共查询到20条相似文献,搜索用时 0 毫秒
1.
Mittal A Böhm S Grütter MG Bordignon E Seeger MA 《The Journal of biological chemistry》2012,287(24):20395-20406
ABC transporters harness the energy from ATP binding and hydrolysis to translocate substrates across the membrane. Binding of two ATP molecules at the nucleotide binding domains (NBDs) leads to the formation of an outward-facing state. The conformational changes required to reset the transporter to the inward-facing state are initiated by sequential hydrolysis of the bound nucleotides. In a homodimeric ABC exporter such as MsbA responsible for lipid A transport in Escherichia coli, sequential ATP hydrolysis implies the existence of an asymmetric conformation. Here we report the in vitro selection of a designed ankyrin repeat protein (DARPin) specifically binding to detergent-solubilized MsbA. Only one DARPin binds to the homodimeric transporter in the absence as well as in the presence of nucleotides, suggesting that it recognizes asymmetries in MsbA. DARPin binding increases the rate of ATP hydrolysis by a factor of two independent of the substrate-induced ATPase stimulation. Electron paramagnetic resonance (EPR) measurements are found to be in good agreement with the available crystal structures and reveal that DARPin binding does not affect the large nucleotide-driven conformational changes of MsbA. The binding epitope was mapped by cross-linking and EPR to the membrane-spanning part of the transmembrane domain (TMD). Using cross-linked DARPin-MsbA complexes, 8-azido-ATP was found to preferentially photolabel one chain of the homodimer, suggesting that the asymmetries captured by DARPin binding at the TMDs are propagated to the NBDs. This work demonstrates that in vitro selected binders are useful tools to study the mechanism of membrane proteins. 相似文献
2.
Woebking B Reuter G Shilling RA Velamakanni S Shahi S Venter H Balakrishnan L van Veen HW 《Journal of bacteriology》2005,187(18):6363-6369
MsbA is an essential ATP-binding cassette half-transporter in the cytoplasmic membrane of the gram-negative Escherichia coli and is required for the export of lipopolysaccharides (LPS) to the outer membrane, most likely by transporting the lipid A core moiety. Consistent with the homology of MsbA to the multidrug transporter LmrA in the gram-positive Lactococcus lactis, our recent work in E. coli suggested that MsbA might interact with multiple drugs. To enable a more detailed analysis of multidrug transport by MsbA in an environment deficient in LPS, we functionally expressed MsbA in L. lactis. MsbA expression conferred an 86-fold increase in resistance to the macrolide erythromycin. A kinetic characterization of MsbA-mediated ethidium and Hoechst 33342 transport revealed apparent single-site kinetics and competitive inhibition of these transport reactions by vinblastine with K(i) values of 16 and 11 microM, respectively. We also detected a simple noncompetitive inhibition of Hoechst 33342 transport by free lipid A with a K(i) of 57 microM, in a similar range as the K(i) for vinblastine, underscoring the relevance of our LPS-less lactococcal model for studies on MsbA-mediated drug transport. These observations demonstrate the ability of heterologously expressed MsbA to interact with free lipid A and multiple drugs in the absence of auxiliary E. coli proteins. Our transport data provide further functional support for direct LPS-MsbA interactions as observed in a recent crystal structure for MsbA from Salmonella enterica serovar Typhimurium (C. L. Reyes and G. Chang, Science 308:1028-1031, 2005). 相似文献
3.
Orelle C Gubellini F Durand A Marco S Lévy D Gros P Di Pietro A Jault JM 《Biochemistry》2008,47(8):2404-2412
ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters. 相似文献
4.
