共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zimo Zhou Senxiang Chen Tong Wu Yifeng Chen Yuxiao Cao Ying Huang Da Liu 《Journal of cellular physiology》2023,238(1):195-209
Osteoblast proliferation and osteogenic differentiation (OGD) are regulated by complex mechanisms. The roles in cell proliferation and OGD of RNA-binding proteins in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family remain unclear. To elucidate this, we examined the differential expression of IGF2BP2 in OGD and osteoporosis, and the expression profile of IGF2BP2-binding RNA in vitro. We screened the GEO database for differential expression of IGF2BP in OGD and osteoporosis, and verified the RNAs interacting with IGF2BP2 via RNA immunoprecipitation sequencing assays. The proliferation and OGD of IGF2BP2- and serum response factor (SRF)-treated cells, and their regulatory mechanisms, were examined. IGF2BP2 was differentially expressed in OGD and osteoporosis. The RNA immunoprecipitation sequencing assay identified all of the RNAs that bind with IGF2BP2, and revealed SRF as a target of IGF2BP2. IGF2BP2 and SRF inhibition impaired MC3T3-E1 cell growth but promoted OGD. The mRNA stability analysis revealed that IGF2BP2 enhanced SRF mRNA stability against degradation. In summary, IGF2BP2 is a potential biomarker and therapeutic target for osteoporosis and OGD. 相似文献
3.
RNA沉默与植物病毒 总被引:11,自引:0,他引:11
植物中RNA沉默(RNAsilencing)亦称为转录后基因沉默(PTGS)或共抑制,是植物抵抗外来核酸(转座子、转基因或病毒)入侵,并保护自身基因组完整性的一种防御机制。RNA沉默是近十年来发现的植物界中普遍存在的现象,已成为植物分子生物学领域的一个新的研究方向。对RNA沉默特点和机制的研究表明,植物病毒与(转基因)植物内发生的RNA沉默有着密切的联系,作者从病毒对RNA沉默的诱导、抑制、防御等方面,简述了RNA沉默与病毒的关系。并对病毒载体所诱导的RNA沉默在植物发育和基因组功能分析等方面的应用价值进行了讨论。 相似文献
4.
5.
6.
Marco G. Paggi Alfonso Baldi Francesco Bonetto Antonio Giordano 《Journal of cellular biochemistry》1996,62(3):418-430
Two genes, p107 and Rb2/p130, are strictly related to RB, the most investigated tumor suppressor gene, responsible for susceptibility to retinoblastoma. The products of these three genes, namely pRb, p107, and pRb2/p130 are characterized by a peculiar steric confirmation, called “pocket,” responsible for most of the functional interactions characterizing the activity of these proteins in the homeostasis of the cell cycle. The interest in these genes and proteins springs from their ability to regulate cell cycle processes negatively, being able, for example, to dramatically slow down neoplastic growth. So far, among these genes, only RB is firmly established to act as a tumor suppressor, because its lack-of-function is clearly involved in tumor onset and progression. It has been found deleted or mutated in most retinoblastomas and sarcomas, but its inactivation is likely to play a crucial role in other types of human cancers. The two other members of the family have been discovered more recently and are currently under extensive investigation. We review analogies and differences among the pocket protein family members, in an attempt to understand their functions in normal and cancer cells. © 1996 Wiley-Liss, Inc. 相似文献
7.
8.
9.
Sijia Wang Xianan Xie Xianrong Che Wenzhen Lai Ying Ren Xiaoning Fan Wentao Hu Ming Tang Hui Chen 《Plant biotechnology journal》2023,21(4):866-883
Arbuscular mycorrhizal (AM) fungi can form beneficial associations with the most terrestrial vascular plant species. AM fungi not only facilitate plant nutrient acquisition but also enhance plant tolerance to various environmental stresses such as drought stress. However, the molecular mechanisms by which AM fungal mitogen-activated protein kinase (MAPK) cascades mediate the host adaptation to drought stimulus remains to be investigated. Recently, many studies have shown that virus-induced gene silencing (VIGS) and host-induced gene silencing (HIGS) strategies are used for functional studies of AM fungi. Here, we identify the three HOG1 (High Osmolarity Glycerol 1)-MAPK cascade genes RiSte11, RiPbs2 and RiHog1 from Rhizophagus irregularis. The expression levels of the three HOG1-MAPK genes are significantly increased in mycorrhizal roots of the plant Astragalus sinicus under severe drought stress. RiHog1 protein was predominantly localized in the nucleus of yeast in response to 1 M sorbitol treatment, and RiPbs2 interacts with RiSte11 or RiHog1 directly by pull-down assay. Importantly, VIGS or HIGS of RiSte11, RiPbs2 or RiHog1 hampers arbuscule development and decreases relative water content in plants during AM symbiosis. Moreover, silencing of HOG1-MAPK cascade genes led to the decreased expression of drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3) in the AM fungal symbiont in response to drought stress. Taken together, this study demonstrates that VIGS or HIGS of AM fungal HOG1-MAPK cascade inhibits arbuscule development and expression of AM fungal drought-resistant genes under drought stress. 相似文献
10.
