首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pancreastatin is a peptide isolated from porcine pancreas which has insulin-suppressive actions in vitro and sequence homology with chromogranin A. Using radioimmunoassay and immunocytochemistry we investigated whether pancreastatin has a more widespread distribution and a possible endocrine role in the pig. Pancreastatin immunoreactivity was found in plasma, adrenal gland, pancreas, anterior pituitary and throughout the gastrointestinal tract. The immunoreactivity was colocalized with chromogranin immunoreactivity in endocrine cells and ultrastructurally (in the pancreas) to storage granules. Characterization of pancreastatin-like immunoreactivity, using gel permeation and high performance liquid chromatography, separated 3 different pancreastatin-like immunoreactive forms: one molecular form, indistinguishable from synthetic pancreastatin 1-49, was predominant in pancreas and thyroid and released into the circulation postprandially. However, a high dose (greater than 1 nmol/l) infusion of pancreastatin 33-49 (the biologically active moiety in vitro) into conscious pigs had no effect on either basal or glucose-stimulated insulin secretion.  相似文献   

2.
A protein with pancreastatin-like immunoreactivity has been isolated and purified from liver metastasis of a patient with insulinoma. NH2-terminal residue analysis, in conjunction with the use of antibodies that are specific for the C-terminal amide peptide of porcine pancreastatin, identified this protein as a 186-amino-acid protein corresponding to human chromogranin A-116-301 (the fragment corresponding to the positions from 116 to 301 of human chromogranin A). Digestion of this protein with trypsin yielded a 48-amino-acid peptide with the retention of full pancreastatin activity. Serum from patient with insulinoma contains a peptide specie(s) that comigrates with the 48-amino-acid pancreastatin, suggesting that this peptide might be a physiologically important circulation form of pancreastatin in humans. A sensitive radioimmunoassay was established using antibody developed against a synthetic 29-amino-acid peptide amide of pancreastatin. Immunocytochemical staining revealed that a major population of human pancreatic islet cells were immunoreactive to the antiserum but with varying intensity of staining. Pancreastatin-like immunoreactivity was not observed in exocrine acinar cells.  相似文献   

3.
The effects of porcine pancreastatin on insulin release stimulated by insulinotropic agents, glucagon, cholecystokinin-octapeptide (CCK-8), gastric inhibitory polypeptide (GIP) and L-arginine, were compared to those of bovine chromogranin A (CGA) using the isolated perfused rat pancreas. Pancreastatin significantly potentiated glucagon-stimulated insulin release (first phase: 12.5 +/- 0.9 ng/8 min; second phase: 34.5 +/- 1.6 ng/25 min in controls; 16.5 +/- 1.1 ng/8 min and 44.0 +/- 2.2 ng/25 min in pancreastatin group), whereas CGA was ineffective. The first phase of L-arginine-stimulated insulin release was also potentiated by pancreastatin (6.9 +/- 0.5 ng/5 min in controls, 8.4 +/- 0.6 ng/5 min in pancreastatin group), but not by CGA. Pancreastatin did not affect CCK-8 or GIP-stimulated insulin release. Similarly, CGA did not affect insulin release stimulated by CCK-8 or GIP. These findings suggest that pancreastatin stimulates insulin release in the presence of glucagon. Because pancreastatin can have multiple effects on insulin release, which are dependent upon the local concentration of insulin effectors, pancreastatin may participate in the fine tuning of insulin release from B cells.  相似文献   

4.
Pancreastatin-like immunoreactivity in human carcinoid disease   总被引:2,自引:0,他引:2  
Pancreastatin-like immunoreactivity has been demonstrated in human carcinoid tumors by immunohistochemistry and radioimmunoassay, employing antisera raised to a synthetic C-terminal fragment of porcine pancreastatin. Immunohistochemistry revealed intense immunoreactivity in all tumors. By radioimmunoassay, high concentrations of pancreastatin-like immunoreactivity were measured in carcinoid tumors arising from the fore-gut (mean +/- S.D. and range: 369 +/- 955 and 9.4-3670 pmol g-1, respectively, n = 14), mid-gut (mean +/- S.D. and range: 1354 +/- 1538 and 337-3978 pmol g-1, respectively, n = 5) and in metastases associated with mid-gut tumors (mean +/- S.D. and range: 684 +/- 739 and 31-2255 pmol g-1, respectively, n = 7), compared to corresponding normal tissues (less than 1.4 pmol g-1). Individuals with hepatic metastases and carcinoid syndrome had elevated circulating levels of pancreastatin-like immunoreactivity (mean +/- S.D. and range: 770 +/- 1249 and 42-4120 pmol l-1; n = 12), significantly above the normal, fasting range (mean +/- S.D. and range: 14.9 +/- 7.5 and 4-37.5 pmol l-1, respectively, n = 42). However, patients with non-metastatic carcinoid tumors (n = 4), who had been clinically cured after primary tumor resection, had plasma levels within the normal range. Chromatographic analysis of extracts of primary lung and ileal tumors, hepatic metastases from ileal tumors and plasma from individuals with carcinoid syndrome revealed molecular heterogeneity of pancreastatin-like immunoreactivity.  相似文献   

