首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a newly developed method combining trypsin-immobilized magnetic nanoparticles (TIMNs) and microwave-assisted protein digestion to study the proteins of human lens tissue. The digested proteins were identified by liquid chromatography and mass spectrometry. The lens proteins were digested under optimized conditions (digestion time 1 min, microwave power 400 W, trypsin-to-protein ratio 1:5) determined using bovine serum albumin as the standard protein, before liquid-chromatographic and mass-spectrometric analysis. Twenty-six proteins were identified with the new digestion method compared with 11 proteins identified with traditional in-solution digestion (12 h). γ-Crystallin, β-crystallin, and superoxide dismutase 1 proteins, identified with the microwave-assisted method but not the traditional method, are related to cataract development according to some studies. The TIMNs were easily separated from the digestion products. This new digestion method could prove extremely useful for large-scale proteomic analyses.  相似文献   

2.
Li Y  Yan B  Deng C  Tang J  Liu J  Zhang X 《Proteomics》2007,7(20):3661-3671
In this study, a novel method of on-plate digestion using trypsin-immobilized magnetic nanospheres was developed followed by MALDI-TOF-MS for rapid and effective analysis and identification of proteins. We utilized a facile one-pot method for the direct preparation of amine-functionalized magnetic nanospheres with highly magnetic properties and the amino groups on the outer surface. Through the reaction of the aldehyde groups with amine groups, trypsin was simply and stably immobilized onto the magnetic nanospheres. The obtained trypsin-linked magnetic nanospheres were then applied for on-plate digestion of sample proteins (myoglobin and Cytochrome c). Moreover, after digestion, the trypsin-linked nanospheres could be easily removed from the plate due to their magnetic property, which would avoid causing contamination on the ion source chamber in MS. The effects of the temperature and incubation time on the digestion efficiency were characterized. Within only 5 min, proteins could be efficiently digested with the peptide sequence coverage higher than or equal to that of the traditional in-solution digestion for 12 h. Furthermore, RPLC fractions of rat liver extract were also successfully processed using this novel method. These results suggested that our improved on-plate digestion protocol for MALDI-MS may find further application in automated analysis of large sets of proteins.  相似文献   

3.
In this work, a novel and facile route was developed for the immobilization of enzyme on nanosized magnetic particles, and its application to fast protein digestion via a direct MALDI-TOF mass spectrometry analysis was demonstrated. At first, amine-functionalized magnetic particles with high magnetic responsivity and excellent dispersibility were prepared through a facile one-pot strategy. Then, magnetic nanoparticles were functionalized with numerous aldehyde(-CHO) groups by treating the as-synthesized, amine-functionalized magnetic nanoparticles with glutaraldehyde. Finally, immobilization of trypsin onto the aldehyde-functionalized magnetic nanoparticles was achieved through reaction of the aldehyde groups with amine groups of trypsin. The obtained trypsin-immobilized magnetic nanoparticles were conveniently applied for protein digestion. The digestion efficiency was demonstrated with peptide mapping analysis of three model proteins. The process of digestion is very facile due to the easy manipulation of magnetic nanoparticles. Complete protein digestion was achieved in a short time (5 min), without any complicated reduction and alkylation procedures. These results are expected to open up a new possibility for the proteolysis analysis as well as a new application of magnetic nanoparticles. Additionally, it is worth noting that, since the preparation and surface functionality of magnetic nanoparticles is low-cost and reproducible, the preparation method and application approach of the magnetic nanoparticles may find much potential in proteome research.  相似文献   

4.
Proteolytic digestion of proteins in seconds under an ultrasonic field provided by high-intensity focused ultrasound (HIFU) has been achieved. Successful in-solution and in-gel tryptic digestion of proteins in 60 s or less was demonstrated by either MALDI-TOF mass spectrometry or liquid chromatography-electrospray ion trap mass spectrometry (RP-HPLC-ESI-IT-MS/MS). The efficiency of this new procedure for protein digestion compared favorably with those attained using conventional overnight incubation methods. The performance of the method was also demonstrated by the specific identification of three proteins in a whole proteome in less than 1 h. The method greatly reduces the time needed for protein digestion, is of easy implementation, environmental friendly, and economic. Adaptation of this method to on-line procedures and robotic platforms could have promising applications in the proteomics field.  相似文献   