Diverse effects of phospholipids on lipoprotein sorting and ATP hydrolysis by the ABC transporter LolCDE complex 总被引:1,自引:0,他引:1
The LolCDE complex of Escherichia coli releases outer membrane-specific lipoproteins from the inner membrane. Lipoproteins with Asp at +2 remain in the inner membrane since this residue functions as a LolCDE avoidance signal depending on phosphatidylethanolamine. We examined the effects of other phospholipids on lipoprotein sorting in proteoliposomes reconstituted with LolCDE and various synthetic phospholipids. The lipoprotein release and ATP hydrolysis were both low at 2 mM Mg(2+) but very high at 10 mM Mg(2+) in proteoliposomes containing cardiolipin alone. However, the Lol avoidance function was abolished at 10 mM Mg(2+), and the release of lipoproteins with Asp at +2 was as efficient as that of outer membrane-specific lipoproteins. The addition of phosphatidylethanolamine to cardiolipin stimulated the ATP hydrolysis and increased the Lol avoidance function of Asp at +2 at 2 mM Mg(2+). The addition of phosphatidylglycerol to cardiolipin nearly completely inhibited the release of lipoproteins with Asp at +2 even at 10 mM Mg(2+), while that of outer membrane-specific lipoproteins was not. Taken together, these results indicate that three major phospholipids of E. coli differently affect lipoprotein sorting and the activity of LolCDE. 相似文献
5.
Shigehiko Miyamoto 《生物化学与生物物理学报:生物膜》2007,1768(7):1848-1854
The LolCDE complex of Escherichia coli releases outer membrane-specific lipoproteins from the inner membrane. Lipoproteins with Asp at + 2 remain in the inner membrane since this residue functions as a LolCDE avoidance signal depending on phosphatidylethanolamine. We examined the effects of other phospholipids on lipoprotein sorting in proteoliposomes reconstituted with LolCDE and various synthetic phospholipids. The lipoprotein release and ATP hydrolysis were both low at 2 mM Mg2+ but very high at 10 mM Mg2+ in proteoliposomes containing cardiolipin alone. However, the Lol avoidance function was abolished at 10 mM Mg2+, and the release of lipoproteins with Asp at + 2 was as efficient as that of outer membrane-specific lipoproteins. The addition of phosphatidylethanolamine to cardiolipin stimulated the ATP hydrolysis and increased the Lol avoidance function of Asp at + 2 at 2 mM Mg2+. The addition of phosphatidylglycerol to cardiolipin nearly completely inhibited the release of lipoproteins with Asp at + 2 even at 10 mM Mg2+, while that of outer membrane-specific lipoproteins was not. Taken together, these results indicate that three major phospholipids of E. coli differently affect lipoprotein sorting and the activity of LolCDE. 相似文献
6.
Geourjon C Orelle C Steinfels E Blanchet C Deléage G Di Pietro A Jault JM 《Trends in biochemical sciences》2001,26(9):539-544
ABC (ATP-binding cassette) transporters and helicases are large superfamilies of seemingly unrelated proteins, whose functions depend on the energy provided by ATP hydrolysis. Comparison of the 3D structures of their nucleotide-binding domains reveals that, besides two well-characterized ATP-binding signatures, the folds of their nucleotide-binding sites are similar. Furthermore, there are striking similarities in the positioning of residues thought to be important for ATP binding or hydrolysis. Interestingly, structures have recently been obtained for two ABC proteins that are not involved in transport activities, but that have a function related to DNA modification. These ABC proteins, which contain a nucleotide-binding site akin to those of typical ABC transporters, might constitute the missing link between the two superfamilies. 相似文献
7.
Nucleotide dependent packing differences in helical crystals of the ABC transporter MsbA 总被引:1,自引:0,他引:1
Andrew Ward Sheila Mulligan Bridget Carragher Geoffrey Chang Ronald A. Milligan 《Journal of structural biology》2009,165(3):169-175
Bacterial ATP binding cassette (ABC) exporters fulfill a wide variety of transmembrane transport roles and are homologous to the human multidrug resistance P-glycoprotein. Recent X-ray structures of the exporters MsbA and Sav1866 have begun to describe the conformational changes that accompany the ABC transport cycle. Here we present cryo-electron microscopy structures of MsbA reconstituted into a lipid bilayer. Using ATPase inhibitors, we captured three nucleotide transition states of the transporter that were subsequently reconstituted into helical arrays. The enzyme–substrate complex (trapped by ADP-aluminum fluoride or AMPPNP) crystallized in a different helical lattice than the enzyme–product complex (trapped by ADP-vanadate). 20 Å resolution maps were calculated for each state and revealed MsbA to be a dimer with a large channel between the membrane spanning domains, similar to the outward facing crystal structures of MsbA and Sav1866. This suggests that while there are likely structural differences between the nucleotide transition states, membrane embedded MsbA remains in an outward facing conformation while nucleotide is bound. 相似文献
8.
