首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H. Quader  E. Schnepf 《Protoplasma》1989,151(2-3):167-170
Summary With an improved method to visualize the actin filament system it is possible to detect a small, peculiar accumulation of actin filaments under the prospective area of side branch formation inFunaria protonema cells. It consists of a ring-like configuration of actin filaments from which filaments radiate, preferentially along the plasma membrane. During the transition to tip growth the arrangement becomes loosened and eventually disappears whereas the filaments are concentrated in inner regions of the cytoplasm with a maximum in the apical dome.  相似文献   

2.
R. R. Dubreuil  G. B. Bouck 《Protoplasma》1988,143(2-3):150-164
Summary Surface isolates or membrane skeletons from surface isolates can maintain the cell and surface form characteristic of euglenoids. We now report that the plasma membrane alone obtained by trypsin or urea digestion of surface isolates can also maintain surface form, but the membrane skeleton is able to produce striking changes in membrane organization. Trypsin digests microtubules, the membrane skeleton and partially digests the major integral membrane protein from surface isolates but does not alter the paracrystalline plasma membrane interior. Extraction of surface isolates with 4M urea leaves an insoluble plasma membrane and a subset of proteins arranged perpendicularly to the membrane surface. To resolve further the relationship between the plasma membrane and the membrane skeleton we have perturbed membrane organization by extraction of surface isolates with NaOH and find that readdition of the extract followed by neutralization restored important features of the membrane skeleton and caused patching of the membrane interior. Biochemically, the reassembled membrane skeleton consisted of 80 and 86 kD polypeptides and other less abundant proteins, and structurally the reassembled membrane skeleton was about the same thickness as the native membrane skeleton. Reassembly of the membrane skeleton appeared to be saturatable in that addition of an excess of extract had no effect on the thickness of the membrane skeletal layer. When the 80 kD protein was depleted from the reassembly mixture by affinity chromatography using Sepharose-bound monoclonal antibodies, the amount of 86 kD protein bound was significantly reduced, suggesting a dependance of 86 kD protein on 80 kD binding. A urea soluble fraction enriched in the 80 and 86 kD proteins was added to alkali-stripped membranes and 170 Å filaments were formed perpendicularly to the membrane surface. From the sum of these experiments we suggest that a) the native amorphous membrane skeleton ofEuglena may consist of a framework of 80 and 86 kD filaments arranged in a brush-like layer, b) the framework can direct plasma membrane organization, but once determined, membrane form remains stable to urea and trypsin but not to alkali, and c) new surface growth can in theory occur as an expansion of the brush-like layer by direct intercalation of filaments enriched in or consisting wholly of 80 and 86 kD proteins.Abbreviations BSA bovine serum albumin - ELISA enzyme linked immunosorbant assay - EF ectoplasmic fracture face - IMPs intramembrane particles - PF protoplasmic fracture face This work was supported by a University of Illinois Fellowship to RRD and NSF grant DCB-8602793 to GBB.  相似文献   

3.
We examined the association between glycoprotein (GP) IIb/IIIa, a receptor for fibrinogen, and membrane skeletons in both unstimulated and thrombin-activated human platelets. After a treatment with dithiobis succinimidyl propionate (DTSP), a cross-linker, unstimulated and activated platelets were simultaneously extracted and fixed with a fixing solution containing Triton X-100. Also, the localization of GPIIb/IIIa on the plasma membrane was observed by a preembedding staining method of unextracted platelets. In unstimulated platelets, 20-40% of the whole plasma membrane remained in the detergent-extracted samples. Amorphous structures with 10-70 nm in diameters are distributed at 20 to 100-nm intervals on the surface of plasma membrane. Similar structures also were identified in the intact platelets by the immunocytochemical method. By careful inspection, we found that most of the amorphous structures that contained gold particles were connected to the submembrane zone just beneath the plasma membrane. The submembrane zone was identified as the membrane skeleton because actin was detected in the zone. After activation, detergent-insoluble granules were surrounded by dense networks of microfilaments in the central part of platelets. The filaments were identified as actin and became associated with myosin. These results demonstrate that GPIIb/IIIa on the plasma membrane is connected to the membrane skeleton and suggest that, during activation, actin filaments which extend into the cytoplasm from the membrane skeleton increase and form dense networks around Triton-insoluble granules.  相似文献   

