首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphofructokinase (ATP : D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) from Streptococcus thermophilus has been purified. It is a tetramer composed of identical subunits of molecular weight 36 000 and exhibits Michaelis-Menten kinetics. Compared to the phosphofructokinases from taxonomically related bacteria, the enzyme from S. thermophilus is more stable at high temperatures. In addition, it has been demonstrated that the phosphofructokinases from lactobacteria and also from Bacillus stearothermophilus show immunologic cross-reaction. In spite of the significantly different kinetic properties and the different thermostability of these enzymes, this finding indicates great structural resemblance.  相似文献   

2.
Two purine nucleoside phosphorylases (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) were purified from vegetative Bacillus subtilis cells. One enzyme, inosine-guanosine phosphorylase, showed great similarity to the homologous enzyme of Bacillus cereus. It appeared to be a tetramer of molecular weight 95 000. The other enzyme, adenosine phosphorylase, was specific for adenosine and deoxyadenosine. The molecular weight of the native enzyme was 153 000 +/- 10% and the molecular weight of the subunits was 25 500 +/- 5%. This indicates a hexameric structure. The adenosine phosphorylase was inactivated by 10(-3) M p-chloromercuribenzoate and protected against this inactivation by phosphate, adenosine and ribose 1-phosphate.  相似文献   

3.
1. NAD(P)+-induced changes in the aggregational state of prepurified NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) were used to isolate the enzyme from Spinacia oleracea, Pisum sativaum and Hordeum vulgare. Each of the three plant species contains two separate isoenzymes. Isoenzyme 1 (fast moving during conventional electrophoresis) precipitates with the ammonium sulfate fraction 55--70% saturation. It shows two separate subunits in dodecylsulfate gels, which are probably arranged as A2B2 in the native enzyme molecule. Isoenzyme 2 (slow moving during conventional electrophoresis) precipitates with the ammonium sulfate fraction 70--95%. It contains a sigle subunit of the same Mr as subunit A in isoenzyme 1 and is apparently a tetramer (A4). The molecular weights of subunits A/B for spinach, peas and barley were determined as 38,000/40,000, 38,000/42,000 and 36,000/39,000 respectively. 2. The NAD-specific glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) was purified from Spinacia oleracea and Pisum sativum by affinity chromatography on blue Sepharose CL-6B. The enzyme from both plant species is shown to be a tetramer of subunits with Mr 39,000. 3. The present findings contrast with heterogeneous results obtained previously by other authors. These results suggested that there are considerable interspecific differences in the quaternary structure of glyceraldehyde-3-phosphate dehydrogenases from higher plants.  相似文献   

4.
Lactate dehydrogenase C, an isoenzyme composed of C polypeptide subunits and found only in mature testes and spermatozoa, differs kinetically, chemically and immunologically from the five common isoenzymes of lactate dehydrogenase, each of which is a tetramer of A and/or B subunits. In the rat lactate dehydrogenase C exists in two molecular forms, isoenzymes C4 and A1C3. In addition to these two forms of lactate dehydrogenase C, rat testicular homogenate contains all the five isoenzymes of A and B type. Purification of isoenzyme C4 requires its separation from the other six isoenzymes, of which isoenzymes A1C3 and A3B1 are the most difficult ones to separate. In the present study isoenzyme A3B1, along with other enzymes, was separated from isoenzyme C4 by AMP-Sepharose chromatography by using a gradient of increasing concentration of NAD+-pyruvate adduct. In the next step, isoenzyme A1C3 was separated from isoenzyme C4 by DEAD-cellulose chromatography, resulting in a pure lactate dehydrogenase isoenzyme C4 preparation.  相似文献   

5.
Glutathione S-transferase was isolated from supernatant of camel kidney homogenate centrifugation at 37, 000 xg by glutathione agarose affinity chromatography. The enzyme preparation has a specific activity of 44 μ;mol/min/mg protein and recovery was more than 85% of the enzyme activity in the crude extract. Glutathione agarose affinity chromatography resulted in a purification factor of about 49 and chromatofocusing resolved the purified enzyme into two major isoenzymes (pI 8.7 and 7.9) and two minor isoenzymes (pI 8.3 and 6.9). The homogeneity of the purified enzyme was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration on Sephadex G-100.

The different isoenzymes were composed of a binary combination of two subunits with molecular weight of 29, 000 D and 26, 000 D to give a native molecular weight of 55, 000 D.

