首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous cultures, under cellobiose sufficient concentrations (14. 62 mM) using a chemically defined medium, were examined to determine the carbon regulation selected by Clostridium cellulolyticum. Using a synthetic medium, a q(cellobiose) of 2.57 mmol g cells(-1) h(-1) was attained whereas the highest value obtained on complex media was 0.68 mmol g cells(-1) h(-1) (Payot et al. 1998. Microbiology 144:375-384). On a synthetic medium at D = 0.035 h(-1) under cellobiose excess, lactate and ethanol biosynthesis were able to use the reducing equivalents supplied by acetic acid formation and the H(2)/CO(2) ratio was found equal to 1. At a higher dilution rate (D = 0.115 h(-1)), there was no lactate production and the pathways toward ethanol and NADH-ferredoxin-hydrogenase contributed to balance the reducing equivalents; in this case a H(2)/CO(2) ratio of 1.54 was found. With increasing D, there was a progressive increase (i) in the steady-state concentration of NADH and NAD(+) pools from 11.8 to 22.1 micromol (g cells) (-1), (ii) in the intracellular NADH/NAD(+) ratios from 0.43 to 1.51. On synthetic media, under cellobiose excess the carbon flow was also equilibrated by three overflows: exopolysaccharide, extracellular protein, and amino acid excretions. At D = 0.115 h(-1), 34% of the cellobiose consumed was converted into exopolysaccharides; this deviation of the carbon flow and the increase of the phosphoroclastic activity decreased dramatically the pyruvate excretion and explained the break in lactate production. Whatever the dilution rate, C. cellulolyticum, using ammonium and cellobiose excess, always spilled usual amino acids accompanied by other amino compounds. In vitro, GAPDH, phosphoroclastic reaction, alcohol dehydrogenase, and acetate kinase activities were high under conditions giving high in vivo specific production rates. There were also correlations between the in vitro lactate dehydrogenase activity and in vivo lactate production, but in contrast with the preceding activities, these two parameters decreased with D. All the results demonstrate that C. cellulolyticum was able to optimize carbon catabolism from cellulosic substrates in a synthetic medium.  相似文献   

2.
Minute amounts of oxygen were supplied to a continuous cultivation of Lactococcus lactis subsp. cremoris MG1363 grown on a defined glucose-limited medium at a dilution rate of 0.1 h(-1). More than 80% of the carbon supplied with glucose ended up in fermentation products other than lactate. Addition of even minute amounts of oxygen increased the yield of biomass on glucose by more than 10% compared to that obtained under anaerobic conditions and had a dramatic impact on catabolic enzyme activities and hence on the distribution of carbon at the pyruvate branch point. Increasing aeration caused carbon dioxide and acetate to replace formate and ethanol as catabolic end products while hardly affecting the production of either acetoin or lactate. The negative impact of oxygen on the synthesis of pyruvate formate lyase was confirmed. Moreover, oxygen was shown to down regulate the protein level of alcohol dehydrogenase while increasing the enzyme activity levels of the pyruvate dehydrogenase complex, alpha-acetolactate synthase, and the NADH oxidases. Lactate dehydrogenase and glyceraldehyde dehydrogenase enzyme activity levels were unaffected by aeration.  相似文献   

3.
For the newly isolated H2-producing chemoheterotrophic bacterium Citrobacter amalonaticus Y19, anaerobic glucose metabolism was studied in batch cultivation at varying initial glucose concentrations (3.5- 9.5 g/l). The carbon-mass and energy balances were determined and utilized to analyze the carbon metabolic-pathways network. The analyses revealed (a) variable production of major metabolites (H2, ethanol, acetate, lactate, CO2, and cell mass) depending on initial glucose levels; (b) influence of NADH regeneration on the production of acetate, lactate, and ethanol; and (c) influence of the molar production of ATP on the production of biomass. The results reported in this paper suggest how the carbon metabolic pathway(s) should be designed for optimal H2 production, especially at high glucose concentrations, such as by blocking the carbon flux via lactate dehydrogenase from the pyruvate node.  相似文献   