5.
The combinations of gel electrophoresis or LC and mass spectrometry are two popular approaches for large scale protein identification. However, the throughput of both approaches is limited by the speed of the protein digestion process. Present research into fast protein enzymatic digestion has been focused mainly on known proteins, and it is unclear whether these results can be extrapolated to complex protein mixtures. In this study microwave technology was used to develop a fast protein preparation and enzymatic digestion method for protein mixtures. The protein mixtures in solution or in gel were prepared and digested by microwave-assisted protein enzymatic digestion, which rapidly produces peptide fragments. The peptide fragments were further analyzed by capillary LC and ESI-ion trap-MS or MALDI-TOF-MS. The technique was optimized using bovine serum albumin and then applied to human urinary proteins and yeast lysate. The method enabled preparation and digestion of protein mixtures in solution (human urinary proteins) or in gel (yeast lysate) in 6 or 25 min, respectively. Equivalent (in-solution) or better (in-gel) digestion efficiency was obtained using microwave-assisted protein enzymatic digestion compared with the standard overnight digestion method. This new application of microwave technology to protein mixture preparation and enzymatic digestion will hasten the application of proteomic techniques to biological and clinical research.  相似文献   

6.
Proteolysis by sequence-specific proteases is the key step for positive sequencing in proteomic studies integrated with mass spectrometry (MS). The conventional method of in-solution digestion of protein is a time-consuming procedure and has limited sensitivity. In this study, we report a simple and rapid system for the analysis of protein sequence and protein posttranslational modification by multienzymatic reaction in a continuous flow using the enzyme (trypsin, chymotrypsin, or alkaline phosphatase)-immobilized microreactor. The feasibility and performance of the single microreactor and tandem microreactors that were connected by the different microreactors were determined by the digestion of nonphosphoprotein (cytochrome c) and phosphoproteins (β-casein and pepsin A). The single microreactor showed rapid digestion compared with that of in-solution digestions. Multiple digestion by the tandem microreactors showed higher sequence coverage compared with that by in-solution or the single microreactor. Moreover, the tandem microreactor that was made by using the combination of protease-immobilized microreactor and phosphatase-immobilized microreactor showed the capability for phosphorylation site analysis in phosphoproteins without the use of any enrichment strategies or radioisotope labeling techniques. This approach provides a strategy that can be applied to various types of linking microreactor-based multienzymatic reaction systems for proteomic analysis.  相似文献   

7.
In this study, an easy and efficiency protein digestion method called continuous microwave-assisted protein digestion (cMAED) with immobilized enzyme was developed and applied for proteome analysis by LC–MSn. Continuous microwave power outputting was specially designed and applied. Trypsin and bromelain were immobilized onto magnetic micropheres. To evaluate the method of cMAED, bovine serum albumin (BSA) and protein extracted from ginkgo nuts were used as model and real protein sample to verify the digestion efficiency of cMAED. Several conditions including continuous microwave power, the ratio of immobilized trypsin/BSA were optimized according to the analysis of peptide fragments by Tricine SDS–PAGE and LC–MSn. Subsequently, the ginkgo protein was digested with the protocols of cMAED, MAED and conventional heating enzymatic digestion (HED) respectively and the LC–MSn profiles of the hydrolysate was compared. Results showed that cMAED combined with immobilized enzyme was a fast and efficient digestion method for protein digestion and microwave power tentatively affected the peptide producing. The cMAED method will be expanded for large-scale preparation of bioactive peptides and peptide analysis in biological and clinical research.  相似文献   

8.
An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner) was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes) was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes). This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth.  相似文献   

9.
A "one-pot" alternative method for processing proteins and isolating peptide mixtures from bacterial samples is presented for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and data reduction. The conventional in-solution digestion of the protein contents of bacteria is compared to a small disposable filter unit placed inside a centrifuge vial for processing and digestion of bacterial proteins. Each processing stage allows filtration of excess reactants and unwanted byproduct while retaining the proteins. Upon addition of trypsin, the peptide mixture solution is passed through the filter while retaining the trypsin enzyme. The peptide mixture is then analyzed by LC-MS/MS with an in-house BACid algorithm for a comparison of the experimental unique peptides to a constructed proteome database of bacterial genus, specie, and strain entries. The concentration of bacteria was varied from 10 × 10(7) to 3.3 × 10(3) cfu/mL for analysis of the effect of concentration on the ability of the sample processing, LC-MS/MS, and data analysis methods to identify bacteria. The protein processing method and dilution procedure result in reliable identification of pure suspensions and mixtures at high and low bacterial concentrations.  相似文献   