The substrate specificities of the major camel kidney glutathione S-transferase isoenzymes were determined towards a range of substrates. l-chloro-2, 4-dinltrobenzene was the preferred substrate for all the isoenzymes. Isoenzyme III (pI 7.9) had higher specific activity for ethacrynic acid and isoenzyme II (pI 8.3) was the only isoenzyme that exhibited peroxidase activity. Ouchterlony double-diffusion analysis with rabbit antiserum prepared against the camel kidney enzyme showed fusion of precipitation lines with the enzymes from camel brain, liver and lung and no cross reactivity was observed with enzymes from kidneys of sheep, cow, rat, rabbit and mouse.

Different storage conditions have been found to affect the enzyme activity and the loss in activity was marked at room temperature and upon repeated freezing and thawing.  相似文献   

6.
Neurospora crassa contains three isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, which are inhibited by tyrosine, tryptophan and phenylalanine respectively, and it was estimated that the relative proportions of the total activity were 54%, 14% and 32% respectively. The tryptophan-sensitive isoenzyme was purified to homogeneity as judged by polyacrylamide-gel electrophoresis and ultracentrifugation. The tyrosine-sensitive and phenylalanine-sensitive isoenzymes were only partially purified. The three isoenzymes were completely separated from each other, however, and can be distinguished by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose and Ultrogel AcA-34 and polyacrylamide-gel electrophoresis. Polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate indicated that the tryptophan-sensitive isoenzyme contained one type of subunit of molecular weight 52000. The molecular weight of the native enzyme was found to be 200000 by sedimentation-equilibrium centrifugation, indicating that the enzyme is a tetramer, and the results of cross-linking and gel-filtration studies were in agreement with this conclusion.  相似文献   

7.
Phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) from human muscle, brain, heart and granulocytes has been purified using a two or three step purification procedure. The main step is Blue Dextran-Sepharose 4B chromatography with selective elution of phosphofructokinase by formation of the ternary complex ADP or ATP-fructose-6-P-enzyme. Muscle and heart contain only enzyme subunits with a molecular weight of 85,000. This type of subunit is predominnant in brain, where it co-exists with subunits of about 80,000 daltons. A single type of subunits is found in the granulocytes, with a molecular weight of 80,000. Anti-muscle phosphofructokinase antiserum reacts only with M-type enzyme. Anti-granulocyte enzyme antiserum, absorbed by pure brain phosphofructokinase, exhibits a narrow specificity against the so-called L-type enzyme. Anti-brain antiserum, absorbed by pure muscle phosphofructokinase and partly purified red cell enzyme, exhibits a narrow specificity against a phosphofructokinase form predominant in fibroblasts and present in brain (F-type).  相似文献   

8.
The adenosone 5'-triphosphate-insensitive glucose 6-phosphate dehydrogenase from Pseudomonas cepacia has been found to be strongly inhibited by long-chain fatty acids and their acyl coenzyme A esters, suggesting that an important role of this isoenzyme might be to provide reduced nicotinamide adenine dinucleotide phosphate for reductive steps in fatty acid synthesis. The enzyme, which has been redesignated the fatty acid-sensitive glucose 6-phosphate dehydrogenase, has been purified to homogeneity using affinity chromatography with nicotinamide adenine dinulceotide phosphate-substituted Sepharose as a key step in the purification. The purified preparations were used to study the immunological properties and subunit composition of the enzyme and its relationship to the adenosine 5'-triphosphate-sensitive glucose 6-phosphate dehydrogenase present in extracts of P. cepacia. Although both enzymes were found to be composed of similar size subunits of about 60,000 daltons, immunological studies failed to demonstrate any antigenic similarity between them. Studies of the sedimentation behavior of the fatty acid-sensitive enzyme in sucrose gradients indicated that its apparent molecular weight is increased in the presence of glucose 6-phosphate and suggest that it may exist in an aggregated state in vivo. Palmitoyl coenzyme A, which strongly inhibited the enzyme, failed to influence its sedimentation behavior.  相似文献   

9.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5'AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the 60 micrograms of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

