and screening on X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside)-containing agar plates led to the isolation of β-galactosidase gene. The β-galactosidase gene (bgaS) encoding a protein of 1,053 amino acids, with a calculated molecular mass of 113,695 kDa. Analysis of the amino acid sequence of BgaS protein, deduced from the bgaS ORF, suggested that it is a member of the glycosyl hydrolase family 2. A native cold-adapted β-galactosidase was purified to homogeneity and characterized. It is a homotetrameric enzyme, each subunit being approximately 116 kDa polypeptide as deduced from native and SDS–PAGE, respectively. The β-galactosidase was optimally active at pH 6.0–8.0 and 25°C. P-nitrophenyl-β-d-galactopyranoside (PNPG) is its preferred substrate (three times higher activity than for ONPG—o-nitrophenyl-β-d-galactopyranoside). The Arthrobacter sp. 20B β-galactosidase is activated by thiol compounds (53% rise in activity in the presence of 10 mM 2-mercaptoethanol), some metal ions (activity increased by 50% for Na+, K+ and by 11% for Mn2+) and inactivated by pCMB (4-chloro-mercuribenzoic acid) and heavy metal ions (Pb2+, Zn2+, Cu2+).  相似文献   

12.
Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 1018 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Zeng X  Sun Y  Ye H  Liu J  Uzawa H 《Biotechnology letters》2007,29(7):1105-1110
When α-d-GlcNAc-OC6H4NO2 -p and β-d-(6-sulfo)-GlcNAc-OC6H4NO2-p (2) were used as substrates, β-N-acetylhexosaminidase from Aspergillus oryzae transferred the β-d-(6-sulfo)-GlcNAc(unit from 2 to α-d-GlcNAc-OC6H4NO2 -p to afford β-d-(6-sulfo)-GlcNAc-(1→4)-α-d-GlcNAc-OC6H4NO2-p (3) in a yield of 94% based on the amount of donor, 2, added. β-d-(6-sulfo)-GlcNAc-(1→4)-α-d-Glc-OC6H4NO2-p (4) was obtained with α-d-Glc-OC6H4NO2 -p as acceptor in a similar manner. With a reaction mixture of 2 and β-d-GlcNAc-OC6H4NO2-p (1) in a molar ratio of 6:1, the enzyme mediated the transfer of β-d-GlcNAc from 1 to 2, affording disaccharide β-d-GlcNAc-(1→4)-β-(6-sulfo)-d-GlcNAc-OC6H4NO2-p (5) in a yield of 13% based on the amount of 1 added.  相似文献   

14.
Antigen 85 (ag85) is a complex of acyltransferases (ag85A–C) known to play a role in the mycolation of the d-arabino-d-galactan (AG) component of the mycobacterial cell wall. In order to better understand the chemistry and substrate specificity of ag85, a trehalose monomycolate mimic p-nitrophenyl 6-O-octanoyl-β-d-glucopyranoside (1) containing an octanoyl moiety in lieu of a mycolyl moiety was synthesized as an acyl donor. Arabinofuranoside acceptors, methyl α-d-arabinofuranoside (2), methyl β-d-arabinofuranoside (3), and methyl 2-O-β-d-arabinofuranosyl-α-d-arabinofuranoside (9) were synthesized to mimic the terminal saccharides found on the AG. The acyl transfer reaction between acyl donor 1 and acceptors 2, 3, and 9 in the presence of ag85C from Mycobacterium tuberculosis (M. tuberculosis) resulted in the formation of esters, methyl 2, 5-di-O-octanoyl-α-d-arabinofuranoside (10), methyl 5-O-octanoyl-β-d-arabinofuranoside (11), and methyl 2-O-(5-O-octanoyl-β-d-arabinofuranosyl)-5-O-octanoyl-α-d-arabinofuranoside (12) in 2 h, 2 h and 8 h, respectively. The initial velocities of the reactions were determined with a newly developed assay for acyltransferases. As expected, the regioselectivity corresponds to mycolylation patterns found at the terminus of the AG in M. tuberculosis. The study shows that d-arabinose-based derivatives are capable of acting as substrates for ag85C-mediated acyl-transfer and the acyl glycoside 1 can be used in lieu of TMM extracted from bacteria to study ag85-mediated acyl-transfer and inhibition leading to the better understanding of the ag85 protein class. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A heteroglycan responsible for the binding of the enzyme β-1,4-d-glucosidase (EC 3.2.1.21) to fungal cell walls was isolated from cell walls of the filamentous fungusTrichoderma reesei. The heteroglycan, composed of mannose, galactose, glucose, and glucuronic acid, also activated β-1,4-d-glucosidase, β-1,4-d-xylosidase andN-acetyl-β-1,4-d-glucosaminidase activity in vitro. The structural backbone of this heteroglycan was prepared by acid hydrolysis and gel filtration. The molecular structure of the core of the heteroglycan was determined by NMR studies as a linear α-1,6-d-mannan. The mannan core obtained by acid degradation stimulated the β-glucosidase activity by 90%. Several glycosidases fromAspergillus niger were also activated by theT. reesei heteroglycan. The β-glucosidase ofTrichoderma was activated by mannan fromSaccharomyces cerevisiae to a comparable extent.  相似文献   

