首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant mitochondria have the unique ability to directly oxidize exogenous NAD(P)H. We recently separated two NAD(P)H dehydrogenase activities from maize (Zea mays L.) mitochondria using anion-exchange (Mono Q) chromatography. The first peak of activity oxidized only NADH, whereas the second oxidized both NADH and NADPH. In this paper we describe the purification of the first peak of activity to a 32-kD protein. Polyclonal antibodies to the 32-kD protein were used to show that it was present in mitochondria from several plant species. Two-dimensional gel analysis of the 32-kD NADH dehydrogenase indicated that it consisted of two major and one minor isoelectric forms. Immunoblot analysis of submitochondrial fractions indicated that the 32-kD protein was enriched in the soluble protein fraction after mitochondrial disruption and fractionation; however, some association with the membrane fraction was observed. The membrane-impermeable protein cross-linking agent 3,3[prime] -dithiobis-(sulfosuccinimidylpropionate) was used to further investigate the submitochondrial location of the 32-kD NADH dehydrogenase. The 32-kD protein was localized to the outer surface of the inner mitochondrial membrane or to the intermembrane space. The pH optimum for the enzyme was 7.0. The activity was found to be severely inhibited by p-chloromercuribenzoic acid, mersalyl, and dicumarol, and stimulated somewhat by flavin mononucleotide.  相似文献   

2.
Sorbitol dehydrogenase (EC 1.1.1.14) was isolated from bovine brain and purified 3,000-fold to apparent homogeneity, as judged by polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 36 units/mg of protein; a molecular weight of 39,000 for each of the four identical subunits and 155,000 for the intact enzyme were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel exclusion chromatography, respectively. The presence of one Zn2+ per subunit was confirmed by atom absorption spectroscopy; inactivation of the enzyme by metal-chelating agents points to the essential role that Zn2+ plays in the catalytically competent enzyme. The enzyme is also inactivated by thiol-blocking reagents; with respect to inactivation by sodium pyrophosphate, sorbitol dehydrogenase is different from closely related alcohol dehydrogenase.  相似文献   

3.
Leucine dehydrogenase [EC 1.4.1.9] was purified to homogeneity from Corynebacterium pseudodiphtheriticum ICR 2210. The enzyme consisted of a single polypeptide with a molecular weight of about 34,000. Stepwise Edman degradation provided the N-terminal sequence of the first 24 amino acids, and carboxypeptidase Y digestion provided the C-terminal sequence of the last 2 amino acids. Although the enzyme catalyzed the reversible deamination of various branched-chain l-amino acids, l-valine was the best substrate for oxidative deamination at pH 10.9 and the saturated concentration. The enzyme, however, had higher reactivity for l-leucine, and the kcat/Km value for l-leucine was higher than that for l-valine. The enzyme required NAD+ as a natural coenzyme. The NAD+ analogs 3-acetylpyridine-NAD+ and deamino-NAD+ were much better coenzymes than NAD +. The enzyme activity was significantly reduced by sulfhydryl reagents and pyridoxal 5′-phosphate. d-Enantiomers of the substrate amino acids competitively inhibited the oxidation of l-valine.  相似文献   

4.
Aromatic amine dehydrogenase was purified and characterized from Alcaligenes xylosoxidans IFO13495 grown on β-phenylethylamine. The molecular mass of the enzyme was 95.5 kDa. The enzyme consisted of heterotetrameric subunits (α2β2) with two different molecular masses of 42.3 kDa and 15.2 kDa. The N-terminal amino acid sequences of the α-subunit (42.3-kDa subunit) and the β-subunit (15.2-kDa subunit) were DLPIEELXGGTRLPP and APAAGNKXPQMDDTA respectively. The enzyme had a quinone cofactor in the β-subunit and showed a typical absorption spectrum of tryptophan tryptophylquinone-containing quinoprotein showing maxima at 435 nm in the oxidized form and 330 nm in the reduced form. The pH optima of the enzyme activity for histamine, tyramine, and β-phenylethylamine were the same at 8.0. The enzyme retained full activity after incubation at 70 °C for 40 min. It readily oxidized various aromatic amines as well as some aliphatic amines. The Michaelis constants for phenazine methosulfate, β-phenylethylamine, tyramine, and histamine were 48.1, 1.8, 6.9, and 171 μM respectively. The enzyme activity was strongly inhibited by carbonyl reagents. The enzyme could be stored without appreciable loss of enzyme activity at 4 °C for one month at least in phosphate buffer (pH 7.0).  相似文献   