10.
Phosphofructokinase (ATP : D-fructose-6-phosphate 1 phosphotransferase, EC 2.7.1.11) from two different lactobacilli, Lactobacillus plantarum and Lactobacillus acidophilus were isolated and purified. Both enzymes have a molecular weight of 154 000 and consist of four subunits of identical size. Antisera from sheep immunized against the purified phosphofructokinase from L. plantarum showed immunologic cross reaction with the enzyme from L. acidophilus. In spite of the close molecular relationship indicated by the immunologic cross reaction, the kinetic behaviour of the two enzymes was strikingly different. Phosphofructokinase from L. plantarum showed pure Michaelis-Menten behaviour. Phosphofructokinase from L. acidophilus, however, showed sigmoidal substrate saturation curves for fructose 6-phosphate in the presence of slightly alkaline pH and high ATP concentrations; it was activated by fructose 1,6-biphosphate and inhibited by ADP. The results indicate that even enzymes which are structurally very similar may differ greatly with respect to their kinetic and regulatory properties and suggest that allosteric and non-allosteric phosphofructokinases have the same origin in evolution.  相似文献   

11.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5′AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of 60 μq of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

12.
Two isoenzymes of ATP:D-fructose-6-phosphate 1-phosphotransferase(phosphofructokinase) are present in germinating cucumber seeds,one in the plastids and the other in the cytosol. Both isoenzymeswere purified and some of their kinetic properties studied.These two isoenzymes differ kinetically, the pH optimum of thecytosolic isoenzyme being 7.2 and that of the plastid isoenzymebeing 8.0. Both isoenzymes are activated by phosphate althoughthe concentration required for activation is much lower forthe plastid isoenzyme than cytosolic isoenzyme. Phosphate increasesthe affinity of the isoenzymes for fructose-6-phosphate andalso changes the sigmoidal kinetics of the plastid isoenzymefor this substrate to hyperbolic kinetics at pH 7.2. The fructose-6-phosphatesaturation kinetics of the cytosolic isoenzyme becomes moresigmoidal with an increase in pH while the opposite is truefor the plastid isoenzyme. The cytosolic isoenzyme has a higheraffinity for fructose-6-phosphate at pH 7.2 than pH 8.0 whilethe affinity of the plastid isoenzyme for fructose-6-phosphateis highest at pH 8.0. Both isoenzymes are inhibited by ATP andthe extent of inhibition is pH dependent. The cytosolic isoenzymeis more sensitive to ATP inhibition at pH 8.0 than pH 7.2 whilethe opposite holds for the plastid isoenzyme. Magnesium alleviatesthe ATP inhibition of the plastid isoenzyme suggesting thatfree ATP is the inhibitory form. In contrast the ATP inhibitionof the cytosolic isoenzyme apparently appears to be caused bythe magnesium-ATP complex. (Received May 19, 1987; Accepted January 18, 1988)  相似文献   

13.
S Vora  R Oskam    G E Staal 《The Biochemical journal》1985,229(2):333-341
In man and the rabbit, 6-phosphofructokinase (PFK, EC 2.7.1.11) exists in tetrameric isoenzymic forms composed of muscle (M or A), liver (L or B) and platelet or brain (P or C) subunits, which are under separate genetic control. In contrast, the genetic control of the rat PFK has not yet been conclusively established; it is unclear whether the P-type or C-type subunit exists in this species. To resolve this question, we investigated the enzyme from the skeletal muscle, liver and brain of rats of Wag/Rij strain. Our studies demonstrate that the rat PFK is also under the control of three structural loci and that the homotetramers M4, P4 and L4 exhibit unique chromatographic, immunological and kinetic-regulatory properties. Skeletal-muscle and brain PFKs consist of isolated M4 and P4 homotetramers respectively. Although liver PFK consists predominantly of L4 homotetramer, it also contains small amounts of PL3 and P2L2 species. All three PFKs exhibit allosteric properties: co-operativity with fructose 6-phosphate and inhibition by ATP decrease in the order P4 greater than L4 greater than M4. P4 and M4 tetramers are the most sensitive to citrate inhibition, whereas L4 tetramer is the least sensitive. More importantly, P4 and L4 isoenzymes are the most sensitive to activation by fructose 2,6-bisphosphate, whereas M4 isoenzyme is the least sensitive. These results indicate that the brain PFK in this strain of rat is a unique tetramer, P4, which also exhibits allosteric kinetics, as do the well-studied M4 and L4 isoenzymes. The reported differences in the number and nature of isoenzymes present in the rat brain and liver most probably reflect the differences in the strains studied by previous investigators. Since the nature of the rat PFK isoenzymes and nomenclatures reported by previous investigators have been now reconciled, it is proposed that, for the sake of uniformity, only well-established nomenclatures used for the rabbit or human PFK isoenzymes be used for the rat isoenzymes.  相似文献   