5.
A protein with pancreastatin-like immunoreactivity has been isolated and purified from liver metastasis of a patient with insulinoma. NH2-terminal sequence analysis in conjunction with the use of antibodies specific for the C-terminal structure of pancreastatin identified this protein as a 186-amino acid residue protein corresponding to human chromogranin A-116-301. Using a sensitive radioimmunoassay it was found that serum from the patient with insulinoma contains two peptide species; one comigrates with the 186-amino acid residue pancreastatin and the other the 48-residue pancreastatin.  相似文献   

6.
N-terminal chromogranin A (CGA) contains peptides with vasoinhibitory properties, called vasostatin I (VST) and II [CGA(1–76) and (1–113) in human and bovine; (1–128) in rat]. Three fragments of VST were synthesized and antisera raised: human CGA(68–76) (VST I), rat CGA(121–128) (VST II fragment 2), and bovine/human CGA(83–91) (VST II, fragment 3). Strong immunoreactivity was observed in PC12 cells with antisera to VST II, fragment 3, VST I, and neuron-specific enolase. Little or no immunoreactivity was observed using antisera to synaptophysin, whole molecule CGA, pancreastatin, protein gene product 9.5, somatostatin, pancreatic polypeptide, or with antibodies 875 and 876 to VST II, fragment 2. Most of the VST antisera cross-reacted, with a species of molecular weight, 61 kDa but one, 874, cross-reacted with two species of molecular weights, 7.2 and 12 kDa. Our results show the presence of N-terminally processed CGA in PC12 cells.  相似文献   

7.
Chromogranin A (CGA), also referred to as secretory protein I, is an acidic protein that has been detected in all neuroendocrine cell types examined and is often present in large amounts relative to other secreted proteins. For example, CGA comprises at least 40% of the soluble protein of the adrenal chromaffin granule, and it appears to be the major secretory protein in the parathyroid secretory granules. CGA complementary DNAs (cDNAs) from bovine adrenal and pituitary have recently been cloned and sequenced and found to be nearly identical. A region of bovine CGA has a high degree of amino acid sequence identity to pancreastatin, a recently isolated porcine peptide that inhibits glucose-induced insulin secretion. This suggests that CGA may be a prohormone. We have cloned and sequenced a human cDNA encoding CGA. This human CGA cDNA has an overall 86% nucleic acid identity to the bovine cDNA. Like the bovine CGA cDNA, the human cDNA has little homology to pancreastatin at the 5' region of this peptide but significant amino acid homology to the carboxyl-terminal portion of pancreastatin where the biologic activity resides. There is an area within the pancreastatin region of human CGA and porcine pancreastatin with a 70% amino acid identity to the calcium-binding moiety of the E-F hand proteins such as parvalbumin and oncomodulin. These data suggest that CGA and pancreastatin may both be members of a larger family of calcium-binding proteins.  相似文献   

8.
Pancreastatin is a 49 amino acid peptide with a C-terminal glycine amide originally isolated from porcine pancreas. In the present study the cellular localisation of pancreastatin in porcine neuroendocrine tissue was examined immunocytochemically using an antiserum raised against porcine pancreastatin (33-49) that does not cross-react with porcine chromogranin A. In order to study the possible precursor-product relationship between chromogranin A and pancreastatin the cellular localisation of both peptides was examined in peripheral tissues using simultaneous double immunostaining. The pancreastatin antiserum immunostained cells and nerve fibers throughout the neuroendocrine system. In most of the examined tissues we found colocalisation of pancreastatin and chromogranin A immunostaining. These results support the precursor-product concept for chromogranin A and pancreastatin. However, in the gastrointestinal tract and the adenohypophysis a minor population of the endocrine cells exhibited immunostaining with only one of the two antibodies. This discrepancy between immunostaining with pancreastatin antiserum and monoclonal chromogranin A antibody could be due to absence of, or extensive, processing of chromogranin A in certain cell populations.  相似文献   