4.
Summary Actin filaments in the microridges on the surface of the fish oral mucosa taken from Cyprinus carpio were examined by electron microscopy after detergent extraction and decoration with myosin subfragment 1. After extraction with saponin, an irregular and densely packed meshwork of actin filaments was observed in the bases of the microridges, just lateral to the tight junctions with their fibrous undercoats. Actin filaments formed cores in the microridges and numerous linkages were seen between the filaments and the plasma membrane. Extraction with Triton X-100 and decoration with myosin subfragment 1 showed the ends of the actin filaments to be associated with the plasma membrane of the microridges, and in the bases of microridges the filament ends were anchored to intermediate filaments. Some actin filaments interconnected with the fibrous undercoats of the tight junctions. On the basis of these observations, the mechanism of the formation of microridges, including their pattern, is discussed.  相似文献   

5.
Summary We examined the association between glycoprotein (GP) IIb/IIIa, a receptor for fibrinogen, and membrane skeletons in both unstimulated and thrombin-activated human platelets. After a treatment with dithiobis succinimidyl propionate (DTSP), a cross-linker, unstimulated and activated platelets were simultaneously extracted and fixed with a fixing solution containing Triton X-100. Also, the localization of GPIIb/IIIa on the plasma membrane was observed by a preembedding staining method of unextracted platelets. In unstimulated platelets, 20–40% of the whole plasma membrane remained in the detergent-extracted samples. Amorphous structures with 10–70 nm in diameters are distributed at 20 to 100-nm intervals on the surface of plasma membrane. Similar structures also were identified in the intact platelets by the immunocytochemical method. By careful inspection, we found that most of the amorphous structures that contained gold particles were connected to the submembrane zone just beneath the plasma membrane. The submembrane zone was identified as the membrane skeleton because actin was detected in the zone. After activation, detergent-insoluble granules were surrounded by dense networks of microfilaments in the central part of platelets. The filaments were identified as actin and became associated with myosin. These results demonstrate that GPIIb/IIIa on the plasma membrane is connected to the membrane skeleton and suggest that, during activation, actin filaments which extend into the cytoplasm from the membrane skeleton increase and form dense networks around Triton-insoluble granules.  相似文献   

6.
Whole-mount cell preparations of cultured rat 3Y1 cells were examined by stereo electron microscopy to identify the ultrastructural localization of concanavalin A (Con A) receptors in the plasma membrane, and to clarify the relationship between Con A receptors and cytoskeletal components. Well spread monolayer cells were extracted with saponin, briefly fixed, and then partially broken open with shearing force to facilitate the introduction of antibodies for identification of actin filaments. Stereo electron microscopy of such treated cells revealed a 3-dimensional image of filamentous structures such as fine filaments, microtubules (MT) and endoplasmic reticulum (ER) in the flattened areas of each cell. Just beneath the plasma membrane were meshworks of actin-containing fine filaments, as identified by an immunogold staining method. Microtubules and ER were observed to be either directly or indirectly associated with this meshwork. The broken open part of each cell exhibited a meshwork of filaments which were associated with the cytoplasmic surface of the plasma membrane. Some of the filaments were connected to the plasma membrane either by their ends or by their lateral surfaces. The localization of Con A receptors was examined by binding colloidal gold-labelled Con A to the surface of fixed, saponin-extracted cells. Virtually all gold particles bound externally at the same membrane sites where intracellular actin filaments attached internally. The observations strongly suggest that the distribution of Con A receptors was regulated by the underlying meshwork of actin filaments.  相似文献   

7.
Biosynthetic cargo is transported away from the Golgi in vesicles via microtubules. In the cell periphery the vesicles are believed to engage actin and then dock to fusion sites at the plasma membrane. Using dual-color total internal reflection fluorescence microscopy, we observed that microtubules extended within 100 nm of the plasma membrane and post-Golgi vesicles remained on microtubules up to the plasma membrane, even as fusion to the plasma membrane initiated. Disruption of microtubules eliminated the tubular shapes of the vesicles and altered the fusion events: vesicles required multiple fusions to deliver all of their membrane cargo to the plasma membrane. In contrast, the effects of disrupting actin on fusion behavior were subtle. We conclude that microtubules, rather than actin filaments, are the cytoskeletal elements on which post-Golgi vesicles are transported until they fuse to the plasma membrane.  相似文献   

