首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including stimulation of pheromone biosynthesis in female moths, stimulation of muscle contraction, induction of embryonic diapause in Bombyx mori, and stimulation of melanization in some larval moths. Recently, this family of peptides has been implicated in accelerating the formation of the puparium in a dipteran. Using bioassay and immunocytochemical techniques, we demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Pheromonotropic activity was shown in the moths Helicoverpa zeaand Helicoverpa armigera by using dissected larval nervous systems and adult heads and bodies of D. melanogaster. Polyclonal antisera against the C-terminal ending of PBAN revealed the location of cell bodies and axons in the central nervous systems of larval and adult flies. Immunoreactive material was detected in at least three groups of neurons in the subesophageal ganglion of 3rd instar larvae, pupae, and adults. The ring gland of both larvae and adults contained immunoreactivity. Adult brain-subesophageal ganglion complex possessed additional neurons. The fused ventral ganglia of both larvae and adults contained three pairs of neurons that sent their axons to a neurohemal organ connected to the abdominal nervous system. These results indicate that the D. melanogasternervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph.  相似文献   

2.
3.
PBAN及其对昆虫性外激素的调控   总被引:1,自引:0,他引:1  
张丛  王琛柱 《昆虫知识》2001,38(5):326-330
本文综述了性外激素生物合成激活神经肽 (PBAN)及其对昆虫尤其是鳞翅目昆虫性外激素产生的调控 ,包括PBAN的结构、产生、转运、作用方式及保幼激素和蜕皮激素对性外激素合成的作用 ,并展望了未来的研究方向。  相似文献   

4.
Role of neuropeptides in sex pheromone production in moths   总被引:2,自引:0,他引:2  
Altstein M 《Peptides》2004,25(9):1491-1501
Sex pheromone biosynthesis in many moth species is controlled by a cerebral neuropeptide, termed pheromone biosynthesis activating neuropeptide (PBAN). PBAN is a 33 amino acid C-terminally amidated neuropeptide that is produced by neuroendocrine cells of the subesophageal ganglion (SEG). Studies of the regulation of sex pheromone biosynthesis in moths have revealed that this function can be elicited by additional neuropeptides all of which share the common C-terminal pentapeptide FXPRL-amide (X = S, T, G, V). In the past two decades extensive studies were carried out on the chemical, cellular and molecular aspects of PBAN and the other peptides (termed the pyrokinin (PK)/PBAN family) aiming to understand the mode of their action on sex pheromone biosynthesis. In the present review we focus on a few of these aspects, specifically on the: (i) structure-activity relationship (SAR) of the PK/PBAN family, (ii) characterization of the PK/PBAN receptor and (iii) development of a novel strategy for the generation of PK/PBAN antagonists and their employment in studying the mode of action of the PK/PBAN peptides.  相似文献   

5.
Production of sex pheromones, Z9-14:OAc and Z11-14:OAc, of the smaller tea tortrix, Adoxophyes sp. was stimulated by injection of the female or male head extracts as well as synthetic pheromone biosynthesis activating neuropeptide (PBAN) into decapitated females. The amount of pheromone produced reached a maximum level 3 h after injection of synthetic PBAN into females. A cDNA isolated from brain-suboesophageal ganglion complex (Br-SEG) of A. sp. females contained an ORF of 576 nucleotides encoding 192 amino acids. Based on endoproteolytic sites, it can be predicted to be cleaved into five putative peptide domains including PBAN and four other neuropeptides. Ado-PBAN consisting of 31-amino acids is the shortest PBAN so far reported. Four other putative PBAN-encoding gene neuropeptides (PGN) are predicted with PGN-24, PGN-7, PGN-20, and PGN-8 amino acids. All of the peptides are amidated in their C-termini with a FXPR(or I, K)L structure, except for PGN-8 (TVKLTPRLamide). PBAN-like immunoreactive material was observed in Br, SEG and ventral nerve cord (VNC) of the female adult. In the brain, 5-7 pairs of neurons containing PBAN-like immunoreactivity were found in each protocerebral hemisphere. Three groups of cell clusters found in the SEG corresponded to the mandibular, maxillary and labial neurons as in other moths. PBAN-like immunoreactive neurons in the VNC were found in thoracic (three pairs) and abdominal ganglia (two pairs). As compared to other moths, a relatively low similarity of peptide sequences deduced from Ado-PBAN gene and a different expression pattern of PBAN-like immunoreactivity could indicate phylogenetical distance from the other species.  相似文献   