9.
The purpose of this study was to test the hypothesis that the endoprotease, prohormone convertase-1 (PC-1), is involved in the processing of the precursor protein chromogranin A (CGA) to a smaller peptide called pancreastatin (PST). A human pancreatic carcinoid cell line (BON) that expresses PC-1, CGA and PST was stably transfected with antisense PC-1 mRNA. BON cells expressing antisense PC-1 mRNA showed nearly complete abolishment of PC-1 protein (approximately 95% reduction) and an 80% reduction in cell content of PST immunoreactivity (PST-IR) as assessed by high-performance liquid chromatography in combination with measurement of PST-IR. These findings indicate that PC-1 is essential for processing CGA to PST.  相似文献   

10.
The ECL cells constitute the predominant endocrine cell population in the mucosa of the acid-secreting part of the stomach (fundus). They are rich in chromogranin A (CGA), histamine and histidine decarboxylase (HDC). They secrete CGA-derived peptides and histamine in response to gastrin. The objective of this investigation was to examine the expression of pancreastatin (rat CGA266-314) and WE14 (rat CGA343-356) in rat stomach ECL cells. The distribution and cellular localisation of pancreastatin- and WE14-like immunoreactivities (LI) were analysed by radioimmunoassay and immunohistochemistry with antibodies against pancreastatin, WE14 and HDC. The effect of food deprivation on circulating pancreastatin-LI was examined in intact rats and after gastrectomy or fundectomy. Rats received gastrin-17 (5 nmol/kg/h) by continuous intravenous infusion or omeprazole (400 μmol/kg) once daily by the oral route, to induce hypergastrinemia. CGA-derived peptides in the ECL cells were characterised by gel permeation chromatography. The expression of CGA mRNA was examined by Northern blot analysis. Among all of the endocrine cells in the body, the ECL cell population was the richest in pancreastatin-LI, containing 20–25% of the total body content. Food deprivation and/or surgical removal of the ECL cells lowered the level of pancreastatin-LI in serum by about 80%. Activation of the ECL cells by gastrin infusion or omeprazole treatment raised the serum level of pancreastatin-LI, lowered the concentrations of pancreastatin- and WE14-LI in the ECL cells and increased the CGA mRNA concentration. Chromatographic analysis of the various CGA immunoreactive components in the ECL cells of normal and hypergastrinemic rats suggested that these cells respond to gastrin with a preferential release of the low-molecular-mass forms.  相似文献   

11.
A C-terminal fragment of rat pancreastatin, 26-residue peptide amide was synthesized by the Fmoc-based solid phase method and its biological activity was evaluated for the first time in the conscious rat. Rat pancreastatin inhibited glucose-stimulated insulin secretion and elevated blood glucose levels in a concentration of 10 nmol/kg/h. The relative molar potency of that of porcine is equivalent. This study suggests that the synthetic rat pancreastatin has a biological activity, and may play a physiological role in the endocrine pancreas.  相似文献   

12.
Extensive immunoreactivity (IR) towards a hexapeptide (sequence KGQELE), which flanks the C-terminus of the pancreastatin sequence in rat chromogranin A (CGA), is found throughout the nervous system of the nematode parasite Ascaris suum. The peptide IR was purified from the gonoduct of the parasite and found to have the sequence TKQELE. This peptide, designated TE-6, has some C-terminal homology with several regions of the CGA molecule. However, TE-6 was the only peptide isolated suggesting that either the nematode does not possess CGA, or that the -ELE regions of parasite CGA-like peptides which would be larger than TE-6 are not accessible to the antiserum in RIA, or are not being successfully extracted from the parasite. The N-terminus of TE-6 has little homology with any of the sequences preceding -ELE regions in CGA. This, and the fact that the tissue from which TE-6 was isolated does not contain IR towards another, highly conserved, region of the CGA molecule (WE-14) suggests that TE-6 may belong to a new class of regulatory peptide unrelated to CGA.  相似文献   

13.
Pancreastatin is a novel 49-amino acid peptide with a C-terminal glycine amide. The peptide was isolated from porcine pancreatic extracts and shows a structural similarity to chromogranin A. The effect of synthetic porcine pancreastatin on blood glucose levels and hepatic glycogen content was investigated in ratsin vivo. Pancreastatin (300 pmol/kg) produced a time-dependent decrease in glycogen content of liver and a slight hyperglycemia. Basal plasma insulin and glucagon levels were not modified by pancreastatin. We suggest that pancreastatin could play a biological role in the glucose metabolism through a glycogenolytic effect.  相似文献   