4.
Previous studies have shown that high levels of complex nutrients (Luria broth or 5% corn steep liquor) were necessary for rapid ethanol production by the ethanologenic strain Escherichia coli KO11. Although this strain is prototrophic, cell density and ethanol production remained low in mineral salts media (10% xylose) unless complex nutrients were added. The basis for this nutrient requirement was identified as a regulatory problem created by metabolic engineering of an ethanol pathway. Cells must partition pyruvate between competing needs for biosynthesis and regeneration of NAD(+). Expression of low-K(m) Zymomonas mobilis pdc (pyruvate decarboxylase) in KO11 reduced the flow of pyruvate carbon into native fermentation pathways as desired, but it also restricted the flow of carbon skeletons into the 2-ketoglutarate arm of the tricarboxylic acid pathway (biosynthesis). In mineral salts medium containing 1% corn steep liquor and 10% xylose, the detrimental effect of metabolic engineering was substantially reduced by addition of pyruvate. A similar benefit was also observed when acetaldehyde, 2-ketoglutarate, or glutamate was added. In E. coli, citrate synthase links the cellular abundance of NADH to the supply of 2-ketoglutarate for glutamate biosynthesis. This enzyme is allosterically regulated and inhibited by high NADH concentrations. In addition, citrate synthase catalyzes the first committed step in 2-ketoglutarate synthesis. Oxidation of NADH by added acetaldehyde (or pyruvate) would be expected to increase the activity of E. coli citrate synthase and direct more carbon into 2-ketoglutarate, and this may explain the stimulation of growth. This hypothesis was tested, in part, by cloning the Bacillus subtilis citZ gene encoding an NADH-insensitive citrate synthase. Expression of recombinant citZ in KO11 was accompanied by increases in cell growth and ethanol production, which substantially reduced the need for complex nutrients.  相似文献   

5.
Minute amounts of oxygen were supplied to a continuous cultivation of Lactococcus lactis subsp. cremoris MG1363 grown on a defined glucose-limited medium at a dilution rate of 0.1 h−1. More than 80% of the carbon supplied with glucose ended up in fermentation products other than lactate. Addition of even minute amounts of oxygen increased the yield of biomass on glucose by more than 10% compared to that obtained under anaerobic conditions and had a dramatic impact on catabolic enzyme activities and hence on the distribution of carbon at the pyruvate branch point. Increasing aeration caused carbon dioxide and acetate to replace formate and ethanol as catabolic end products while hardly affecting the production of either acetoin or lactate. The negative impact of oxygen on the synthesis of pyruvate formate lyase was confirmed. Moreover, oxygen was shown to down regulate the protein level of alcohol dehydrogenase while increasing the enzyme activity levels of the pyruvate dehydrogenase complex, α-acetolactate synthase, and the NADH oxidases. Lactate dehydrogenase and glyceraldehyde dehydrogenase enzyme activity levels were unaffected by aeration.  相似文献   

6.
The hydrolysis and fermentation of insoluble cellulose were investigated using continuous cultures of Clostridium cellulolyticum with increasing amounts of carbon substrate. At a dilution rate (D) of 0.048 h(-1), biomass formation increased proportionately to the cellulose concentration provided by the feed reservoir, but at and above 7.6 g of cellulose x liter(-1) the cell density at steady state leveled off. The percentage of cellulose degradation declined from 32.3 to 8.3 with 1.9 and 27.0 g of cellulose x liter(-1), respectively, while cellodextrin accumulation rose and represented up to 4.0% of the original carbon consumed. The shift from cellulose-limited to cellulose-sufficient conditions was accompanied by an increase of both the acetate/ethanol ratio and lactate biosynthesis. A kinetics study of C. cellulolyticum metabolism in cellulose saturation was performed by varying D with 18.1 g of cellulose x liter(-1). Compared to cellulose limitation (M. Desvaux, E. Guedon, and H. Petitdemange, J. Bacteriol. 183:119-130, 2001), in cellulose-sufficient continuous culture (i) the ATP/ADP, NADH/NAD+, and q(NADH produced)/q(NADH used) ratios were higher and were related to a more active catabolism, (ii) the acetate/ethanol ratio increased while the lactate production decreased as D rose, and (iii) the maximum growth yield (Y(max)X/S) (40.6 g of biomass per mol of hexose equivalent) and the maximum energetic yield (Y(max)ATP) (19.4 g of biomass per mol of ATP) were lowered. C. cellulolyticum was then able to regulate and optimize carbon metabolism under cellulose-saturated conditions. However, the facts that some catabolized hexose and hence ATP were no longer associated with biomass production with a cellulose excess and that concomitantly lactate production and pyruvate leakage rose suggest the accumulation of an intracellular inhibitory compound(s), which could further explain the establishment of steady-state continuous cultures under conditions of excesses of all nutrients. The following differences were found between growth on cellulose in this study and growth under cellobiose-sufficient conditions (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, Biotechnol. Bioeng. 67:327-335, 2000): (i) while with cellobiose, a carbon flow into the cell of as high as 5.14 mmol of hexose equivalent g of cells(-1) x h(-1) could be reached, the maximum entering carbon flow obtained here on cellulose was 2.91 mmol of hexose equivalent g of cells(-1) x h(-1); (ii) while the NADH/NAD+ ratio could reach 1.51 on cellobiose, it was always lower than 1 on cellulose; and (iii) while a high proportion of cellobiose was directed towards exopolysaccharide, extracellular protein, and free amino acid excretions, these overflows were more limited under cellulose-excess conditions. Such differences were related to the carbon consumption rate, which was higher on cellobiose than on cellulose.  相似文献   

