首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABA(A) receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A) receptor-mediated currents. Moreover, activation of the GABA(A) receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A) receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A) receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A) receptors, also modified ASICs in spinal neurons. We conclude that GABA(A) receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.  相似文献   

2.
Several Cl channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl > Br > NO3 > I. Single-channel recordings revealed a unit conductance of ~ 40 pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~ − 65 mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~ 20 pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~ + 25 mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253–260).  相似文献   

3.
A GTP-binding protein activates chloride channels in a renal epithelium   总被引:7,自引:0,他引:7  
Although G proteins have been shown to regulate cation channels, regulation of Cl- channels by G proteins has not been demonstrated directly. Accordingly, the objective of this study was to examine whether a G protein regulates Cl- channels in the apical membrane of rabbit kidney CCD cells grown in culture. Previous studies showed that this channel is activated by adenosine and protein kinase C and has a single channel conductance of 305 picosiemens. The PCl-:PNa+ is 9:1 and the PCl-:PHCO3- is 2:1 (Schwiebert, E.M., Light, D.B., Dietl, P., Fejes-Toth, G., Naray-Fejes-Toth, A., and Stanton, B. (1990) Kidney Int. 37,216). In the present study, Cl- channels in the apical membrane of CCD cells were studied by the patch clamp technique. GTP and guanosine 5'-O(3-thiophosphate) (GTP gamma S), a nonhydrolyzable analog of GTP, increased the single channel open probability (Po). In contrast, guanosine 5'-O-(2-thiophosphate), a nonhydrolyzable analog of GDP, and pertussis toxin (PTX) decreased the Po. GTP gamma S, but not GTP, reversed PTX inhibition of the channel. The alpha i-3-subunit of Gi increased the Po in both untreated and PTX-treated membrane patches. Because GTP gamma S activated the Cl- channel in the presence of H8, a protein kinase inhibitor, we conclude that the G protein does not activate the channel by stimulating a protein kinase. Thus, a PTX-sensitive G protein activates a Cl- channel in the apical membrane of renal CCD cells.  相似文献   

4.
Donald L. Levene  Allan Knight 《CMAJ》1974,111(4):335-338
A 58-year-old woman with a long history of renal stone disease and urinary tract infection presented to the emergency room with exhaustion and air hunger. Laboratory data confirmed profound metabolic acidosis. Unduly large quantities of bicarbonate and potassium were required for correction of the deficits. She had been taking 6 g daily of ammonium chloride as a urine-acidifying agent for a period of six months in addition to agents directed against urinary tract infection. The combination of impaired renal function and effective hydrogen ion loading resulted in profound systemic acidosis. The metabolic derangements associated with the administration of ammonium chloride and its use as a therapeutic agent are discussed.  相似文献   

5.
Crosslinking of type I Fc epsilon receptors (Fc epsilon RI) on the surface of basophils or mast cells initiates a cascade of processes leading to the secretion of inflammatory mediators. We report here a correlation between mediator secretion and the activation of Cl- channels in rat mucosal-type mast cells (line RBL-2H3). Stimulation of RBL cells by either IgE and antigen or by a monoclonal antibody specific for the Fc epsilon RI, resulted in the activation of Cl- ion channels as detected by the patch-clamp technique. Channel activation occurred slowly, within minutes after stimulation. The channel has a slope conductance of 32 pS at potentials between 0 and -100 mV, and an increasing open-state probability with increasing depolarization. Activation of apparently the same Cl- channels could be mimicked without stimulation by isolating inside-out membrane patches in tyrode solution. Parallel inhibition of both Cl- channel activity and mediator secretion, as monitored by serotonin release, was observed by two compounds, the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and the anti-allergic drug cromolyn. NPPB inhibited both the antigen-induced Cl- current and the serotonin release, where half-maximal inhibition occurred at similar doses, at 52 microM and 77 microM, respectively. The drug cromolyn, recently found to inhibit immunologically induced mediator secretion from RBL cells upon intracellular application, also blocks Cl- channels (IC50 = 15 microM) when applied to the cytoplasmic side of an inside-out membrane patch. The observed Cl- channel activation upon immunological stimulation and the parallel inhibition of channel current and of serotonin release suggests a functional role for this Cl- channel in mediator secretion from the mast cells studied.  相似文献   