11.
HE XiuXia JIN ChongWei LI GuiXin YOU GuangYi ZHOU XuePing & ZHENG ShaoJian 《中国科学:生命科学英文版》2008,51(5):402-409
Virus-induced gene silencing (VIGS) is potentially an attractive reverse-genetics tool for studies of plant gene function, but whether it is effective in silencing mineral nutritional-related genes in roots has not been demonstrated. Here we report on an efficient VIGS system that functions in tomato roots using a modified viral satellite DNA (DNAmβ) associated with Tomato yellow leaf curl China virus (TYLCCNV). A cDNA fragment of the ferric chelate reductase gene (FRO1) from tomato was inserted into the DNAmβ vector. Tomato roots agro-inoculated with DNAmβ carrying both a fragment of FRO1 and TYLCCNV used as a helper virus exhibited a significant reduction at the FRO1 mRNA level. As a consequence, ferric chelate reductase activity, as determined by visualization of the pink FeBPDS3 complex was significantly decreased. Our results clearly demonstrated that VIGS system can be employed to investigate gene function associated with plant nutrient uptake in roots. 相似文献
12.
13.
14.
Betacellulin regulates the proliferation and differentiation of retinal progenitor cells in vitro 下载免费PDF全文
Dandan Zhang Bingqiao Shen Yi Zhang Ni Ni Yuyao Wang Xianqun Fan Hao Sun Ping Gu 《Journal of cellular and molecular medicine》2018,22(1):330-345
Retinal progenitor cells (RPCs) hold great potential for the treatment of retinal degenerative diseases. However, their proliferation capacity and differentiation potential towards specific retinal neurons are limited, which limit their future clinical applications. Thus, it is important to improve the RPCs’ ability to proliferate and differentiate. Currently, epidermal growth factor (EGF) is commonly used to stimulate RPC growth in vitro. In this study, we find that betacellulin (BTC), a member of the EGF family, plays important roles in the proliferation and differentiation of RPCs. Our results showed that BTC can significantly promote the proliferation of RPCs more efficiently than EGF. EGF stimulated RPC proliferation through the EGFR/ErbB2‐Erk pathway, while BTC stimulated RPC proliferation more powerfully through the EGFR/ErbB2/ErbB4‐Akt/Erk pathway. Meanwhile, under differentiated conditions, the BTC‐pre‐treated RPCs were preferentially differentiated into retinal neurons, including photoreceptors, one of the most important types of cells for retinal cell replacement therapy, compared to the EGF‐pre‐treated RPCs. In addition, knockdown of endogenous BTC expression can also obviously promote RPC differentiation into retinal neuronal cells. This data demonstrate that BTC plays important roles in promoting RPC proliferation and differentiation into retinal neurons. This study may provide new insights into the study of RPC proliferation and differentiation and make a step towards the application of RPCs in the treatment of retinal degenerative diseases. 相似文献
15.
The role of perchloric acid-soluble protein (PSP) was investigated in chick embryos. Fluorescently labeled anti-chick liver (CL)-PSP IgG was injected into the yolk sac in ovo at embryonic day 3, and became localized in neuroepithelial cells. Within 12 h, morphological changes were observed in 37.5% of anti-CL-PSP IgG-injected embryos, and the neuroepithelial cells formed a wavy line. No significant changes were observed in embryos injected with non-immune IgG or PBS. Increased expression of PCNA and decreased expression of neuronal class III beta-tubulin were observed in the spinal cord after anti-CL-PSP IgG injection. These results suggest that PSP controls the proliferation and differentiation of neuroepithelial cells in chick embryos. 相似文献
16.
Arabidopsis E2FA stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes 总被引:1,自引:0,他引:1
Magyar Z Horváth B Khan S Mohammed B Henriques R De Veylder L Bakó L Scheres B Bögre L 《The EMBO journal》2012,31(6):1480-1493
Post-embryonic growth in plants depends on the continuous supply of undifferentiated cells within meristems. Proliferating cells maintain their competence for division by active repression of differentiation and the associated endocycle entry. We show by upregulation and downregulation of E2FA that it is required for maintaining proliferation, as well as for endocycle entry. While E2FB-RBR1 (retinoblastoma-related protein 1) complexes are reduced after sucrose addition or at elevated CYCD3;1 levels, E2FA maintains a stable complex with RBR1 in proliferating cells. Chromatin immunoprecipitation shows that RBR1 binds in the proximity of E2F promoter elements in CCS52A1 and CSS52A2 genes, central regulators for the switch from proliferation to endocycles. Overexpression of a truncated E2FA mutant (E2FA(ΔRB)) lacking the RBR1-binding domain interferes with RBR1 recruitment to promoters through E2FA, leading to decreased meristem size in roots, premature cell expansion and hyperactivated endocycle in leaves. E2F target genes, including CCS52A1 and CCS52A2, are upregulated in E2FA(ΔRB) and e2fa knockout lines. These data suggest that E2FA in complex with RBR1 forms a repressor complex in proliferating cells to inhibit premature differentiation and endocycle entry. Thus, E2FA regulates organ growth via two distinct, sequentially operating pathways. 相似文献
17.