Jing-Wei Weng Kang-Nian Fan Wen-Ning Wang 《The Journal of biological chemistry》2010,285(5):3053-3063
ATP binding cassette transporters are integral membrane proteins that use the energy released from ATP hydrolysis at the two nucleotide binding domains (NBDs) to translocate a wide variety of substrates through a channel at the two transmembrane domains (TMDs) across the cell membranes. MsbA from Gram-negative bacteria is a lipid and multidrug resistance ATP binding cassette exporter that can undergo large scale conformational changes between the outward-facing and the inward-facing conformations revealed by crystal structures in different states. Here, we use targeted molecular dynamics simulation methods to explore the atomic details of the conformational transition from the outward-facing to the inward-facing states of MsbA. The molecular dynamics trajectories revealed a clear spatiotemporal order of the conformational movements. The disruption of the nucleotide binding sites at the NBD dimer interface is the very first event that initiates the following conformational changes, verifying the assumption that the conformational conversion is triggered by ATP hydrolysis. The conserved x-loops of the NBDs were identified to participate in the interaction network that stabilizes the cytoplasmic tetrahelix bundle of the TMDs and play an important role in mediating the cross-talk between the NBD and TMD. The movement of the NBD dimer is transmitted through x-loops to break the tetrahelix bundle, inducing the packing rearrangements of the transmembrane helices at the cytoplasmic side and the periplasmic side sequentially. The packing rearrangement within each periplasmic wing of TMD that results in exposure of the substrate binding sites occurred at the end stage of the trajectory, preventing the wrong timing of the binding site accessibility. 相似文献
9.
Woebking B Velamakanni S Federici L Seeger MA Murakami S van Veen HW 《Biochemistry》2008,47(41):10904-10914
The ATP-binding cassette transporter MsbA in Gram-negative bacteria can transport antibiotics and toxic ions. However, the key functional regions in MsbA which determine substrate specificity remain to be identified. We recently examined published mutations in the human MsbA homologue ABCB1 that alter multidrug transport in cells and identified mutations that affect the specificity for individual substrates (termed change-in-specificity mutations). When superimposed on the corrected 3.7 A resolution crystal structure of homodimeric MsbA from S almonella typhimurium, these change-in-specificity mutations colocalize in a major groove in each of the two "wings" of transmembrane helices (TMHs) that point away from one another toward the periplasm. Near the apex of the groove, the periplasmic side of TMH 6 in both monomers contains a hotspot of change-in-specificity mutations and residues which, when replaced with cysteines in ABCB1, covalently interact with thiol-reactive drug analogues. We tested the importance of this region of TMH 6 for drug-protein interactions in Escherichia coli MsbA. In particular, we focused on conserved S289 and S290 residues in the hotspot. Their simultaneous replacement with alanine (termed the SASA mutant) significantly reduced the level of binding and transport of ethidium and Taxol by MsbA, whereas the interactions with Hoechst 33342 and erythromycin remained unaffected. Hence, the SASA mutation is associated with a change-in-specificity phenotype analogous to that of the change-in-specificity mutations in ABCB1. This study demonstrates for the first time the significance of TMH 6 for drug binding and transport by MsbA. Based on these data, a possible mechanism for alternating access of drug-binding surfaces in MsbA is discussed. 相似文献
10.