14.
D E Hill  G G Hammes 《Biochemistry》1975,14(2):203-213
Equilibrium binding studies of the interaction of rabbit muscle phosphofructokinase with fructose 6-phosphate and fructose 1,6-bisphosphate have been carried out at 5 degrees in the presence of 1-10 mM potassium phosphate (pH 7.0 and 8.0), 5 mM citrate (pH 7.0), or 0.22 mm adenylyl imidodiphosphate (pH 7.0 and 8.0). The binding isotherms for both fructose 6-phosphate and fructose 1,6-bisphosphate exhibit negative cooperativity at pH 7.0 and 8.0 in the presence of 1-10 mM potassium phosphate at protein concentrations where the enzyme exists as a mixture of dimers and tetramers (pH 7.0) or as tetramers (pH 8.0) and at pH 7.0 in the presence of 5 mM citrate where the enzyme exists primarily as dimers. The enzyme binds 1 mol of either fructose phosphate/mol of enzyme monomer (molecular weight 80,000). When enzyme aggregation states smaller than the tetramer are present, the saturation of the enzyme with either ligand is paralleled by polymerization of the enzyme to tetramer, by an increase in enzymatic activity and by a quenching of the protein fluorescence. At protein concentrations where aggregates higher than the tetramer predominate, the fructose 1,6-bisphosphate binding isotherms are hyperbolic. These results can be quantitatively analyzed in terms of a model in which the dimer is associated with extreme negative cooperativity in binding the ligands, the tetramer is associated with less negative cooperativity, and aggregates larger than the tetramer are associated with little or no cooperativity in the binding process. Phosphate is a competitive inhibitor of the fructose phosphate sites at both pH 7.0 and 8.0, while citrate inhibits binding in a complex, noncompetitive manner. In the presence of the ATP analog adenylyl imidodiphosphate, the enzyme-fructose 6-phosphate binding isotherm is sigmoidal at pH 7.0, but hyperbolic at pH 8.0. The characteristic sigmoidal initial velocity-fructose 6-phosphate isotherms for phosphofructokinase at pH 7.0, therefore, are due to an heterotropic interaction between ATP and fructose 6-phosphate binding sites which alters the homotropic interactions between fructose 6-phosphate binding sites. Thus the homotropic interactions between fructose 6-phosphate binding sites can give rise to positive, negative, or no cooperativity depending upon the pH, the aggregation state of the protein, and the metabolic effectors present. The available data suggest the regulation of phosphofructokinase involves a complex interplay between protein polymerization and homotropic and heterotropic interactions between ligand binding sites.  相似文献   

15.
3-Hexulosephosphate synthase (D-arabino-3-hexulose 6-phosphate formaldehyde lyase) was purified from an obligate methylotroph, Methylomonas aminofaciens, to homogeneity as judged by polyacrylamide gel electrophoresis and analytical ultracentrifugation. The molecular weight was determined to be 45 000-47 000 by sedimentation velocity and gel filtration. The enzyme appears to be composed of two identical subunits (Mr = 23 000). A bivalent cation is required for the activation and stabilization of the enzyme. The enzyme is specific for formaldehyde and D-ribulose 5-phosphate. The optimum pH is 8.0 (isoelectric point, pH 5.1) and the optimum temperature is 45 degrees C. Initial velocity studies are consistent with a sequential mechanism. The Michaelis constants are 0.29 mM for formaldehyde and 0.059 mM for D-ribulose 5-phosphate.  相似文献   

16.
Glutathione S-transferase was isolated from supernatant of camel kidney homogenate centrifugation at 37,000 xg by glutathione agarose affinity chromatography. The enzyme preparation has a specific activity of 44 mumol/min/mg protein and recovery was more than 85% of the enzyme activity in the crude extract. Glutathione agarose affinity chromatography resulted in a purification factor of about 49 and chromatofocusing resolved the purified enzyme into two major isoenzymes (pI 8.7 and 7.9) and two minor isoenzymes (pI 8.3 and 6.9). The homogeneity of the purified enzyme was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration on Sephadex G-100. The different isoenzymes were composed of a binary combination of two subunits with molecular weight of 29,000 D and 26,000 D to give a native molecular weight of 55,000 D. The substrate specificities of the major camel kidney glutathione S-transferase isoenzymes were determined towards a range of substrates. 1-chloro-2,4-dinitrobenzene was the preferred substrate for all the isoenzymes. Isoenzyme III (pI 7.9) had higher specific activity for ethacrynic acid and isoenzyme II (pI 8.3) was the only isoenzyme that exhibited peroxidase activity. Ouchterlony double-diffusion analysis with rabbit antiserum prepared against the camel kidney enzyme showed fusion of precipitation lines with the enzymes from camel brain, liver and lung and no cross reactivity was observed with enzymes from kidneys of sheep, cow, rat, rabbit and mouse. Different storage conditions have been found to affect the enzyme activity and the loss in activity was marked at room temperature and upon repeated freezing and thawing.  相似文献   