8.
Platelets have previously been shown to contain a membrane skeleton that is composed of actin filaments, actin-binding protein, and three membrane glycoproteins (GP), GP Ib, GP Ia, and a minor glycoprotein of Mr = 250,000. The present study was designed to determine how the membrane glycoproteins were linked to actin filaments. Unstimulated platelets were lysed with Triton X-100, and the membrane skeleton was isolated on sucrose density gradients or by high-speed centrifugation. The association of the membrane glycoproteins with the actin filaments was disrupted when actin-binding protein was hydrolyzed by activity of the Ca2+-dependent protease, which was active in platelet lysates upon addition of Ca2+ in the absence of leupeptin. Similarly, activation of the Ca2+-dependent protease in intact platelets by the addition of a platelet agonist also caused the membrane glycoproteins to dissociate from the membrane skeleton. Affinity-purified actin-binding protein antibodies immunoprecipitated the membrane glycoproteins from platelet lysates in which actin filaments had been removed by DNase I-induced depolymerization and high-speed centrifugation. These results demonstrate that actin-binding protein links actin filaments of the platelet membrane skeleton to three plasma membrane glycoproteins and that filaments are released from their attachment site when actin-binding protein is hydrolyzed by the Ca2+-dependent protease within intact platelets during platelet activation.  相似文献   

9.
Three-dimensional images of the undercoat structure on the cytoplasmic surface of the upper cell membrane of normal rat kidney fibroblast (NRK) cells and fetal rat skin keratinocytes were reconstructed by electron tomography, with 0.85-nm-thick consecutive sections made approximately 100 nm from the cytoplasmic surface using rapidly frozen, deeply etched, platinum-replicated plasma membranes. The membrane skeleton (MSK) primarily consists of actin filaments and associated proteins. The MSK covers the entire cytoplasmic surface and is closely linked to clathrin-coated pits and caveolae. The actin filaments that are closely apposed to the cytoplasmic surface of the plasma membrane (within 10.2 nm) are likely to form the boundaries of the membrane compartments responsible for the temporary confinement of membrane molecules, thus partitioning the plasma membrane with regard to their lateral diffusion. The distribution of the MSK mesh size as determined by electron tomography and that of the compartment size as determined from high speed single-particle tracking of phospholipid diffusion agree well in both cell types, supporting the MSK fence and MSK-anchored protein picket models.  相似文献   

10.
Summary Cytoskeletal organization and its association with plasma membranes in embryonic chick skeletal muscle cells in vitro was studied by the freeze-drying and rotary-shadowing method of physically ruptured cells. The cytoskeletal filaments underlying the plasma membranes were sparse in myogenic cells at the stage when cells exhibited great lipid fluidity in plasma membranes (fusion competent mononucleated myoblasts and recently fused young myotubes). Myotubes at more advanced stages of development possessed a highly interconnected dense filamentous network just underneath the cell membrane. This subsarcolemmal network was composed predominantly of 8–10 nm filaments; they were identified as actin filaments because of their decoration with myosin subfragment-1. Fine fibrils having a diameter of 3–5 nm were found on the protoplasmic surface of the plasmalemma at both the early and advanced stages of development. They were associated with the subsarcolemmal cytoskeletal filaments. Short 2–5 nm cross-linking filaments were occasionally seen between filaments in the subsarcolemmal network. We conclude that, although the subsarcolemmal cytoskeletal network contains many actin filaments, this domain appears to play some role in preserving the cell shape in the form of the membrane skeleton rather than membrane mobility.  相似文献   

11.
We characterized the yeast actin cytoskeleton at the ultrastructural level using immunoelectron microscopy. Anti-actin antibodies primarily labeled dense, patchlike cortical structures and cytoplasmic cables. This localization recapitulates results obtained with immunofluorescence light microscopy, but at much higher resolution. Immuno-EM double-labeling experiments were conducted with antibodies to actin together with antibodies to the actin binding proteins Abp1p and cofilin. As expected from immunofluorescence experiments, Abp1p, cofilin, and actin colocalized in immuno-EM to the dense patchlike structures but not to the cables. In this way, we can unambiguously identify the patches as the cortical actin cytoskeleton. The cortical actin patches were observed to be associated with the cell surface via an invagination of plasma membrane. This novel cortical cytoskeleton- plasma membrane interface appears to consist of a fingerlike invagination of plasma membrane around which actin filaments and actin binding proteins are organized. We propose a possible role for this unique cortical structure in wall growth and osmotic regulation.  相似文献   