6.
ClC-K chloride channels belong to the CLC chloride channel family and play an important role in transepithelial chloride transport in the kidney. To be functional, ClC-K channels need to be translocated to the plasma membranes after synthesis; the translocation requires the binding to its beta-subunit, barttin. The binding interaction between barttin and ClC-K channels has not been characterized, although the crystal structure of CLC was resolved. In the present study, we sought to clarify the binding sites of barttin in ClC-K2 by co-immunoprecipitation and immunofluorescence microscopy using various ClC-K2 mutants. The deletion of the carboxy-terminal portion of ClC-K2 up to leucine 91, a construct which contains the B domain alone, showed the binding ability to barttin. Since the CLC channel forms an internal antiparallel structure, domain J corresponds to domain B in the carboxy-terminal half of ClC-K. Accordingly, we made the carboxy-terminal half of ClC-K2 containing domain J and thereafter and its deletion mutants, and performed a similar co-immunoprecipitation study. As a result, only domain J was enough for binding to barttin. Immunofluorescence microscopy confirmed that the domains B and J as well as the full length ClC-K2 could be localized to the plasma membranes only when co-expressed with barttin. These results showed that barttin was able to bind to the domains that constitute the outer lateral surfaces of ClC-K2. This information regarding the binding sites will be useful for designing a new class of diuretics or anti-hypertensive agents that inhibit the interaction of ClC-K and barttin.  相似文献   

7.
Functional analysis of water channels in barley roots   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
Volume-sensitive outwardly rectifying (VSOR) Cl- channels have been electrophysiologically identified in human and mouse mesangial cells, but the functional role of VSOR Cl- channels in mesangial cell apoptosis is not clear. The aim of the present study was to demonstrate the role of VSOR Cl- channels in oxidative stress-induced mesangial cell apoptosis. H2O2-induced Cl- currents showed phenotypic properties of VSOR Cl- channels, including outward rectification, voltage-dependent inactivation at more positive potentials, sensitivity to hyperosmolarity, and inhibition by VSOR Cl- channel blockers. Moreover, blockage of VSOR Cl- channels by DIDS (100 microM), NPPB (10 microM) or niflumic acid (10 microM) rescued mesangial cell apoptosis induced by H2O2. Treatment with 150 microM H2O2 for 2h resulted in significant reduction of cell volume, in contrast, nuclear condensation and/or fragmentation were not observed and the caspase-3 activity was also not increased. The early-phase alterations in cell volume were markedly abolished by pretreatment with VSOR Cl- channel blockers. We conclude that VSOR Cl- channels are involved in H2O2-induced apoptosis in cultured mesangial cells and its mechanism is associated with apoptotic volume decrease processes.  相似文献   

10.
11.
Cultured human cells were transfected with cloned rat glycine receptor (GlyR) 48 kd subunit cDNA. In these cells glycine elicited large chloride currents (up to 1.5 nA), which were blocked by nanomolar concentrations of strychnine. However, no corresponding high-affinity binding of [3H]strychnine was detected in membrane preparations of the transfected cells. Analysis by monoclonal antibodies specific for the 48 kd subunit revealed high expression levels of this membrane protein. After solubilization, the 48 kd subunit behaved as a macromolecular complex when analyzed by sucrose density centrifugation. Approximately 50% of the solubilized complex bound specifically to a 2-aminostrychnine affinity column, indicating the existence of low-affinity antagonist binding sites on most of the expressed GlyR protein. Thus, the 48 kd strychnine binding subunit efficiently assembles into high molecular weight complexes, resembling the native spinal cord GlyR. However, formation of functional receptor channels of high affinity for strychnine occurs with low efficiency.  相似文献   