7.
Previous studies have shown that high levels of complex nutrients (Luria broth or 5% corn steep liquor) were necessary for rapid ethanol production by the ethanologenic strain Escherichia coli KO11. Although this strain is prototrophic, cell density and ethanol production remained low in mineral salts media (10% xylose) unless complex nutrients were added. The basis for this nutrient requirement was identified as a regulatory problem created by metabolic engineering of an ethanol pathway. Cells must partition pyruvate between competing needs for biosynthesis and regeneration of NAD+. Expression of low-Km Zymomonas mobilis pdc (pyruvate decarboxylase) in KO11 reduced the flow of pyruvate carbon into native fermentation pathways as desired, but it also restricted the flow of carbon skeletons into the 2-ketoglutarate arm of the tricarboxylic acid pathway (biosynthesis). In mineral salts medium containing 1% corn steep liquor and 10% xylose, the detrimental effect of metabolic engineering was substantially reduced by addition of pyruvate. A similar benefit was also observed when acetaldehyde, 2-ketoglutarate, or glutamate was added. In E. coli, citrate synthase links the cellular abundance of NADH to the supply of 2-ketoglutarate for glutamate biosynthesis. This enzyme is allosterically regulated and inhibited by high NADH concentrations. In addition, citrate synthase catalyzes the first committed step in 2-ketoglutarate synthesis. Oxidation of NADH by added acetaldehyde (or pyruvate) would be expected to increase the activity of E. coli citrate synthase and direct more carbon into 2-ketoglutarate, and this may explain the stimulation of growth. This hypothesis was tested, in part, by cloning the Bacillus subtilis citZ gene encoding an NADH-insensitive citrate synthase. Expression of recombinant citZ in KO11 was accompanied by increases in cell growth and ethanol production, which substantially reduced the need for complex nutrients.  相似文献   

8.
The nuoA-N gene cluster encodes a transmembrane NADH:ubiquinone oxidoreductase (NDH-I) responsible for coupling redox chemistry to proton-motive force generation. Interactions between nuo and the acetate-producing pathway encoded by ackA-pta were investigated by examining the metabolic patterns of several mutant strains under anaerobic growth conditions. In an ackA-pta strain, the flux to acetate was decreased dramatically, whereas flux to lactate was increased significantly when compared with its parent strain; the fluxes to pyruvate and ethanol also increased slightly. In addition, pyruvate was excreted. A strain carrying the nuo mutation showed metabolic flux distribution similar to the wild type. The ackA-pta-nuo strain showed a different metabolic pattern. It not only exhibited reduced acetate accumulation but also significantly lower ethanol and formate synthesis. Metabolic flux distribution analysis suggests that the excessive carbon flux was redirected at the pyruvate node through the lactate dehydrogenase pathway for lactate formation rather than the pyruvate formate-lyase (PFL) pathway for acetyl-CoA and formate production. The diminished capacity through the formate and ethanol (ADH) pathways was not the result of genetic disruption of functional PFL or ADH production. The introduction of a Bacillus subtilis acetolactate synthase gene returned formate, ethanol, and lactate levels to those of the wild type (ackA(+)pta(+)nuo(+)) strain. Furthermore, transfer of a lactate dehydrogenase mutation yielded a strain producing ethanol as the sole fermentation product. As confirmation of the nuo effect, cultures of the ackA-pta strain, supplemented with an NDH-I inhibitor, produced intermediary levels of flux to ethanol and formate. Mutations in both ackA-pta and nuo are required to significantly reduce the flux through the PFL pathway.  相似文献   