10.
We have created a novel enzyme reactor using electric field-mediated orientation and immobilization of proteolytic enzymes (trypsin/chymotrypsin) on biocompatible PVDF membranes in a continuous flow-through chamber. Using less than 5min, this reactor in various enzyme combinations can produce enhanced rapid digestion for standardized prototypic proteins, hydrophilic proteins and hydrophobic transmembrane proteins when compared to in-solution techniques. With improved digestive efficiency, our reactor improved the overall functional analysis of lipid raft proteomes by identifying more closely functionally linked proteins and elucidated a richer set of biological processes and pathways linked to the proteins than traditional in-solution methods.  相似文献   

11.
Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥ 2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism.  相似文献   

12.
Li Y  Yan B  Deng C  Yu W  Xu X  Yang P  Zhang X 《Proteomics》2007,7(14):2330-2339
An easily replaceable enzymatic microreactor has been fabricated based on the glass microchip with trypsin-immobilized magnetic silica microspheres (MS microspheres). Magnetic microspheres with small size (approximately 300 nm in diameter) and high magnetic responsivity to magnetic field (68.2 emu/g) were synthesized and modified with tetraethyl orthosilicate (TEOS). Aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were then introduced to functionalize the MS microspheres for enzyme immobilization. Trypsin was stably immobilized onto the MS microspheres through the reaction of primary amines of the proteins with aldehyde groups on the MS microspheres. The trypsin-immobilized MS microspheres were then locally packed into the microchannel by the application of a strong field magnet to form an on-chip enzymatic microreactor. The digestion efficiency and reproducibility of the microreactor were demonstrated by using cytochrome c (Cyt-C) as a model protein. When compared with an incubation time of 12 h by free trypsin in the conventional digestion approach, proteins can be digested by the on-chip microreactor in several minutes. This microreactor was also successfully applied to the analysis of an RPLC fraction of the rat liver extract. This opens a route for its further application in top-down proteomic analysis.  相似文献   

13.
Proteomic analysis of complex samples can be facilitated by protein fractionation prior to enzymatic or chemical fragmentation combined with MS-based identification of peptides. Although aqueous soluble protein fractionation by liquid chromatography is relatively straightforward, membrane protein separations have a variety of technical challenges. Reversed-phase high performance liquid chromatography (RP-HPLC) separations of membrane proteins often exhibit poor recovery and bandwidths, and generally require extensive pretreatment to remove lipids and other membrane components. Human brain tissue lipid raft protein preparations have been used as a model system to develop RP-HPLC conditions that are effective for protein fractionation, and are compatible with downstream proteomic analytical workflows. By the use of an appropriate RP column material and operational conditions, human brain membrane raft proteins were successfully resolved by RP-HPLC and some of the protein components, including specific integral membrane proteins, identified by downstream SDS-PAGE combined with in-gel digestion, or in-solution digestion and LC-MS/MS analysis of tryptic fragments. Using the described method, total protein recovery was high, and the repeatability of the separation maintained after repeated injections of membrane raft preparations.  相似文献   

14.
We report a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 nonredundant proteins ( approximately 34% of the predicted mouse proteome). A total of 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases.  相似文献   

15.
Laser microdissection followed by mass spectrometry has been successfully used for amyloid typing. However, sample contamination can interfere with proteomic analysis, and overnight digestion limits the analytical throughput. Moreover, current quantitative analysis methods are based on the spectrum count, which ignores differences in protein length and may lead to misdiagnoses. Here, we developed a microwave-assisted filter-aided sample preparation (maFASP) method that can efficiently remove contaminants with a 10-kDa cutoff ultrafiltration unit and can accelerate the digestion process with the assistance of a microwave. Additionally, two parameters (P- and D-scores) based on the exponentially modified protein abundance index were developed to define the existence of amyloid deposits and those causative proteins with the greatest abundance. Using our protocol, twenty cases of systemic amyloidosis that were well-typed according to clinical diagnostic standards (training group) and another twenty-four cases without subtype diagnoses (validation group) were analyzed. Using this approach, sample preparation could be completed within four hours. We successfully subtyped 100% of the cases in the training group, and the diagnostic success rate in the validation group was 91.7%. This maFASP-aided proteomic protocol represents an efficient approach for amyloid diagnosis and subtyping, particularly for serum-contaminated samples.  相似文献   