12.
Mesangial cells are smooth muscle-like cells of the renal glomerulus which contract and produce prostaglandins in response to vasopressin and angiotensin. These responses serve to regulate the glomerular capillary filtering surface area. We have used the membrane potential-sensitive fluorescent dye bis-oxonol and the intracellular fluorescent calcium-sensitive probe Indo-1 to study the changes in membrane potential (Em) and intracellular free calcium concentration ([Ca2+]i) in cultured rat mesangial cells in response to vasoconstrictor hormones. Basal [Ca2+]i was 227 +/- 4 nM, and stimulation by maximal concentrations of either vasopressin or angiotensin resulted in a transient 4-6-fold rise. Resting membrane potential was 45.8 +/- 0.9 mV and vasoconstrictor hormones caused a depolarization of 14-18 mV. The following extracellular ion substitutions indicated that chloride efflux was the predominant ion flux responsible for depolarization: 1) depolarization persisted when sodium in the medium was substituted with N-methylglucamine; 2) substitution of medium sodium chloride with sodium gluconate, which enhances the gradient for chloride efflux, augmented vasoconstrictor-stimulated depolarization; 3) suspension of cells in potassium chloride medium resulted in depolarization, following which, stimulation by either vasopressin or angiotensin resulted in hyperpolarization; and 4) this hyperpolarization did not occur when potassium gluconate medium was used to depolarize the cells. The calcium ionophore ionomycin also resulted in membrane depolarization. However, prevention of the rise in [Ca2+]i by prior exposure to ionomycin in calcium-free medium or by loading mesangial cells with the intracellular calcium buffer BAPTA did not abrogate the depolarization response to vasoconstrictor hormones. This indicates that a rise in intracellular calcium is not necessary for depolarization. In contrast, prior depolarization of the cells using varying concentrations of KCl in the external medium, which dissipated the electrochemical gradient for chloride efflux, resulted in a corresponding prolongation of the transient calcium response to vasopressin and angiotensin. These findings indicate that angiotensin and vasopressin depolarize mesangial cells by activating chloride channels and that this activation can occur by both calcium-dependent and -independent mechanisms. In addition, activation of chloride channels with resulting depolarization may serve to modulate the calcium signal.  相似文献   

13.
The distal-convoluted tubule (DCT) of the kidney absorbs NaCl mainly via an Na+-Cl- cotransporter located at the apical membrane, and Na+, K+ ATPase at the basolateral side. Cl- transport across the basolateral membrane is thought to be conductive, but the corresponding channels have not yet been characterized. In the present study, we investigated Cl- channels on microdissected mouse DCTs using the patch-clamp technique. A channel of approximately 9 pS was found in 50% of cell-attached patches showing anionic selectivity. The NPo in cell-attached patches was not modified when tubules were preincubated in the presence of 10-5 M forskolin, but the channel was inhibited by phorbol ester (10-6 M). In addition, NPo was significantly elevated when the calcium in the pipette was increased from 0 to 5 mM (NPo increased threefold), or pH increased from 6.4 to 8.0 (NPo increased 15-fold). Selectivity experiments conducted on inside-out patches showed that the Na+ to Cl- relative permeability was 0.09, and the anion selectivity sequence Cl(-)--I(-) > Br(-)--NO3(-) > F(-). Intracellular NPPB (10-4 M) and DPC (10-3 M) blocked the channel by 65% and 80%, respectively. The channel was inhibited at acid intracellular pH, but intracellular ATP and PKA had no effect. ClC-K Cl- channels are characterized by their sensitivity to the external calcium and to pH. Since immunohistochemical data indicates that ClC-K2, and perhaps ClC-K1, are present on the DCT basolateral membrane, we suggest that the channel detected in this study may belong to this subfamily of the ClC channel family.  相似文献   