9.
The aim of this study was to investigate the hepatocellular site of reactive oxygen species generation during acute ethanol metabolism. Reactive oxygen species production was detected using the 2',7'-dichlorofluorescein fluorescence assay and cell injury was determined by lactate dehydrogenase release. Incubation with 1 and 10 mM ethanol increased the production of reactive oxygen species by 72% and 151%, respectively, which was associated with mild decreases in cell viability. Antimycin, a mitochondrial complex III inhibitor, elicited a 17-fold increase in the levels of reactive oxygen species and markedly decreased hepatocyte viability and ATP levels. Ethanol increased reactive oxygen species production and the cytosolic NADH/NAD+ ratio in antimycin-treated cells. Rotenone, a mitochondrial complex I inhibitor that allows electron flow through the flavin mononucleotide (FMN), but prevents electron flow to complex III, significantly increased reactive oxygen species production in untreated cells, but decreased reactive oxygen species production in antimycin plus ethanol-treated cells. Diphenyliodonium, a mitochondrial complex I inhibitor that inhibits electron flow through FMN, attenuated reactive oxygen species generation in all groups. Fructose prevented cytotoxicity in all treatment groups. Though they do not eliminate the participation of other intracellular compartments, these results indicate that the NADH dehydrogenase complex, as well as complex III of mitochondria, are involved in ethanol-related production of reactive oxygen species.  相似文献   

10.
We report here a new approach to the study of the conformation of enzymes in the presence of specific substrates. Rabbit muscle lactate dehydrogenase was attached to CL-Sepharose via a cleavable spacer arm (-NH-(CH2)6NHCO(CH2)2SS(CH2)2CO-). The bound lactate dehydrogenase was digested with subtilisin BPN' in the presence of substrates of lactate dehydrogenase. The use of a flow system permits the maintenance of saturating levels of substrates. Proteolysis was followed by loss of activity of the enzyme column. The time course of proteolysis in the presence of either NADH, NAD+, or pyruvate alone did not differ from the control. However, when NADH and pyruvate were present simultaneously, the enzyme became more susceptible to proteolysis. The initial rate of proteolysis was increased by 40%. The abortive ternary complex (lactate dehydrogenase - NAD+ - pyruvate) also showed an increase in susceptibility to proteolysis. These findings clearly show that the productive ternary complex (lactate dehydrogenase - NADH - pyruvate) is conformationally different from the apoenzyme and binary complexes under optimal catalytic conditions.  相似文献   

11.
The objective of the present study was to characterize the metabolism of Clostridium thermolacticum, a thermophilic anaerobic bacterium, growing continuously on lactose (10 g l−1) and to determine the enzymes involved in the pathways leading to the formation of the fermentation products. Biomass and metabolites concentration were measured at steady-state for different dilution rates, from 0.013 to 0.19 h−1. Acetate, ethanol, hydrogen and carbon dioxide were produced at all dilution rates, whereas lactate was detected only for dilution rates below 0.06 h−1. The presence of several key enzymes involved in lactose metabolism, including beta-galactosidase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate:ferredoxin oxidoreductase, acetate kinase, ethanol dehydrogenase and lactate dehydrogenase, was demonstrated. Finally, the intracellular level of NADH, NAD+, ATP and ADP was also measured for different dilution rates. The production of ethanol and lactate appeared to be linked with the re-oxidation of NADH produced during glycolysis, whereas hydrogen produced should come from reduced ferredoxin generated during pyruvate decarboxylation. To produce more hydrogen or more acetate from lactose, it thus appears that an efficient H2 removal system should be used, based on a physical (membrane) or a biological approach, respectively, by cultivating C. thermolacticum with efficient H2 scavenging and acetate producing microorganisms.  相似文献   