14.
Chromogranin A (CGA) is an abundant protein of dense-cored secretory vesicles in endocrine and neuronal cells. The present study, for the first time, compares CGA of neurons of the central nervous system with the CGA of adrenal origin. By S1 nucleus protection assay, we found that the 3' part of the CGA mRNA between exons 5-8 of the cerebellum and the spinal cord of the rat is homologous to that of the adrenal. In situ hybridization histochemistry revealed that CGA mRNA in the cerebellar cortex is present in cell bodies of Purkinje cells and in neurons of the deep cerebellar nuclei. The perikarya of these cells also exhibit CGA-like immunoreactivity. CGA mRNA and CGA-like immunoreactivity are also present in the motoneurons of the ventral, lateral, and dorsal horns of the rat spinal cord. The amounts of CGA, as determined by radioimmunoassay in cerebellum and spinal cord, were about one tenth of the amounts detected in the adrenal, adenohypophysis, or the olfactory bulb. The sites of CGA expression suggest that CGA may be involved in signal transduction in the motor system.  相似文献   

15.
Pancreastatin is a 49 amino acid comprising peptide isolated from porcine pancreas that is derived by proteolytic processing from chromogranin A. Using an antibody against the synthetic C-terminal fragment pancreastatin (33-49), we examined the light and electron microscopical immunocytochemical localization of this peptide in porcine tissues. Pancreastatin-like immunoreactivity (PLI) was found in pancreatic somatostatin-, insulin- and glucagon cells in varying intensities; pancreatic polypeptide cells were always negative. At the electron microscopical (EM) level the immunoreactivity was confined to the electron dense core of the secretory granules in the case of somatostatin and insulin cells or to the less electron dense "halo" of the glucagon granules. In the antrum PLI positive cells represented gastrin (G), somatostatin (D) and enterochromaffin (EC) cells, in the duodenum in addition to EC- and G-cells a small number of PLI positive cells showed a positive immunoreaction for glucagon-like peptide (GLP) I and secretin in serial sections. Both norepinephrine and epinephrine containing cells of the adrenal medulla exhibited a strong reaction for PLI. In the pituitary several cell populations stained with varying intensities, including gonadotrophs and thyrotrophys. PLI is present in a distinct and characteristic subpopulation of neuroendocrine cells in various organs. The subcellular localization may indicate a function in the granular concentration, packaging and storage of peptides and amines in the brain-gut endocrine system.  相似文献   

16.
The distribution of galanin-like immunoreactivity in various regions of the central nervous system was assessed in three mammalian species, pig, rat, and human, by radioimmunoassay. Galanin concentrations were highest in the hypothalamus and pituitary region. In spinal cord, there was a rostrocaudal/dorsoventral gradient with highest levels observed in the sacral dorsal horn. Serial dilutions of porcine tissue extracts diluted parallel to the porcine standard curve, while the rat and human tissue extracts did not. In all tissues examined by high pressure liquid chromatography, the principal peak of immunoreactivity coeluted with the authentic porcine galanin standard and was decreased by trypsin cleavage. These results suggest a role for galanin in the central nervous system and support species differences in the structure of galanin.  相似文献   

17.
Summary Pancreastatin is a 49 amino acid comprising peptide isolated from porcine pancreas that is derived by proteolytic processing from chromogranin A. Using an antibody against the synthetic C-terminal fragment pancreastatin (33–49), we examined the light and electron microscopical immunocytochemical localization of this peptide in porcine tissues. Pancreastatin-like immunoreactivity (PLI) was found in pancreatic somatostatin-, insulin- and glucagon cells in varying intensities; pancreatic polypeptide cells were always negative. At the electron microscopical (EM) level the immunoreactivity was confined to the electron dense core of the secretory granules in the case of somatostatin and insulin cells or to the less electron dense halo of the glucagon granules. In the antrum PLI positive cells represented gastrin (G), somatostatin (D) and enterochromaffin (EC) cells, in the duodenum in addition to EC- and G-cells a small number of PLI positive cells showed a positive immunoreaction for glucagon-like peptide (GLP) I and secretin in serial sections. Both norepinephrine and epinephrine containing cells of the adrenal medulla exhibited a strong reaction for PLI. In the pituitary several cell populations stained with varying intensities, including gonadotrophs and thyrotrophs. PLI is present in a distinct and characteristic subpopulation of neuroendocrine cells in various organs. The subcellular localization may indicate a function in the granular concentration, packaging and storage of peptides and amines in the brain-gut endocrine system.  相似文献   