H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB 总被引:1,自引:0,他引:1 下载免费PDF全文
The ABC transporter HlyB is a central element of the HlyA secretion machinery, a paradigm of Type I secretion. Here, we describe the crystal structure of the HlyB-NBD (nucleotide-binding domain) with H662 replaced by Ala in complex with ATP/Mg2+. The dimer shows a composite architecture, in which two intact ATP molecules are bound at the interface of the Walker A motif and the C-loop, provided by the two monomers. ATPase measurements confirm that H662 is essential for activity. Based on these data, we propose a model in which E631 and H662, highly conserved among ABC transporters, form a catalytic dyad. Here, H662 acts as a 'linchpin', holding together all required parts of a complicated network of interactions between ATP, water molecules, Mg2+, and amino acids both in cis and trans, necessary for intermonomer communication. Based on biochemical experiments, we discuss the hypothesis that substrate-assisted catalysis, rather than general base catalysis might operate in ABC-ATPases. 相似文献
11.
The ATP binding cassette multidrug transporter LmrA and lipid transporter MsbA have overlapping substrate specificities 总被引:10,自引:0,他引:10
Reuter G Janvilisri T Venter H Shahi S Balakrishnan L van Veen HW 《The Journal of biological chemistry》2003,278(37):35193-35198
LmrA is an ATP binding cassette (ABC) multidrug transporter in Lactococcus lactis that is a structural and functional homologue of the human multidrug resistance P-glycoprotein MDR1 (ABCB1). LmrA is also homologous to MsbA, an essential ABC transporter in Escherichia coli involved in the trafficking of lipids, including Lipid A. We have compared the substrate specificities of LmrA and MsbA in detail. Surprisingly, LmrA was able to functionally substitute for a temperature-sensitive mutant MsbA in E. coli WD2 at non-permissive temperatures, suggesting that LmrA could transport Lipid A. LmrA also exhibited a Lipid A-stimulated, vanadate-sensitive ATPase activity. Reciprocally, the expression of MsbA conferred multidrug resistance on E. coli. Similar to LmrA, MsbA interacted with photoactivatable substrate [3H]azidopine, displayed a daunomycin, vinblastine, and Hoechst 33342-stimulated vanadate-sensitive ATPase activity, and mediated the transport of ethidium from cells and Hoechst 33342 in proteoliposomes containing purified and functionally reconstituted protein. Taken together, these data demonstrate that MsbA and LmrA have overlapping substrate specificities. Our observations imply the presence of structural elements in the recently published crystal structures of MsbA in E. coli and Vibrio cholera (Chang, G., and Roth, C. B. (2001) Science 293, 1793-1800; Chang, G. (2003) J. Mol. Biol. 330, 419-430) that support drug-protein interactions and suggest a possible role for LmrA in lipid trafficking in L. lactis. 相似文献
12.
Damas JM Oliveira AS Baptista AM Soares CM 《Protein science : a publication of the Protein Society》2011,20(7):1220-1230
ABC transporters are a large and important family of membrane proteins involved in substrate transport across the membrane. The transported substrates are quite diverse, ranging from monatomic ions to large biomolecules. Consequently, some ABC transporters are involved in biomedically relevant situations, from genetic diseases to multidrug resistance. The most conserved domains in ABC transporters are the nucleotide binding domains (NBDs), which form a dimer responsible for the binding and hydrolysis of ATP, concomitantly with substrate translocation. To elucidate how ATP hydrolysis structurally affects the NBD dimer, and consequently the transporter, we performed a molecular dynamics study on the NBD dimer of the HlyB ABC exporter. We have observed a change in the contact surface between the monomers after hydrolysis, even though we have not seen dimer opening in any of the five 100 ns simulations. We have also identified specific regions that respond to ATP hydrolysis, in particular the X-loop motif of ABC exporters, which has been shown to be in contact with the coupling helices of the transmembrane domains (TMDs). We propose that this motif is an important part of the NBD-TMD communication in ABC exporters. Through nonequilibrium analysis, we have also identified gradual conformational changes within a short time scale after ATP hydrolysis. 相似文献
13.
14.
15.