12.
Enterococcus faecalis NCTC 775 was grown anaerobically in chemostat culture with pyruvate as the energy source. At low culture pH values, high in vivo and in vitro activities were found for both pyruvate dehydrogenase and lactate dehydrogenase. At high culture pH values the carbon flux was shifted towards pyruvate formate lyase. Some mechanisms possibly involved in this metabolic switch are discussed. In particular attention is paid to the NADH/NAD ratio (redox potential) and the fructose-1,6-bisphosphate-dependent lactate dehydrogenase activity as possible regulatory factors.Abbreviations PDH pyruvate dehydrogenase complex (EC 1.2.2.2) - PFL pyruvate formate lyase (EC 2.3.1.54) - LDH lactate dehydrogenase (EC 1.1.1.27) - FBP fructose-1,6-bisphosphate - MTT 3-(4,5-dimethyl-thiazoyl-2)-2,5-diphenyltetrazolium bromide - TPP thiamine pyrophosphate  相似文献   

13.
Free and bound forms of hexokinase, pyruvate kinase, and lactate dehydrogenase were prepared from the brain of the sea scorpion (Scorpaena porcus) in a low ionic strength medium. Properties of the free and bound forms were compared to determine whether binding to particulate matter could influence enzyme function or stability in vivo. Changes in pH differently affected the activity of the free and bound forms of all three enzymes. Furthermore, bound forms of hexokinase and pyruvate kinase were more stable than the free enzymes to heating at 45 degrees C. Bound hexokinase showed higher affinity for substrates (ATP, glucose) than the free form and bound lactate dehydrogenase had greater affinity for pyruvate and NADH. Although the affinities of the two forms of pyruvate kinase for substrates were similar, Hill coefficients for phosphoenolpyruvate as well as inhibition by ATP differed between the two enzyme forms. Free and bound lactate dehydrogenase also showed differences in Hill coefficients and bound lactate dehydrogenase was less sensitive to substrate inhibition by high pyruvate concentrations. The possible physiological role of the binding of these glycolytic enzymes to subcellular structures is discussed.  相似文献   

14.
Amplifying the cellular reduction potential of Streptococcus zooepidemicus   总被引:1,自引:0,他引:1  
The valuable pharmaceutical polymer, hyaluronic acid, is produced industrially using the gram-positive bacterium Streptococcus zooepidemicus. Synthesis of this polymer is a significant energetic burden upon the microorganism hence the native NADH oxidase gene was cloned and overexpressed to increase the energy yield of catabolism during aerobic cultivation on glucose. Elevated NADH oxidase levels led to a decline in lactic acid generation and prevented ethanol formation, leaving acetate as the main fermentation product. Biomass yield increased due to the energy gained from the formation of acetate. Evaluation of the acetate flux control coefficient over a range of NADH oxidase expression levels revealed that acetate production was sensitive to the NADH oxidase level. However, at high NADH oxidase levels, the acetate flux was mainly influenced by another factor. The concomitant excretion of pyruvate at high NADH oxidase levels suggested that the flux through the pyruvate dehydrogenase enzyme complex was limiting the conversion of pyruvate to acetate.  相似文献   

15.
The ATP content of pachytene spermatocytes and round spermatids, isolated from rat testes, was not maintained during incubation of the germ cells in the presence of glucose. Glucose was metabolized via glycolysis at a considerable rate, but the rate of oxidation of the resulting endogenous pyruvate in the mitochondria was too low to support fully ATP production. Exogenous pyruvate (0.25 mM) or exogenous l-lactate (3–6 mM), however, were effective energy substrates. The lactate dehydrogenase reaction in isolated germ cells favoured the rapid conversion of pyruvate to lactate, at the expense of reducing equivalents from mitochondrial NADH. Hence, to support ATP production by the germ cells via mitochondrial metabolism of endogenous pyruvate, a relatively high concentration of exogenous lactate may be essential. In the spermatogenic microenvironment in vivo, such high concentrations of lactate could result from the net production of lactate by Sertoli cells. The mitochondria of the isolated germ cells produced ATP probably at a close to maximal rate, and spermatogenesis therefore may be extremely sensitive to compounds which interfere with mitochondrial energy metabolism and respiratory control.  相似文献   