12.
Pathogen–host interactions are modulated at multiple levels by both the pathogen and the host cell. Modulation of host cell functions is particularly intriguing in the case of the intracellular Theileria parasite, which resides as a multinucleated schizont free in the cytosol of the host cell. Direct contact between the schizont plasma membrane and the cytoplasm enables the parasite to affect the function of host cell proteins through direct interaction or through the secretion of regulators. Structure and dynamics of the schizont plasma membrane are poorly understood and whether schizont membrane dynamics contribute to parasite propagation is not known. Here we show that the intracellular Theileria schizont can dynamically change its shape by actively extending filamentous membrane protrusions. We found that isolated schizonts bound monomeric tubulin and in vitro polymerized microtubules, and monomeric tubulin polymerized into dense assemblies at the parasite surface. However, we established that isolated Theileria schizonts free of host cell microtubules maintained a lobular morphology and extended filamentous protrusions, demonstrating that host microtubules are dispensable both forthe maintenance of lobular schizont morphology and for the generation of membrane protrusions. These protrusions resemble nanotubes and extend in an actin polymerization‐dependent manner; using cryo‐electron tomography, we detected thin actin filaments beneath these protrusions, indicating that their extension is driven by schizont actin polymerization. Thus the membrane of the schizont and its underlying actin cytoskeleton possess intrinsic activity for shape control and likely function as a peri‐organelle to interact with and manipulate host cell components.  相似文献   

13.
Actin-plasma membrane associations in mouse eggs and oocytes   总被引:1,自引:0,他引:1  
Using rhodamine-phalloidin stained preparations and extracted specimens labeled with heavy meromyosin or run on polyacrylamide gels, actin-plasma membrane associations in mouse mature eggs at the second metaphase of meiosis and oocytes at meiotic prophase have been examined. Cortices of extracted oocytes possessed numerous actin filaments that emanated from the plasma membrane delimiting regions between microvilli and from microvillar apices. The membrane anchorage sites of actin filaments were marked by an electron dense material on the inner leaflet of the plasma membrane. The free ends of filaments emanating from the plasma membrane of oocytes intermeshed to form a dense, cortical layer. With meiotic maturation, changes in the organization of cortical actin were first noted approximately 3 hr after the chromosomes had become localized at the oocyte's periphery. Fewer and shorter actin filaments, which did not form a well-defined layer as in oocytes, were connected with electron-dense material to the inner leaflet of the plasma membrane of extracted egg cortices in regions other than that associated with the meiotic spindle. Cortical actin adjacent to the meiotic spindle, however, was organized into a dense, cresentic aggregation in which clusters of filaments emanated from electron-dense regions associated with both the inner and outer leaflets of the plasma membrane. These observations indicate that mouse oocyte maturation not only involves changes in the distribution of cortical actin but also local alterations in the association of actin with the plasma membrane.  相似文献   

14.
K. Laporte  M. Rossignol  J. A. Traas 《Planta》1993,191(3):413-416
Using monoclonal antibodies we have studied the interaction of tubulin with the plasma membrane of leaves of Nicotiana sylvestris (Speg. et Comes) and tobacco suspension-culture cells. The results show that isolated plasma membranes contain tightly bound -tubulins. Their association with the plasma membrane is resistent to non-ionic detergent and to low and high ionic strength. Only extraction with sodium dodecyl sulfate is capable of dissociating these cytoskeletal proteins. It is unlikely that this membrane-bound tubulin is present in its polymeric form because electron-microscopical analysis does not reveal the presence of filaments, whereas treatment of membranes with oryzalin (which has been shown to destabilize microtubules in vitro) does not remove the tubulins from isolated plasma membrane. When living cells are treated with oryzalin, the amount of membrane-associated tubulin is drastically reduced, which could mean that its presence is related to in-vivo microtubule dynamics.Abbreviations Mes 2 (N-morpholino) ethane sulfonic acid - NP40 Nonidet P40  相似文献   

15.
The platelet plasma membrane is lined by a membrane skeleton that appears to contain short actin filaments cross-linked by actin-binding protein. Actin-binding protein is in turn associated with specific plasma membrane glycoproteins. The aim of this study was to determine whether the membrane skeleton regulates properties of the plasma membrane. Platelets were incubated with agents that disrupted the association of the membrane skeleton with membrane glycoproteins. The consequences of this change on plasma membrane properties were examined. The agents that were used were ionophore A23187 and dibucaine. Both agents activated calpain (the Ca2(+)-dependent protease), resulting in the hydrolysis of actin-binding protein and decreased association of actin with membrane glycoproteins. Disruption of actin-membrane interactions was accompanied by the shedding of procoagulant-rich microvesicles from the plasma membrane. The shedding of microvesicles correlated with the hydrolysis of actin-binding protein and the disruption of actin-membrane interactions. When the calpain-induced disruption of actin-membrane interactions was inhibited, the shedding of microvesicles was inhibited. These data are consistent with the hypothesis that association of the membrane skeleton with the plasma membrane maintains the integrity of the plasma membrane, preventing the shedding of procoagulant-rich microvesicles from the membrane of unstimulated platelets. They raise the possibility that the procoagulant-rich microvesicles that are released under a variety of physiological and pathological conditions may result from the dissociation of the platelet membrane skeleton from its membrane attachment sites.  相似文献   