ATP-Binding Cassette (ABC) transporters are ubiquitous membrane proteins that use energy from ATP binding or/and hydrolysis to actively transport allocrites across membranes. In this study, we identify ATP-hydrolysis induced conformational changes in a complete ABC exporter (Sav1866) from Staphylococcus aureaus, using molecular dynamics (MD) simulations. By performing MD simulations on the ATP and ADP+IP bound states, we identify the conformational consequences of hydrolysis, showing that the major rearrangements are not restricted to the NBDs, but extend to the transmembrane domains (TMDs) external regions. For the first time, to our knowledge, we see, within the context of a complete transporter, NBD dimer opening in the ADP+IP state in contrast with all ATP-bound states. This opening results from the dissociation of the ABC signature motif from the nucleotide. In addition, in both states, we observe the opening of a gate entrance in the intracellular loop region leading to the exposure of the TMDs internal cavity to the cytoplasm. To see if this opening was large enough to allow allocrite transport, the adiabatic energy profile for doxorubicin passage was determined. For both states, this profile, although an approximation, is overall downhill from the cytoplasmatic to the extracellular side, and the local energy barriers along the TMDs are relatively small, evidencing the exporter nature of Sav1866. The major difference between states is an energy barrier located in the cytoplasmic gate region, which becomes reduced upon hydrolysis, suggesting that allocrite passage is facilitated, and evidencing a possible molecular mechanism for the active transport in these proteins. 相似文献
16.
ATP-binding cassette transporters use the free energy of ATP hydrolysis to transport structurally diverse molecules across prokaryotic and eukaryotic membranes. Computer simulation studies of the "real-time" dynamics of the ATP binding process in BtuCD, the vitamin B12 importer from Escherichia coli, demonstrate that the docking of ATP to the catalytic pockets progressively draws the two cytoplasmic nucleotide-binding cassettes toward each other. Movement of the cassettes into closer opposition in turn induces conformational rearrangement of alpha-helices in the transmembrane domain. The shape of the translocation pathway consequently changes in a manner that could aid the vectorial movement of vitamin B12. These results suggest that ATP binding may indeed represent the power stroke in the catalytic mechanism. Moreover, occlusion of ATP at one catalytic site is mechanically coupled to opening of the nucleotide-binding pocket at the second site. We propose that this asymmetry in nucleotide binding behavior at the two catalytic pockets may form the structural basis by which the transporter is able to alternate ATP hydrolysis from one site to the other. 相似文献
17.
Driven by the energy of ATP binding and hydrolysis, ATP-binding cassette transporters alternate between inward- and outward-facing conformations, allowing vectorial movement of substrates. Conflicting models have been proposed to describe the conformational motion underlying this switch in access of the transport pathway. One model, based on three crystal structures of the lipid flippase MsbA, envisions a large-amplitude motion that disengages the nucleotide-binding domains and repacks the transmembrane helices. To test this model and place the crystal structures in a mechanistic context, we use spin labeling and double electron-electron resonance spectroscopy to define the nature and amplitude of MsbA conformational change during ATP hydrolysis cycle. For this purpose, spin labels were introduced at sites selected to provide a distinctive pattern of distance changes unique to the crystallographic transformation. Distance changes in liposomes, induced by the transition from nucleotide-free MsbA to the highest energy intermediate, fit a simple pattern whereby residues on the cytoplasmic side undergo 20-30 Å closing motion while a 7- to 10-Å opening motion is observed on the extracellular side. The transmembrane helices undergo relative movement to create the outward opening consistent with that implied by the crystal structures. Double electron-electron resonance distance distributions reveal asymmetric backbone flexibility on the two sides of the transporter that correlates with asymmetric opening of the substrate-binding chamber. Together with extensive accessibility analysis, our results suggest that these structures capture features of the motion that couples ATP energy expenditure to work, providing a framework for the mechanism of substrate transport. 相似文献
18.