5.
the native enzyme was 104,000 by gel filtration, and SDS-polyacrylamide gel electrophoresis showed that the enzyme consisted of two subunits with an identical molecular weight of 52,000. The optimum pH of the reaction was 8.0. The Km values for 6-phosphogluconate and NADP were 3.6×10?5m and 1.3 × 10?5m, respectively. The enzyme showed no Mg2𠀫 requirement for the activity, but was activated by Mn2𠀫 and Ca2𠀫. The enzyme was inhibited by sulfhydryl reagents, indicating that a sulfhydryl group may be involved in the active site of the enzyme. The enzyme was also inhibited by NADPH2, ATP, and the intermediates formed during photosynthesis. The substrate 6-phosphogluconate and cofactor NADP partially protected the enzyme from inactivation. The enzyme had enzymological and physicochemical properties similar to enzymes isolated from other sources.  相似文献   

6.
Some of the catalytic properties of the biosynthetic dihydroorotate dehydrogenase purified from an anaerobic bacterium, Lactobacillus bulgaricus, are described. Studies with p-hydroxymercuribenzoate, N-ethylmaleimide, and mercuric chloride showed that sulfhydryl groups are necessary for transfer of electrons from dihydroorotate to a variety of electron acceptors. Protection studies with substrates for the enzyme indicated that free sulfhydryl groups at or near the active center are required for catalytic activity. Evidence is presented for the production of superoxide free radicals during reaction of the enzyme with molecular oxygen. Inhibitor studies with Tiron indicated that reduction of cytochrome c by the enzyme may involve the superoxide free radical as an intermediate. Orotate, one of the substrates for the enzyme, has been found to be a competitive inhibitor for the dihydroorotate site. The K(i) for orotate as estimated by several techniques is 0.1 mM. The K(m) for dihydroorotate with ferricyanide as the electron acceptor is estimated to be 0.5 mM.  相似文献   

7.
Glucose 6-phosphate dehydrogenase (d -glucose 6-phosphate: NADP + oxidoreductase, EC 1.1.1.49; G6PD) was purified from sheep erythrocytes, using a simple and rapid method. The purification consisted of three steps; preparation of haemolysate, ammonium sulphate fractionation and 2′, 5′-ADP Sepharose 4B affinity chromatography. The enzyme was obtained with a yield of 37.1% and had a specific activity of 4.64 U/mg proteins. Optimal pH, stable pH, molecular weight, and K M and V max values for NADP + and glucose 6-phosphate (G6-P) substrates were also determined for the enzyme. The overall purification was about 1,189-fold. A temperature of +4°C was maintained during the purification process. In order to control the purification of the enzyme SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done in 4% and 10% acrylamide concentration for stacking and running gel, respectively. SDS-PAGE showed a single band for enzyme. Enzymatic activity was spectrophotometrically measured according to Beutler's method at 340 nm. In addition, in vitro effects of gentamicin sulphate, penicillin G potassium, amicasin on sheep red blood cell G6PD enzyme activity were investigated. These antibiotics showed inhibitory effects on enzyme activity. I 50 values were determined from Activity %-[Drug] graphs and K i values and the type of inhibition (noncompetitive) were determined by means of Lineweaver-Burk graphs.  相似文献   

8.
谷氨酸脱氢酶 (GDH)是谷氨酸生物合成的关键酶 ,谷氨酸棒杆菌S91 1 4是目前我国味精工业应用最广泛的生产菌种 ,其谷氨酸脱氢酶的研究尚未见报道。分离纯化该菌中的谷氨酸脱氢酶 ,研究其辅酶组成 ,对揭示谷氨酸脱氢酶的分子结构和性质 ,提高谷氨酸产率很有必要。将培养至对数期中期的细胞离心收集并用含适量DTT、ED TA的Tris_HCl缓冲液 (pH 7 5 )洗涤 ,用Frenchpressurecellpress破碎 ,离心去除菌体碎片得无细胞抽提液。然后使用 KTA_10 0快速纯化系统经DEAE_纤维素柱、疏水柱 (HIC)、G_2 0 0凝胶过滤柱层析得到纯化大约 70倍的以NAD PH为辅酶的GDH和部分纯化的以NADH辅酶的GDH。这两个酶分别对NADPH、NADH高度专一 ,不能相互代替。经HPLC和SDS_PAGE测得前一种酶的分子量和亚基分子量分别为 188kD和 32kD ,表明该酶为具有相同亚基的六聚体。酶活性测定使用HITACHIU_30 0 0分光光度计利用NAD(P)H在 340nm氧化的初速度进行。蛋白质含量测定利用Bradford方法进行 ,并以牛血清白蛋白为标准蛋白。纯化结果表明S91 1 4中确实存在两种GDH ,其中以NADH为辅酶的GDH尚未见报道。和某些具有两种GDH的微生物一样 ,S91 1 4可能也是以NADPH为辅酶的GDH参与谷氨酸的合成代谢 ,以NADH为辅酶的GDH参与谷氨酸的分解代谢。  相似文献   