6.
Pheromone biosynthesis-activating neuropeptide (PBAN) stimulates sex pheromone biosynthesis by activating PBAN receptor (PBANr), which triggers a specific signal transduction in the pheromone gland cells. We have shown that RNA interference (RNAi) of PBANr of Plutella xylostella significantly suppressed pheromone biosynthesis and subsequent mating behavior. In order to assess molecular events occurring downstream of PBAN signaling, we cloned partial sequences of Δ9 and Δ11 fatty acid desaturases of P. xylostella. Phylogenetic analysis indicated that these two desaturase genes were highly clustered with other desaturases associated with sex pheromone biosynthesis in other insects. RT-PCR analysis showed that Δ9 desaturase was dominantly expressed in adult females, whereas Δ11 desaturase was expressed in all P. xylostella developmental stages. When PBANr expression was suppressed by PBANr-RNAi, the treated females also showed significant suppression of expression of both desaturases. These results suggest that expressions of the two desaturases are controlled by PBAN and that the two desaturases may be involved as downstream components in sex pheromone biosynthesis of P. xylostella.  相似文献   

7.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides is characterized by a common C-terminal pentapeptide, FXPRLamide, which is required for diverse physiological functions in various insects. Polyclonal antisera against the C-terminus was utilized to determine the location of cell bodies and axons in the central nervous systems of larval and adult mosquitoes. Immunoreactive material was detected in three groups of neurons in the subesophageal ganglion of larvae and adults. The corpora cardiaca of both larvae and adults contained immunoreactivity indicating potential release into circulation. The adult and larval brains had at least one pair of immunoreactive neurons in the protocerebrum with the adult brain having additional immunoreactive neurons in the dorsal medial part of the protocerebrum. The ventral ganglia of both larvae and adults each contained one pair of neurons that sent their axons to a perisympathetic organ associated with each abdominal ganglion. These results indicate that the mosquito nervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph. The peptides in insects and mosquitoes are produced by two genes, capa and pk/pban. Utilizing PCR protocols, we demonstrate that products of the capa gene could be produced in the abdominal ventral ganglia and the products of the pk/pban gene could be produced in the subesophageal ganglion. Two receptors for pyrokinin peptides were differentially localized to various tissues.  相似文献   

8.
Pheromone biosynthesis in many species of moths requires a pheromonotropic neurosecretion, the pheromone biosynthesis activating neuropeptide (PBAN), from the brain-subesophageal ganglion-corpora cardiaca complex. Some investigators suggest that PBAN is released into the hemolymph and acts directly on sex pheromone glands (SPG) via a Ca++/calmodulin-dependent adenylate cyclase. Others suggest, however, that PBAN acts via octopamine that is released by nerves from the terminal abdominal ganglion innervating the SPG. These findings suggest that there are controversies on the mode of action of PBAN and other pheromonotropic factors, sometimes even within the same species. Mating in many insects results in temporary or permanent suppression of pheromone production and/or receptivity. Such a suppression may result from physical blockage of the gonopore or deposition of pheromonostatic factor(s) by the male during copulation that result in suppressed pheromone production and/or receptivity in females either directly or by a primer effect. In several species of insects, including moths, a pheromonostatic factor is transferred in the seminal fluid of males. Similar to the controversies associated with the pheromonotropic activity of PBAN, sometimes even within the same species, there appear to be controversies in pheromonostasis in heliothines as well. This paper reviews these conflicting findings and presents some data on pheromonostatic and pheromonotropic activity in Heliothis virescens that support and conflict with current information, raising further questions. Answers to some of the questions are partly available; however, they remain to be answered unequivocally. © 1994 Wiley-Liss, Inc.  相似文献   

9.
10.
We report our approach for the generation of a novel type of putative insecticides based on backbone cyclic peptidomimetic antagonists of insect neuropeptides using pheromone biosynthesis activating neuropeptide (PBAN) as a model. This approach, called the backbone cyclic neuropeptide based antagonist (BBC-NBA), includes the following steps: (i) elucidation of the active sequence of the chosen insect neuropeptide; (ii) disclosure of a lead antagonist based on the sequence found in step (i); (iii) design and synthesis of backbone cyclic peptide libraries (cycloscan) based on the sequence of the lead antagonist; and (iv) design and synthesis of a peptidomimetic prototype insecticide. The BBC-NBA approach was applied to PBAN and led to the discovery of a potent linear lead antagonist and a potent backbone cyclic antagonist devoid of agnoistic activity which inhibited sex pheromone biosynthesis inHeliothis peltigera female moths.  相似文献   