16.
Summary Changes in the spatial relationship between actin filaments and microtubules during the differentiation of tracheary elements (TEs) was investigated by a double staining technique in isolatedZinnia mesophyll cells. Before thickening of the secondary wall began to occur, the actin filaments and microtubules were oriented parallel to the long axis of the cell. Reticulate bundles of microtubules and aggregates of actin filaments emerged beneath the plasma membrane almost simultaneously, immediately before the start of the deposition of the secondary wall. The aggregates of actin filaments were observed exclusively between the microtubule bundles. Subsequently, the aggregates of actin filaments extended preferentially in the direction transverse to the long axis of the cell, and the arrays of bundles of microtubules which were still present between the aggregates of actin filaments became transversely aligned. The deposition of the secondary walls then took place along the transversely aligned bundles of microtubules.Disruption of actin filaments by cytochalasin B produced TEs with longitudinal bands of secondary wall, along which bundles of microtubules were seen, while TEs produced in the absence of cytochalasin B had transverse bands of secondary wall. These results indicate that actin filaments play an important role in the change in the orientation of arrays of microtubules from longitudinal to transverse. Disruption of microtubules by colchicine resulted in dispersal of the regularly arranged aggregates of actin filaments, but did not inhibit the formation of the aggregates itself, suggesting that microtubules are involved in maintaining the arrangement of actin filaments but are not involved in inducing the formation of the regularly arranged aggregates of actin filaments.These findings demonstrate that actin filaments cooperate with microtubules in controlling the site of deposition of the secondary wall in developing TEs.Abbreviations DMSO dimethylsulfoxide - EGTA ethyleneglycolbis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - MSB microtubule-stabilizing buffer - PBS phosphate buffered saline - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - TE tracheary element  相似文献   

17.
Ponticulin is a 17,000-dalton transmembrane glycoprotein that is involved in the binding and nucleation of actin filaments by Dictyostelium discoideum plasma membranes. The major actin-binding protein isolated from these membranes by F-actin affinity chromatography, ponticulin also binds F-actin on blot overlays. The actin-binding activity of ponticulin in vitro is identical to that observed for purified plasma membranes: it resists extraction with 0.1 N NaOH, is sensitive to high salt concentrations, and is destroyed by heat, proteolysis, and thiol reduction and alkylation. A cytoplasmic domain of ponticulin mediates binding to actin because univalent antibody fragments directed against the cytoplasmic surface of this protein inhibit 96% of the actin-membrane binding in sedimentation assays. Antibody specific for ponticulin removes both ponticulin and the ability to reconstitute actin nucleation activity from detergent extracts of solubilized plasma membranes. Levels of plasma membrane ponticulin increase 2- to 3-fold during aggregation streaming, when cells adhere to each other and are highly motile. Although present throughout the plasma membrane, ponticulin is preferentially localized to some actin-rich membrane structures, including sites of cell-cell adhesion and arched regions of the plasma membrane reminiscent of the early stages of pseudopod formation. Ponticulin also is present but not obviously enriched at phagocytic cups of log-phase amebae. These results indicate that ponticulin may function in vivo to attach and nucleate actin filaments at the cytoplasmic surface of the plasma membrane. A 17,000-dalton analogue of ponticulin has been identified in human polymorphonuclear leukocyte plasma membranes by immunoblotting and immunofluorescence microscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Identification of a membrane skeleton in platelets   总被引:10,自引:2,他引:8       下载免费PDF全文
Platelets have previously been shown to contain actin filaments that are linked, through actin-binding protein, to the glycoprotein (GP) Ib-IX complex, GP Ia, GP IIa, and an unidentified GP of Mr 250,000 on the plasma membrane. The objective of the present study was to use a morphological approach to examine the distribution of these membrane-bound filaments within platelets. Preliminary experiments showed that the Triton X-100 lysis buffers used previously to solubilize platelets completely disrupt the three-dimensional organization of the cytoskeletons. Conditions were established that minimized these postlysis changes. The cytoskeletons remained as platelet-shaped structures. These structures consisted of a network of long actin filaments and a more amorphous layer that outlined the periphery. When Ca2+ was present, the long actin filaments were lost but the amorphous layer at the periphery remained; conditions were established in which this amorphous layer retained the outline of the platelet from which it originated. Immunocytochemical experiments showed that the GP Ib-IX complex and actin-binding protein were associated with the amorphous layer. Analysis of the amorphous material on SDS-polyacrylamide gels showed that it contained actin, actin-binding protein, and all actin-bound GP Ib-IX. Although actin filaments could not be visualized in thin section, the actin presumably was in a filamentous form because it was solubilized by DNase I and bound phalloidin. These studies show that platelets contain a membrane skeleton and suggest that it is distinct from the network of cytoplasmic actin filaments. This membrane skeleton exists as a submembranous lining that, by analogy to the erythrocyte membrane skeleton, may stabilize the plasma membrane and contribute to determining its shape.  相似文献   