16.
The minimization of preanalytical variables in sample preparation is imperative for successful discovery-driven and translational research involving large-scale biomolecular profiling. Here, we demonstrate a novel technique using high hydrostatic pressure in addition to several chaotropes and solvents to maximize efficiency of both cell lysis and enzymatic digestion while minimizing the time, manual involvement in sample processing, and preanalytical variability introduced prior to mass spectrometry-based proteomic analysis. The digestion techniques were evaluated and optimized for in-solution, in-gel, and on-membrane applications using protein standards and cell lysates. The lysis techniques were evaluated using human HepG2 cells. Our results demonstrate that the use of elevated pressure and organic solvents can achieve superior protein recovery of organelle-, complex-, and especially membrane-associated proteins, meanwhile obtaining more than a 20-fold increase in throughput with improved reproducibility. This study introduces the concept of ultrahigh-performance sample preparation platforms for targeted characterization of proteome subsets in biological systems.  相似文献   

17.
A novel method to achieve highly efficient identification of membrane proteins (MPs) has been developed based on a covalent binding (CB) strategy. For this purpose, magnetic nanoparticles coated with a PEG layer were synthesized. The PEG chain end was functionalized to form the PEG‐tresyl group, which is an octopus‐like long arm to capture the free amino groups of MPs. The long arm could be used to bind proteins in a high concentration of the SDS medium. Then, the SDS and interfering substances were completely depleted by washing. The CB proteins could form a molecular monolayer on the surface of the nanoparticles in the denatured state, which was significantly favorable for the proteolysis of MPs. Therefore, isolation with CB and highly efficient digestion resulted in a larger scale of MPs. The method has been verified by a proteome identification of mouse liver samples. A total of 2946 MPs were identified in an MP fraction. A total of 1505 proteins were characterized as integral MPs, and 735 MPs were identified beyond the largest database summarized by PeptideAtlas. This approach has great potential for membrane proteome research.  相似文献   

18.
Infrared (IR) radiation was employed to enhance the efficiency of chymotryptic proteolysis for peptide mapping in this work. Protein solutions containing chymotrypsin in sealed transparent Eppendorf tubes were allowed to digest under an IR lamp at 37 degrees C. BSA and cytochrome c (Cyt- c) were digested by IR-assisted chymotryptic proteolysis to demonstrate the feasibility and performance of the novel digestion approach and the digestion time was significantly reduced to 5 min. The obtained digests were further identified by MALDI-TOF MS with the sequence coverages that were comparable to those obtained by using conventional in-solution digestion. The suitability of IR-assisted chymotryptic proteolysis to complex proteins was demonstrated by digesting human serum. The present proteolysis strategy is simple and efficient, offering great promise for high-throughput protein identification.  相似文献   

19.
In this work, polydopamine‐coated magnetic graphene (MG@PDA) nanocomposites were synthesized by a facile method. Trypsin was then directly immobilized on the surface of the nanocomposites through simple PDA chemistry with no need for introducing any other coupling groups. The as‐made MG@PDA nanocomposites inherit not only the large surface area of graphene which makes them capable of immobilizing high amount of trypsin (up to 0.175 mg/mg), but also the good hydrophilicity of PDA which greatly improves their biocompatibility. Moreover, the strong magnetic responsibility makes them easy to be separated from the digested peptide solution when applying a magnetic field. The feasibility of the trypsin‐immobilized MG@PDA (MG@PDA‐trypsin) nanocomposites for protein digestion was investigated and the results indicated their high digestion efficiency in a short digestion time (10 min). In addition, the reusability and stability of the MG@PDA‐trypsin nanocomposites were also tested in our work. To further confirm the efficiency of MG@PDA‐trypsin nanocomposites for proteome analysis, they were applied to digest proteins extracted from skimmed milk, followed by nano RPLC‐ESI‐MS/MS analysis, and a total of 321 proteins were identified, much more than those obtained by 16‐h in‐solution digestion (264 proteins), indicating the great potential of MG@PDA‐trypsin nanocomposites as the supports for high‐throughput proteome study.  相似文献   

20.
In proteome research, rapid and effective proteolysis and enrichment strategies are essential for successful protein identification. Functionalized magnetic microspheres of micro- and nano-meter size are gaining increasing attention due to their easy manipulation and recovery, great specific surface areas and high surface activity. The introduction of magnetic nanoparticles into the field of proteomics study has accelerated the development of digestion and enrichment methods. In this article, we mainly focus on recent developments of using different functionalized magnetic nanoparticles for rapid digestion and preconcentration of low-abundance peptides/proteins, including those containing post-translational modifications, such as phosphorylation and glycosylation, prior to mass spectrometric analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号