14.
15.
CLC proteins are found in cells from prokaryotes to mammals and perform functions in plasma membranes and intracellular vesicles. Several genetic human diseases and mouse models underscore their broad physiological functions in mammals. These functions range from the control of excitability to transepithelial transport, endocytotic trafficking and acidification of synaptic vesicles. The recent crystallization of bacterial CLC proteins gave surprising insights into CLC Cl(-)-channel permeation and gating and provides an excellent basis for structure-function studies. Surprisingly, the CLC from Escherichia coli functions as a Cl-/H+ exchanger, thus demonstrating the thin line separating transporters and channels.  相似文献   

16.
Channels selective for potassium or chloride ions are present in inner mitochondrial membranes. They probably play an important role in mitochondrial events such as the formation of delta pH and regulation of mitochondrial volume changes. Mitochondrial potassium and chloride channels could also be the targets for pharmacologically active compounds such as potassium channel openers and antidiabetic sulfonylureas. This review describes the properties, pharmacology, and current observations concerning the functional role of mitochondrial potassium and chloride channels.  相似文献   

17.
18.
External biotin greatly stimulates bacterial growth and alfalfa root colonization by Sinorhizobium meliloti strain 1021. Several genes involved in responses to plant-derived biotin have been identified in this bacterium, but no genes required for biotin transport are known, and not all loci required for biotin synthesis have been assigned. Searches of the S. meliloti genome database in combination with complementation tests of Escherichia coli biotin auxotrophs indicate that biotin synthesis probably is limited in S. meliloti 1021 by the poor functioning or complete absence of several key genes. Although several open reading frames with significant similarities to genes required for synthesis of biotin in gram-positive and gram-negative bacteria were found, only bioB, bioF, and bioH were demonstrably functional in complementation tests with known E. coli mutants. No sequence or complementation evidence was found for bioA, bioC, bioD, or bioZ. In contrast to other microorganisms, the S. meliloti bioB and bioF genes are not localized in a biotin synthesis operon, but bioB is cotranscribed with two genes coding for ABC transporter-like proteins, designated here bioM and bioN. Mutations in bioM and bioN eliminated growth on alfalfa roots and reduced bacterial capacity to maintain normal intracellular levels of biotin. Taken together, these data suggest that S. meliloti normally grows on exogenous biotin using bioM and bioN to conserve biotin assimilated from external sources.  相似文献   

19.
Single-channel electrophysiology is an invaluable tool fo the study of ion channels. However, it is a technique that has failed to attract widespread use by parasitologists. Here, Diane Dixon and Richard Martin outline the principles undelrying single channel recording and highlight its uses in the discovery of a new and unusual chloride channel in the musculature of Ascaris suum.  相似文献   

20.
Transport mechanisms in chloride channels.   总被引:1,自引:0,他引:1  
A comparative study of lipids and proteins in sarcoplasmic reticulum (SR) from rabbit and flounder has been undertaken. The protein/phospholipid ratio (w/w) was 3:1 in flounder SR (FSR) and 2.2:1 in rabbit SR (RSR). Both membranes had similar contents of PC (70%) and PI (6%). PE constituted 15% in RSR and 21% in FSR. PS and sphingomyelin were minor components of both SR (less than 4%). There were differences in the unsaturated chains of the total lipid extracts, PC, PE, and PI between FSR and RSR. RSR was high in linoleate and arachidonate while FSR contained substantial amounts of eicosapentaenoate and docosahexaenoate. FTIR spectroscopy revealed that the lipids of both membranes did not undergo a phase transition between 0 and 50 degrees C. The lipids were in the liquid-crystalline state at physiological temperatures and underwent monotonic increases in conformational disorder as the temperature was raised. CD spectra indicated higher content of alpha-helical structure of proteins in RSR than in FSR. Increasing temperature caused diminution of alpha-helix content. Relatively large decreases in ellipticity were observed between 20 degrees C and 40 degrees C for FSR and 30 degrees C and 60 degrees C for RSR. Measurements of intrinsic tryptophan fluorescence as a function of temperature gave similar results for membrane proteins in both FSR and RSR. The rate of change of tryptophan fluorescence and fluorescence lifetimes was constant over the temperature ranges studied, and no abrupt shifts in fluorescence occurred in the temperature regions where ellipticity decreased rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号