9.
Peroxisomal malate dehydrogenase (EC 1.1.1.37) with a specific activity of 533 U/mg (144-fold purification) and a yield of 5% was obtained in a homogeneous state by a purification scheme including sucrose gradient centrifugation from maize mesophyll. The Michaelis constants for the forward and reverse reactions were determined to be 11.6 mM and 256 μM, and the pH optimum was 9.5 and 9.0, respectively. Analysis of the molecular weight of the native enzyme and its subunits showed that the peroxisomal malate dehydrogenase was a homodimer. It was established that the isolated and purified isoform of the enzyme had a higher affinity for malate and NAD+ in comparison with the mitochondrial and cytoplasmic isoforms.  相似文献   

10.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

11.
Reimers, J. M., Huang, Q., Albe, K. R., and Wright, B. E. 1993. Purification and kinetic characterization of glucose-6-phosphate dehydrogenase from Dictyostelium discoideum. Experimental Mycology 17, 1-6. Glucose-6-phosphate dehydrogenase from Dictyostelium discoideum was purified 650-fold and kinetically characterized. The enzyme catalyzed the conversion of G6P + NADP to 6PG + NADPH stoichiometrically and irreversibly in vitro . The purified enzyme is specific for NADP. Michaelis constants for G6P and NADP were 0.040 and 0.011 mM, respectively. NADPH was found to be a competitive inhibitor with respect to NADP with a Ki of 0.006 mM and a noncompetitive inhibitor with respect to G6P. The data from initial velocity and product inhibition studies were consistent with a sequential mechanism.  相似文献   

12.
Glucose-6-phosphate dehydrogenase (G6PD) was purified from rat small intestine with 19.2% yield and had a specific activity of 53.8 units per miligram protein. The pH optimum was determined to be 8.1. The purified rat small intestinal G6PD gave one activity, one protein band on native PAGE. The observation of one band on SDS/PAGE with an Mr of 48 kDa and a specific activity lower than expected may suggest the proteolytically affected enzyme or different form of G6PD in the rat small intestine. The activation energy, activation enthalpy, Q10, and optimum temperature from Arrhenius plot for the rat small intestinal G6PD were found to be 8.52 kcal/mol, 7.90 kcal/mol, 1.59, and 38 degrees C, respectively. The Km values for G6P and NADP+ were 70.1 +/- 20.8 and 23.2 +/- 7.6 microM, respectively. Double-reciprocal plots of 1/Vm versus 1/G6P (at constant [NADP+]) and of 1/Vm versus 1/NADP+ at constant [G6P]) intersected at the same point on the 1/Vm axis to give Vm = 53.8 U/mg protein.  相似文献   

13.
Cytosolic NADP-specific isocitrate dehydrogenase was isolated from leaves of Pisum sativum. The purified enzyme was obtained by ammonium sulfate fractionation, ion exchange, affinity, and gel filtration chromatography. The purification procedure yields greater than 50% of the total enzyme activity originally present in the crude extract. The enzyme has a native molecular weight of 90 kilodaltons and is resolved into two catalytically active bands by isoelectric focusing. Purified NADP-isocitrate dehydrogenase exhibited Km values of 23 micromolar for dl-isocitrate and 10 micromolar for NADP, and displayed optimum activity at pH 8.5 with both Mg2+ and Mn2+.  相似文献   