19.
In previous equilibrium binding studies, Dictyostelium discoideum plasma membranes have been shown to bind actin and to recruit actin into filaments at the membrane surface. However, little is known about the kinetic pathway(s) through which actin assembles at these, or other, membranes. We have used actin fluorescently labeled with N-(1- pyrenyl)iodoacetamide to examine the kinetics of actin assembly in the presence of D. discoideum plasma membranes. We find that these membranes increase the rate of actin polymerization. The rate of membrane-mediated actin polymerization is linearly dependent on membrane protein concentrations up to 20 micrograms/ml. Nucleation (the association of activated actin monomers into oligomers) appears to be the primary step of polymerization that is accelerated. A sole effect on the initial salt-induced actin conformational change (activation) is ruled out because membranes accelerate the polymerization of pre- activated actin as well as actin activated in the presence of membranes. Elongation of preexisting filaments also is not the major step of polymerization facilitated by membranes since membranes stripped of all peripheral components, including actin, increase the rate of actin assembly to about the same extent as do membranes containing small amounts of endogenous actin. Acceleration of the nucleation step by membranes also is supported by an analysis of the dependence of polymerization lag time on actin concentration. The barbed ends of membrane-induced actin nuclei are not obstructed by the membranes because the barbed end blocking agent, cytochalasin D, reduces the rate of membrane-mediated actin nucleation. Similarly, the pointed ends of the nuclei are not blocked by membranes since the depolymerization rate of gelsolin-capped actin is unchanged in the presence of membranes. These results are consistent with previous observations of lateral interactions between membranes and actin filaments. These results also are consistent with two predictions from a model based on equilibrium binding studies; i.e., that plasma membranes should nucleate actin assembly and that membrane-bound actin nuclei should have both ends free (Schwartz, M. A., and E. J. Luna. 1988. J. Cell Biol. 107:201-209). Integral membrane proteins mediate the actin nucleation activity because activity is eliminated by heat denaturation, treatment with reducing agents, or proteolysis of membranes. Activity also is abolished by solubilization with octylglucoside but is reconstituted upon removal or dilution of the detergent. Ponticulin, the major actin-binding protein in plasma membranes, appears to be necessary for nucleation activity since activity is not reconstituted from detergent extracts depleted of ponticulin.  相似文献   

20.
The plasma membrane Na+/H+ exchanger NHE1 has an established function in intracellular pH and cell volume homeostasis by catalyzing electroneutral influx of extracellular Na+ and efflux of intracellular H+. A second function of NHE1 as a structural anchor for actin filaments through its direct binding of the ezrin, radixin, and moesin (ERM) family of actin-binding proteins was recently identified. ERM protein binding and actin anchoring by NHE1 are necessary to retain the localization of NHE1 in specialized plasma membrane domains and to promote cytoskeleton-dependent processes, including actin filament bundling and cell-substrate adhesions. This review explores a third function of NHE1, as a plasma membrane scaffold in the assembly of signaling complexes. Through its coordinate functions in H+ efflux, actin anchoring, and scaffolding, we propose that NHE1 promotes protein interactions and activities, assembles signaling complexes in specialized plasma membrane domains, and coordinates divergent signaling pathways. hydrogen ion efflux; intracellular pH; molecular scaffold  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号