11.
Analysis by TLC and HPLC revealed that the triacylglycerols comprise the most abundant lipid class in the sex pheromone glands of Manduca sexta females. Also, conjugated olefinic acyl analogs of the major pheromone aldehydes occur principally in the triacylglycerols. The amount of triacylglycerols with conjugated diene acyl moieties significantly decreased when the period of pheromone production was extended by 7 h beyond the normal period of pheromone production by 3 injections of pheromone biosynthesis activating neuropeptide (PBAN) at 3 h intervals. This decrease indicates that the triacylglycerols stored in the gland may serve as major sources of pheromone precursors in the biosynthesis of the sex pheromone aldehydes. Furthermore, analysis of pheromone aldehydes and triacylglycerols in the gland from moths treated with PBAN showed that the proportions of the triacylglycerols with conjugated diene moieties were closely correlated with the proportions of aldehydes found in the same gland. This correlation suggests that the proportions of fatty acids bound to certain triacylglycerols regulates the proportions of aldehydes in biosynthesis of the pheromone blend in M. sexta. © 1995 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    12.
    Methods to characterize pheromone biosynthesis activating neuropeptide (PBAN) and other PBAN gene encoded neuropeptides (PGN) from individual subesophageal ganglion neuronal clusters of the corn earworm moth, Helicoverpa zea, were developed. Individual antisera against the N-terminal sequence to PBAN and each of the three PGNs from the Hez-PBAN prohormone were developed, and their specificity determined. In all cases, each antiserum stains the same three groups of subesophageal ganglion ventral midline neurons-the mandibular, maxillary and labial neurons-in both adult females and males. These results were confirmed using matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) of individual subesophageal ganglion neuronal clusters. Using mass spectrometry, the amidated PGN-24 was not detected but an N-terminally extended form is observed that is two amino acids longer. Other peptides resulting from the processing of the Hez-PBAN prohormone were detected. Using both the specific antisera and the cellular profiling abilities of MALDI MS, the roles of individual members of the Hez-PBAN prohormone derived peptides can now be explored.  相似文献   

    13.
    14.
    Sex pheromone titre in the tortricid moth Epiphyas postvittana follows a pattern commonly observed in other species of moths: an increase to a peak some time after eclosion (2-3days), and then a slow decline as the female ages. Previous work has shown that this decline is not regulated by the pheromone biosynthesis activating neuropeptide PBAN. Using in vivo and in vitro enzyme assays, and fatty acid methyl ester (FAME) analyses of pheromone precursors in the gland, we have investigated this senescent decline in pheromone titre. The enzyme assays have shown that in older females the fatty acid reductase and fatty acid synthesis enzyme systems decrease in activity (relative to younger females), whereas other enzyme systems involved in pheromone biosynthesis, including limited beta-oxidation (2-carbon chain-shortening), (E)-11-desaturation, and acetylation (by an acetyl transferase) remain unchanged in their activity. Of the two enzymatic processes involved, the more important one contributing to the decline appears to be the fatty acid reductase. This is consistent with FAME analyses of pheromone glands in old and young females, which show little difference in levels of saturated FAME, but a significant increase in the level of the putative precursor, (E)-11-tetradecenoate, of the sex pheromone component (E)-11-tetradecenyl acetate. Thus, this decline in fatty acid reductase activity results in a buildup of the precursor as the female ages. The near ubiquity of fatty acid reductases in moth sex pheromone systems suggests that this may be a common mechanism for the senescent decline of sex pheromone titre in moths.  相似文献   

    15.
    The antagonistic properties of a few linear and backbone cyclic (BBC) conformationally constraint peptide libraries and their analogs, were tested for the ability to inhibit pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) mediated functions: sex pheromone biosynthesis in Heliothis peltigera female moths, cuticular melanization in Spodoptera littoralis larvae, pupariation in the fleshfly Neobellieria bullata and hindgut contraction in Leucophaea maderae, elicited by exogenously injected PBAN, pheromonotropin (PT), leucopyrokinin (LPK), myotropin (MT) or by the endogenous peptides. The data revealed differential inhibitory patterns within the same assay with different elicitors (in both the pheromonotropic and melanotropic assays) and among the different functions and disclosed selective antagonists, hinting at the possibility that the receptors that mediate those functions may differ from one another structurally.  相似文献   