14.
Germination and growth inhibiting activities of surface lipids from 54 Nicotiana species were investigated. Almost half of the extracts were found to have such activities. Among them the surface lipids of N. glutinosa, N. bigelovii, N. sylvestris, N. repanda, N. stocktonii, and N. nesophila were rather strong. Guided by a bioassay using the inhibitory effects on tobacco seed germination and growth, two types of sucrose esters were isolated and identified from the surface lipids of N. glutinosa. The ester positions of each compounds were identified by 13C-NMR using deuterium exchange of HO ? OD. The structures were (2,3,4-tri-O-acyl)-α-d-glucopyranosyl)-(3-O-acetyl)-β-d-fructofuranqside (M1) and (2,3,4-tri-O-acyl)-α-d-glucopyranosyl-β-d-fructofuranoside (M2). The main fatty acids of M1 and M2 were acetic (only in M1), propionic, 2-methylbutyric, 4-methylpentanoic, 4-methylhexanoic, 5-methylhexanoic, and octanoic acids. These sucrose esters obtained from N. glutinosa inhibited not only tobacco seed germination and growth but also other plants’ growth.  相似文献   

15.
NAD+-dependent glycerol dehydrogenase from Cellulomonas sp. NT3060 was purified by a procedure of 10 steps involving crystallization. Dihydroxyacetone was identified as the oxidation product of glycerol with the enzyme. The purified enzyme did not lose activity on heating below 60°C. The enzyme oxidized other alcohols such as 1,2-propanediol, 2,3-butanediol and glycerol-α-monochlorohydrin, beside glycerol. The enzyme activity was inhibited by p-chloromercuribenzoate, Zn2+, Cu2+ and Cd2+. Oxidation of glyberol was activated by Na+ and reduction of dihydroxyacetone was activated by K+ at pH 7.5.  相似文献   

16.
17.
Purification and Characterization of a Nylon-Degrading Enzyme   总被引:3,自引:1,他引:3       下载免费PDF全文
A nylon-degrading enzyme found in the extracellular medium of a ligninolytic culture of the white rot fungus strain IZU-154 was purified by ion-exchange chromatography, gel filtration chromatography, and hydrophobic chromatography. The characteristics of the purified protein (i.e., molecular weight, absorption spectrum, and requirements for 2,6-dimethoxyphenol oxidation) were identical to those of manganese peroxidase, which was previously characterized as a key enzyme in the ligninolytic systems of many white rot fungi, and this result led us to conclude that nylon degradation is catalyzed by manganese peroxidase. However, the reaction mechanism for nylon degradation differed significantly from the reaction mechanism reported for manganese peroxidase. The nylon-degrading activity did not depend on exogenous H2O2 but nevertheless was inhibited by catalase, and superoxide dismutase inhibited the nylon-degrading activity strongly. These features are identical to those of the peroxidase-oxidase reaction catalyzed by horseradish peroxidase. In addition, α-hydroxy acids which are known to accelerate the manganese peroxidase reaction inhibited the nylon-degrading activity strongly. Degradation of nylon-6 fiber was also investigated. Drastic and regular erosion in the nylon surface was observed, suggesting that nylon is degraded to soluble oligomers and that nylon is degraded selectively.  相似文献   

18.
19.
血管紧张素转换酶纯化与性质研究   总被引:5,自引:0,他引:5  
为了深入了解猪肺血管紧张素转换酶 (angiotensin converting enzyme,ACE)的性质和功能 ,对猪肺 ACE的分离纯化以及部分酶学性质进行了研究 .猪肺组织匀浆经 1 .6~ 2 .6mol/L硫酸铵分级沉淀等步骤后 ,利用亲和胶进行亲和层析分离 .2 0 0 g猪肺组织中提纯出 0 .79mg ACE,比活力 38.8U/mg,SDS- PAGE电泳鉴定为一条带 ,分子量约 1 80 k D,等电点 (p I)为 p H4.5,糖含量约 2 3.6% ,氨基酸组成分析发现猪肺 ACE分子中含有 1 346个氨基酸 ,其中酸性氨基酸含量较高 ,碘乙酸的修饰结果表明猪肺 ACE中巯基基团未参与酶的催化反应 .酶反应动力学结果显示 ,ACE催化 Fa PGG底物反应时的最适 p H大约为 p H 7.6,反应活化能 Ea=4.37× 1 0 4 J/mol,酶活性部位附近的组氨酸和具有类似 α-氨基性质的氨基酸可能参与了 ACE催化反应 .有关猪肺 ACE的基本生化性质、氨基酸组成以及酶学性质的结果 ,为今后深入研究奠定了基础 .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号