18.
Tomé M López-Romero P Albo C Sepúlveda JC Fernández-Gutiérrez B Dopazo A Bernad A González MA 《Cell death and differentiation》2011,18(6):985-995
In spite of the extensive potential of human mesenchymal stem cells (hMSCs) in cell therapy, little is known about the molecular mechanisms that regulate their therapeutic properties. We aimed to identify microRNAs (miRNAs) involved in controlling the transition between the resting and reparative phenotypes of hMSCs, hypothesizing that these miRNAs must be present in the undifferentiated cells and downregulated to allow initiation of distinct activation/differentiation programs. Differential miRNA expression analyses revealed that miR-335 is significantly downregulated upon hMSC differentiation. In addition, hMSCs derived from a variety of tissues express miR-335 at a higher level than human skin fibroblasts, and overexpression of miR-335 in hMSCs inhibited their proliferation and migration, as well as their osteogenic and adipogenic potential. Expression of miR-335 in hMSCs was upregulated by the canonical Wnt signaling pathway, a positive regulator of MSC self-renewal, and downregulated by interferon-γ (IFN-γ), a pro-inflammatory cytokine that has an important role in activating the immunomodulatory properties of hMSCs. Differential gene expression analyses, in combination with computational searches, defined a cluster of 62 putative target genes for miR-335 in hMSCs. Western blot and 3'UTR reporter assays confirmed RUNX2 as a direct target of miR-335 in hMSCs. These results strongly suggest that miR-335 downregulation is critical for the acquisition of reparative MSC phenotypes. 相似文献
19.
Song Park Jee Eun Han Hyeon-Gyeom Kim Hee-Yeon Kim Min-Gi Kim Jin-Kyu Park Gil-Jae Cho Hai Huang Myoung Ok Kim Zae Young Ryoo Se-Hyeon Han Seong-Kyoon Choi 《Journal of cellular biochemistry》2020,121(11):4667-4679
Mouse embryonic stem cells (mESCs) exhibit self-renewal and pluripotency, can differentiate into all three germ layers, and serve as an essential model in stem cell research and for potential clinical application in regenerative medicine. Melanoma-associated antigen A2 (MAGEA2) is not expressed in normal somatic cells but rather in different types of cancer, especially in undifferentiated cells, such as in the testis, differentiating cells, and ESCs. However, the role of MAGEA2 in mESCs remains to be clarified. Accordingly, in this study, we examined the expression and functions of MAGEA2 in mESCs. MAGEA2 messenger RNA (mRNA) expression was decreased during mESCs differentiation. MAGEA2 function was then evaluated in knockdown mESC. MAGEA2 knockdown resulted in decreased pluripotency marker gene expression in mESCs consequent to increased Erk1/2 phosphorylation. Decreased MAGEA2 expression inhibited mESC proliferation via S phase cell cycle arrest with a subsequent decrease in cell cycle-associated genes Cdk1, Cdk2, Cyclin A1, Cyclin D1, and Cdc25a. Apoptotic mESCs markedly increased along with cleaved forms of caspases 3, 6, and 7 and PARP expression, confirming caspase-dependent apoptosis. MAGEA2 knockdown significantly decreased embryoid body size in vitro when cells were differentiated naturally and teratoma size in vivo, concomitant with decreased ectoderm marker gene expression. These findings suggested that MAGEA2 regulates ESC pluripotency, proliferation, cell cycle, apoptosis, and differentiation. The enhanced understanding of the regulatory mechanisms underlying diverse mESC characteristics will facilitate the clinical application of mESCs. 相似文献
20.
Stem cells and progenitor cells are the cells of origin for multi-cellular organisms and organs. They play key roles during development and their dysregulation gives rise to human diseases such as cancer. The recent development of induced pluripotent stem cell (iPSC) technology which converts somatic cells to stem-like cells holds great promise for regenerative medicine. Nevertheless, the understanding of proliferation, differentiation, and self-renewal of stem cells and organ-specific progenitor cells is far from clear. Recently, the Hippo pathway was demonstrated to play important roles in these processes. The Hippo pathway is a newly established signaling pathway with critical functions in limiting organ size and suppressing tumorigenesis. This pathway was first found to inhibit cell proliferation and promote apoptosis, therefore regulating cell number and organ size in both Drosophila and mammals. However, in several organs, disturbance of the pathway leads to specific expansion of the progenitor cell compartment and manipulation of the pathway in embryonic stem cells strongly affects their self-renewal and differentiation. In this review, we summarize current observations on roles of the Hippo pathway in different types of stem cells and discuss how these findings changed our view on the Hippo pathway in organ development and tumorigenesis. 相似文献