    16.
    烟实夜蛾性信息素合成激活肽基因的分子克隆   总被引:7,自引:0,他引:7  
    根据家蚕Bombyx mori和玉米夜蛾Helicoverpa zea的性信息素合成激活肽基因序列,设计若干套引物, 以烟实夜蛾Heliothis assulta基因组DNA为模板进行PCR扩增, 得到0.63 kb的特异性DNA片段。该片段克隆进适当载体,序列测定和同源比较, 查明烟实夜蛾的基因组中存在性信息素合成激活肽基因。烟实夜蛾的性信息素合成激活肽由33个氨基酸组成, C末端是FXPRL结构,是目前发现的第4种昆虫性信息素合成激活肽。在该神经肽第14和第15个氨基酸之间, 插入一个0.42 kb的内含子。 进一步的分析证明了烟实夜蛾的性信息素合成激活肽基因在潜成虫期的食道下神经节中表达。  相似文献   

    17.
    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour''s gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN''s role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta.  相似文献   

    18.
    The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in insects, including regulation of sex pheromone biosynthesis in moths. A cyclic PK/PBAN analog (cyclo[NTSFTPRL]) retains significant activity on the pheromonotropic HevPBANR receptor from the tobacco budworm Heliothis virescens expressed in CHO-K1 cells. Previous studies indicate that this rigid, cyclic analog adopts a type I β-turn with a transPro over residues TPRL within the core PK/PBAN region. An analog containing an (E)-alkene, trans-Pro mimetic motif was synthesized, and upon evaluation on the HevPBANR receptor found to have an EC50 value that is not statistically different from a parent C-terminal PK/PBAN hexapeptide sequence. The results, in aggregate, provide strong evidence for the orientation of Pro and the core conformation of PK/PBAN neuropeptides during interaction with the expressed PBAN receptor. The work further identifies a novel scaffold with which to design mimetic PBAN analogs as potential leads in the development of environmentally favorable pest management agents capable of disrupting PK/PBAN-regulated pheromone signaling systems.  相似文献   

    19.
    Zheng L  Lytle C  Njauw CN  Altstein M  Martins-Green M 《Gene》2007,393(1-2):20-30
    In noctuid moths cuticular pigmentation is regulated by the pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family, which also mediates a variety of other functions in moths and other insects. Numerous studies have shown that these neuropeptides exert their functions through activation of the PBAN receptor (PBAN-R), with subsequent Ca(2+) influx, followed by either activation of cAMP or direct activation of downstream kinases. Recently, several PBAN-Rs have been identified, all of which are from the pheromone gland of adult female moths, but evidence shows that functional PK/PBAN-Rs can also be expressed in insect larvae, where they mediate melanization and possibly other functions (e.g., diapause). Here, we identified a gene encoding a G-protein-coupled receptor from the 5th instar larval tissue of the moth Spodoptera littoralis. The cDNA of this gene contains an open reading frame with a length of 1050 nucleotides, which translates to a 350-amino acid, 42-kDa protein that shares 92% amino acid identity with Helicoverpa zea and Helicoverpa armigera PBAN-R, 81% with Bombyx mori PBAN-R and 72% with Plutella xylostella PBAN-R. The S. littoralis PBAN-R gene was stably expressed in NIH3T3 cells and transiently in HEK293 cells. We show that it mediates the dose-dependent PBAN-induced intracellular Ca(2+) response and activation of the MAP kinase via a PKC-dependent but Galphai-independent signaling mechanism. Other PK/PBAN family peptides (pheromonotropin and a C-terminally PBAN-derived peptide PBAN(28-33)NH(2)) also triggered MAP kinase activation. This receptor, together with the previously cloned PBAN-R, may facilitate our understanding of the cell-specific responses and functional diversities of this diverse neuropeptide family.  相似文献   

    20.
    Pheromone biosynthesis in the redbanded leafroller moth, Argyrotaenia velutinana, was stimulated by homogenates of the bursa copulatrix. Although pheromonotropic activity was also extractable from the ovary, the activity of pheromone biosynthesis activating neuropeptide (PBAN) or bursa extracts was not impaired in isolated abdomens by removal of the ovary. Response to the bursa extracts was dependent on the dose administered and the time of incubation. Amounts of pheromone present in adult females of different ages appeared to be correlated with the extractable amount of pheromonotropic activity from their bursa copulatrix. Decapitation did not result in the suppression of burse factor production. Homogenates of the bursa elicited similar effects in both isolated gland and isolated abdomen incubations, but the brain neuropeptide, PBAN, was less active in the former than in the latter. Bursa extracts stimulated pheromone production in isolated abdomen incubations deprived of the bursa copulatrix, but PBAN did not. Loss of activity of bursa homogenates after treatment with either pronase E or carboxypeptidase Y indicated that the pheromonotropic factor is a proteinaceous substance. The mechanism through which pheromone production is regulated in redbanded leafroller moths is discussed. © 1992 Wiley-Liss, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号