Syberg F Suveyzdis Y Kötting C Gerwert K Hofmann E 《The Journal of biological chemistry》2012,287(28):23923-23931
MsbA is an essential Escherichia coli ATP-binding cassette (ABC) transporter involved in the flipping of lipid A across the cytoplasmic membrane. It is a close homologue of human P-glycoprotein involved in multidrug resistance, and it similarly accepts a variety of small hydrophobic xenobiotics as transport substrates. X-ray structures of three full-length ABC multidrug exporters (including MsbA) have been published recently and reveal large conformational changes during the transport cycle. However, how ATP hydrolysis couples to these conformational changes and finally the transport is still an open question. We employed time-resolved FTIR spectroscopy, a powerful method to elucidate molecular reaction mechanisms of soluble and membrane proteins, to address this question with high spatiotemporal resolution. Here, we monitored the hydrolysis reaction in the nucleotide-binding domain of MsbA at the atomic level. The isolated MsbA nucleotide-binding domain hydrolyzed ATP with V(max) = 45 nmol mg(-1) min(-1), similar to the full-length transporter. A Hill coefficient of 1.49 demonstrates positive cooperativity between the two catalytic sites formed upon dimerization. Global fit analysis of time-resolved FTIR data revealed two apparent rate constants of ~1 and 0.01 s(-1), which were assigned to formation of the catalytic site and hydrolysis, respectively. Using isotopically labeled ATP, we identified specific marker bands for protein-bound ATP (1245 cm(-1)), ADP (1101 and 1205 cm(-1)), and free phosphate (1078 cm(-1)). Cleavage of the β-phosphate-γ-phosphate bond was found to be the rate-limiting step; no protein-bound phosphate intermediate was resolved. 相似文献
19.
Extending the structure of an ABC transporter to atomic resolution: modeling and simulation studies of MsbA 总被引:2,自引:0,他引:2
Molecular modeling and simulation approaches have been use to generate a complete model of the prokaryotic ABC transporter MsbA from Escherichia coli, starting from the low-resolution structure-based Calpha trace (PDB code 1JSQ). MsbA is of some biomedical interest as it is homologous to mammalian transporters such as P-glycoprotein and TAP. The quality of the MsbA model is assessed using a combination of molecular dynamics simulations and static structural analysis. These results suggest that the approach adopted for MsbA may be of general utility for generating all atom models from low-resolution crystal structures of membrane proteins. Molecular dynamics simulations of the MsbA model inserted in a fully solvated octane slab (a membrane mimetic environment) reveal that while the monomer is relatively stable, the dimer is unstable and undergoes significant conformational drift on a nanosecond time scale. This suggests that the MsbA crystal dimer may not correspond to the MsbA dimer in vivo. An alternative model of the dimer is discussed in the context of available experimental data. 相似文献
20.
MsbA is a member of the ABC transporter superfamily and is homologous to ABC transporters linked to multidrug resistance. The nucleotide binding domains (NBDs) of these proteins include conserved motifs that are involved in ATP binding, including conserved SALD residues (D-loop) that are diagnostic in identifying ABC transporters but whose roles have not been identified. Within the D-loop, single point mutations L511P and D512G were discovered by random mutational analysis of MsbA to disrupt protein function in the cell [Polissi, A., and Georgopoulos, C. (1996) Mol. Microbiol. 20, 1221-1233] but have not been further studied in MsbA or in detail in any other ABC transporter. In these studies, we show that both L511P and D512G mutants of MsbA are able to bind ATP at near-wild-type levels but are unable to maintain cell viability in an in vivo growth assay, verifying the theory that they are dysfunctional at some point after ATP binding. An ATPase assay further suggests that the L511P mutation prevents effective ATP hydrolysis, and an ATP detection assay reveals that only small amounts of ATP are hydrolyzed; D512G is able to hydrolyze ATP at a rate 3-fold faster than that of the wild type. EPR spectroscopy studies using reporter sites within the NBDs also indicate that at least some hydrolysis occurs in L511P or D512G MsbA but show fewer spectral changes than observed for the same reporters in the wild-type background. These studies indicate that L511 is necessary for efficient ATP hydrolysis and D512 is essential for conformational rearrangements required for flipping lipid A. 相似文献