18.
Summary The comparative distribution and coexistence of chromogranin A (CGA)-, serotonin (5-hydroxytryptamine; 5-HT)- and pancreastatin (PST)-like immunoreactivity in endocrine-like cells of the human anal canal was investigated by light-microscopic immunocytochemistry. The largest population of colorectal endocrine-like cells consisted of CGA-immunoreactive (ir) cells, followed by the 5-HT-ir and PST-ir cell population. In the anal transitional zone (ATZ), CGA-and 5-HT-immunoreactivity was equally distributed; ir-PST was confined to a smaller endocrine-like cell population. In the squamous zone and the perianal skin, Merkel cells in the basal layer of the epidermis and hair follicles exhibited ir-CGA and ir-PST but no ir-5-HT. Double immunofluorescence on identical sections revealed distinct coexistence patterns. In the colorectal zone, about 2/3 of the CGA-ir endocrine-like cells also stained for 5-HT, whereas in the ATZ epithelium, CGA- and 5-HT-immunoreactivity completely overlapped. No 5-HT-immunoreactivity could be detected in CGA-ir Merkel cells of the squamous zone of the anal canal and the perianal skin. PST-immunoreactivity was present in about 1/3 of the CGA-ir colorectal and anal transitional endocrine-like cells and in about 1/4 of the Merkel-cell population staining for CGA. These chemically heterogeneous phenotypes of the anal endocrine-like and Merkel cells may reflect a specific regulatory role of these cells in the various epithelial linings of the human anal canal and the perianal skin.  相似文献   

19.
Gastrin-recognizing CCK2 receptors are expressed in parietal cells and in so-called ECL cells in the acid-producing part of the stomach. ECL cells are endocrine/paracrine cells that produce and store histamine and chromogranin A (CGA)-derived peptides, such as pancreastatin. The ECL cells are the principal cellular transducer of the gastrin-acid signal. Activation of the CCK2 receptor results in mobilization of histamine (and pancreastatin) from the ECL cells with consequent activation of the parietal cell histamine H2 receptor. Thus, release of ECL-cell histamine is a key event in the process of gastrin-stimulated acid secretion. The oxyntic mucosal histidine decarboxylase (HDC) activity and the serum pancreastatin concentration are useful markers for the activity of the gastrin-ECL cell axis. Powerful and selective CCK2 receptor antagonits have been developed from a series of benzodiazepine compounds. These agents are useful tools to study how gastrin controls the ECL cells. Conversely, the close control of ECL cells by gastrin makes the gastrin-ECL cell axis well suited for evaluating the antagonistic potential of CCK2 receptor antagonists with the ECL-cell HDC activity as a notably sensitive and reliable parameter. The CCK2 receptor antagonists YF476, YM022, RP73870, JB93182 and AG041R were found to cause prompt inhibition of ECL-cell histamine and pancreastatin secretion and synthesis. The circulating pancreastatin concentration is raised, was lowered when the action of gastrin on the ECL cells was blocked by the CCK2 receptor antagonists. These effects were associated with inhibition of gastrin-stimulated acid secretion. In addition, sustained receptor blockade was manifested in permanently decreased oxyntic mucosal HDC activity, histamine concentration and HDC mRNA and CGA mRNA concentrations. CCK2 receptor blockade also induced hypergastrinemia, which probably reflects the impaired gastric acid secretion (no acid feedback inhibition of gastrin release). Upon withdrawal of the CCK2 receptor antagonists, their effects on the ECL cells were readily reversible. In conclusion, gastrin mobilizes histamine from the ECL cells, thereby provoking the parietal cells to secrete acid. While CCK2 receptor blockade prevents gastrin from evoking acid secretion, it is without effect on basal and vagally stimulated acid secretion. We conclude that specific and potent CCK2 receptor antagonists represent powerful tools to explore the functional significance of the ECL cells.  相似文献   

20.
 The ontogenetic expression of chromogranin A (CgA) and its derived peptides, WE-14 and pancreastatin (PST), was studied in the rat neuroendocrine system employing immunohistochemical analysis of fetal and neonatal specimens from 12.5-day embryos (E12.5), to 42-day postnatal (P42) rats. CgA immunostaining was first detected in endocrine cells of the pancreas, stomach, intestine, adrenal gland and thyroid at E13.5, E14.5, E15.5, E15.5 and E18.5, respectively. PST-like immunoreactivity was detected in endocrine cells of the pancreas at E13.5, stomach, intestine at E15.5, adrenal gland at E17.5 and thyroid at E18.5. WE-14 immunoreactivity was first observed in the immature pancreas at E15.5, mucosal cells of the stomach at E15.5, scattered chromaffin cells in the immature adrenal gland and mucosal cells of the intestine at E17.5 and thyroid parafollicular cells at E18.5. These data confirm that the translation of the CgA gene is regulated differentially in various neuroendocrine tissues and, moreover, suggests that the posttranslational processing of the molecule is developmentally controlled. Accepted: 18 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号