16.
A β-d-glucan obtained from Aureobasidium pullulans (AP-FBG) exhibits various biological activities: it exhibits antitumour and antiosteoporotic effects and prevents food allergies. An unambiguous structural characterisation of AP-FBG is still awaited. The biological effects of β-d-glucan are known to depend on its primary structures, conformation, and molecular weight. Here, we elucidate the primary structure of AP-FBG by NMR spectroscopy, and evaluate its biological activities. Its structure was shown to comprise a mixture of a 1-3-β-d-glucan backbone with single 1-6-β-d-glucopyranosyl side-branching units every two residues (major structure) and a 1-3-β-d-glucan backbone with single 1-6-β-d-glucopyranosyl side-branching units every three residues (minor structure). Furthermore, this β-d-glucan exhibited immunostimulatory effects such as the accumulation of immune cells and priming effects against enterobacterium. To our knowledge, 1-3-β-glucans like AP-FBG with such a high number of 1-6-β-glucopyranosyl side branching have a unique structure; nevertheless, many 1-3-β-glucans were isolated from various sources, e.g. fungi, bacteria, and plants.  相似文献   

17.
The cellobiose 2-epimerase from Ruminococcus albus (RaCE) catalyzes the epimerization of cellobiose and lactose to 4-O-β-d-glucopyranosyl-d-mannose and 4-O-β-d-galactopyranosyl-d-mannose (epilactose). Based on the sequence alignment with N-acetyl-d-glucosamine 2-epimerases of known structure and on a homology-modeled structure of RaCE, we performed site-directed mutagenesis of possible catalytic residues in the enzyme, and the mutants were expressed in Escherichia coli cells. We found that R52, H243, E246, W249, W304, E308, and H374 were absolutely required for the activity of RaCE. F114 and W303 also contributed to catalysis. These residues protruded into the active-site cleft in the model (α/α)6 core barrel structure.  相似文献   

18.
The aim of this review is to highlight updated results on the biologically active saponins from Leguminosae-Mimosoideae. Acacic acid-type saponins (AATS), is a class of very complex glycosides possessing a common aglycon unit of the oleanane-type (acacic acid = 3β, 16α, 21β trihydroxy-olean-12-en-28 oic acid), having various oligosaccharide moieties at C-3 and C-28 and an acyl group at C-21. About sixty molecules of this type have been actively explored in recent years from Leguminosae family, from a chemical point of view and some fifty were reported to possess cancer related activities. These include cytotoxic/antitumor, immunomodulatory, antimutagenic, and apoptosis inducing properties and appear to depend on the acylation and esterification by different moieties at C-21 and C-28 of the acacic acid-type aglycone. One can observe that the (6S) configuration of the outer monoterpenyl moiety (MT) seems more potent in mediating high cytotoxicity than its (6R) isomer. Furthermore, the trisaccharide moiety {β-d-Xylopyranosyl-(1→2)-β-d-Fucopyranosyl-(1→6)- N-Acetamido 2-β-d-Glucopyranosyl-} at C-3, the tetrasaccharide moiety {β-d-Glucopyranosyl-(1→3)-[α-L-Arabinofuranosyl-(1→4)]-α-l-Rhamnopyranosyl-(1→2)-β-d-Glucopyranosyl} at C-28 of the aglycone, and the inner MT hydroxylated at its C-9, having a (6S) configuration can be important substituent patterns for the induction of apoptosis of AATS. Because of their interesting cytotoxic/apoptosis inducing activity, some AATS can be useful in the search for new potential antitumor agents from Fabaceae. Furthermore, the sequence 28-O-{Glc-(1→3)-[Araf-(1→4)]-Rha-(1→2)-Glc-Acacic acid}, often encountered in the genera Acacia, Albizia, Archidendron, and Pithecellobium may represent a chemotaxonomic marker of the Mimosoideae subfamily.  相似文献   

19.
To develop a new skin whitening agent, arbutin-β-glycosides were synthesized and evaluated for their melanogenesis inhibitory activities. Three active compounds were synthesized via the transglycosylation reaction of Thermotoga neapolitana β-glucosidase and purified by recycling preparative HPLC. As compared with arbutin (IC50 = 6 mM), the IC50 values of these compounds were 8, 10, and 5 mM for β-d-glucopyranosyl-(1→6)-arbutin, β-d-glucopyranosyl-(1→4)-arbutin, and β-d-glucopyranosyl-(1→3)-arbutin, respectively. β-d-Glucosyl-(1→3)-arbutin also exerted the most profound inhibitory effects on melanin synthesis in B16F10 melanoma cells. Melanin synthesis was inhibited to a significant degree at 5 mM, at which concentration the melanin content was reduced to below 70% of that observed in the untreated cells. Consequently, β-d-glucopyranosyl-(1→3)-arbutin is a more effective depigmentation agent and is also less cytotoxic than the known melanogenesis inhibitor, arbutin.  相似文献   

20.
The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: → 3)[α-d-Glcp-(1 → 4)]-β-d-Galp-(1 → 4)-β-d-Glcp-(1 → 4)[β-d-Galf-(1 → 6)]-β-d-Glcp-(1 → 6)-β-d-Glcp-(1 →, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in Mw = 62 kDa, corresponding to 64 repeating units in the EPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号