17.
The purification of DNA-dependent RNA polymerase II (EC 2.7.7.6) from plant cell cultures of Petroselinum (parsley) is described. The procedure during which enzyme I is eliminated includes initial precipitation with (NH4)2SO4, an ultracentrifugation step, gel filtration on Sepharose 4B, chromatography on DEAE-cellulose, DNA-agarose and DEAE-Sephadex. The enzyme purified almost to homogeneity exhibits maximal activity with denatured DNA, and is activated preferentially by Mn2+; alpha-amanitin acts as a strong inhibitor. Electrophoresis of the enzyme in the presence of dodecylsulphate indicates that it is composed of seven subunits with mol. wts of 200 000, 180 000, 140 000, 43 000, 26 000, 25 000 and 16 000. The results of molecular weight and molar ratio determinations suggest that Petroselinum RNA polymerase II may exist in two active forms differing only in the composition of their high molecular weight subunits.  相似文献   

18.
经硫酸铵分部,DEAE—纤维素、羟基磷灰石、Sephadex G—200及磷酸纤维素柱层析,从菠萝叶片分离得到电泳均一的依赖焦磷酸的磷酸果糖激酶(PFP)。SDS电泳图谱表明有一条分子量为62kD的主带和一条57 kD的弱带。Fru—2,6—P_2对酶的正反应活性有促进作用。动力学研究表明,Fru—2,6—P_2增加V_(max)及酶对底物Fru—6—P和Mg~(2+)的亲和性。  相似文献   

19.
Purification and characterization of a marine bacterial collagenase.   总被引:7,自引:0,他引:7  
J R Merkel  J H Dreisbach 《Biochemistry》1978,17(14):2857-2863
A true collagenase was isolated from the culture fluid of a marine bacterium which has been designated Vibrio B-30 (ATCC 21250). Collagenase production was obtained only in media containing collagen or certain degradation products of collagen. Partial purification on DEAE-cellulose and Sephadex G-200 columns produced active enzyme which was free of nonspecific proteases but which contained two collagenases. The two collagenases have the same apparent molecular size, and evidence is presented to support the theory that one collagenase is derived from the other. Vibrio B-30 collagenase appears to be a tetramer with a molecular weight of about 105 000 composed of two different subunits (mol wt 24 000 and 28 000). Some of the properties of the Vibrio collagenase are compared with those of Clostridium histolyticum collagenase. Molecular weights, subunit structures, specificity and mode of collagen hydrolysis, insensitivity to diisopropyl fluorophosphate and calf serum, and sensitivity to certain metal ion complexing agents and isopropyl alcohol are similar for the collagenases from both organisms. However, Vibrio B-30 collagenase and Clostridium collagenase differ immunologically and electrophoretically.  相似文献   

20.
A novel phosphodiesterase from cultured tobacco cells.   总被引:8,自引:0,他引:8  
A novel phosphodiesterase was purified from cultured tobacco cells to a state which appeared homogeneous on polyacrylamide gel electrophoresis. The enzyme hydrolyzed various phosphodiester and pyrophosphate bonds, including p-nitrophenyl thymidine 5'-phosphate, p-nitrophenyl thymidine 3'-phosphate, cyclic nucleotides, ATP, NAD+, inorganic pyrophosphate, dinucleotides, and poly(adenosine diphosphate ribose), which is a polymer synthesized from NAD+. However, it did not hydrolyze highly polymerized polynucleotides. The molecular weight of the native enzyme was estimated as 270 000 to 280 000 by gel filtration on Sephadex G-200 and Bio-Gel A-5m. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the enzyme was composed of subunits with molecular weights calculated to be 75 000. The enzyme did not require divalent cations for activity being fully active in the presence of ethylenediaminetetraacetic acid. The pH optimum for the enzyme was approximately 6 with p-ni-trophenyl thymidine 5'-phosphate or adenosine cyclic 3',5'monophosphate, and 5.3 with NAD+. Double reciprocal plots of the initial velocity against the concentration of p-nitrophenyl thymidine 5'-phosphate gave two apparent Km values of 0.17 and 1.3 mM, suggesting the presence of at least two active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号