16.
The metabolism of [2-3H]lactate was studied in isolated hepatocytes from fed and starved rats metabolizing ethanol and lactate in the absence and presence of fructose. The yields of 3H in ethanol, water, glucose and glycerol were determined. The rate of ethanol oxidation (3 mumol/min per g wet wt.) was the same for fed and starved rats with and without fructose. From the detritiation of labelled lactate and the labelling pattern of ethanol and glucose, we calculated the rate of reoxidation of NADH catalysed by lactate dehydrogenase, alcohol dehydrogenase and triosephosphate dehydrogenase. The calculated flux of reducing equivalents from NADH to pyruvate was of the same order of magnitude as previously found with [3H]ethanol or [3H]xylitol as the labelled substrate [Vind & Grunnet (1982) Biochim. Biophys. Acta 720, 295-302]. The results suggest that the cytoplasm can be regarded as a single compartment with respect to NAD(H). The rate of reduction of acetaldehyde and pyruvate was correlated with the concentration of these metabolites and NADH, and was highest in fed rats and during fructose metabolism. The rate of reoxidation of NADH catalysed by lactate dehydrogenase was only a few per cent of the maximal activity of the enzymes, but the rate of reoxidation of NADH catalysed by alcohol dehydrogenase was equal to or higher than the maximal activity as measured in vitro, suggesting that the dissociation of enzyme-bound NAD+ as well as NADH may be rate-limiting steps in the alcohol dehydrogenase reaction.  相似文献   

17.
The metabolic characteristics of Clostridium cellulolyticum, a mesophilic cellulolytic nonruminal bacterium, were investigated and characterized kinetically for the fermentation of cellulose by using chemostat culture analysis. Since with C. cellulolyticum (i) the ATP/ADP ratio is lower than 1, (ii) the production of lactate at low specific growth rate (mu) is low, and (iii) there is a decrease of the NADH/NAD(+) ratio and q(NADH produced)/ q(NADH used) ratio as the dilution rate (D) increases in carbon-limited conditions, the chemostats used were cellulose-limited continuously fed cultures. Under all conditions, ethanol and acetate were the main end products of catabolism. There was no shift from an acetate-ethanol fermentation to a lactate-ethanol fermentation as previously observed on cellobiose as mu increased (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, J. Bacteriol. 181:3262-3269, 1999). The acetate/ethanol ratio was always higher than 1 but decreased with D. On cellulose, glucose 6-phosphate and glucose 1-phosphate are important branch points since the longer the soluble beta-glucan uptake is, the more glucose 1-phosphate will be generated. The proportion of carbon flowing toward phosphoglucomutase remained constant (around 59.0%), while the carbon surplus was dissipated through exopolysaccharide and glycogen synthesis. The percentage of carbon metabolized via pyruvate-ferredoxin oxidoreductase decreased with D. Acetyl coenzyme A was mainly directed toward the acetate formation pathway, which represented a minimum of 27.1% of the carbon substrate. Yet the proportion of carbon directed through biosynthesis (i.e., biomass, extracellular proteins, and free amino acids) and ethanol increased with D, reaching 27.3 and 16.8%, respectively, at 0.083 h(-1). Lactate and extracellular pyruvate remained low, representing up to 1.5 and 0.2%, respectively, of the original carbon uptake. The true growth yield obtained on cellulose was higher, [50.5 g of cells (mol of hexose eq)(-1)] than on cellobiose, a soluble cellodextrin [36.2 g of cells (mol of hexose eq)(-1)]. The rate of cellulose utilization depended on the solid retention time and was first order, with a rate constant of 0.05 h(-1). Compared to cellobiose, substrate hydrolysis by cellulosome when bacteria are grown on cellulose fibers introduces an extra means for regulation of the entering carbon flow. This led to a lower mu, and so metabolism was not as distorted as previously observed with a soluble substrate. From these results, C. cellulolyticum appeared well adapted and even restricted to a cellulolytic lifestyle.  相似文献   

18.
19.
Based on requirements for acetate or lipoic acid for aerobic (but not anaerobic) growth, Lactococcus lactis subsp. lactis mutants with impaired pyruvate catabolism were isolated following classical mutagenesis. Strains with defects in one or two of the enzymes, pyruvate formate-lyase (PFL), lactate dehydrogenase (LDH) and the pyruvate dehydrogenase complex (PDHC) were obtained. Growth and product formation of these strains were characterized. A PFL-defective strain (requiring acetate for anaerobic growth) displayed a two-fold increase in specific lactate production compared with the corresponding wild-type strain when grown anaerobically. LDH defective strains directed 91-96% of the pyruvate towards alpha-acetolactate, acetoin and diacetyl production when grown aerobically in the presence of acetate and absence of lipoic acid (a similar characteristic was observed in an LDH and PDHC defective strain in the presence of both acetate and lipoic acid) and more than 65% towards formate, acetate and ethanol production under anaerobic conditions. Another strain with defective PFL and LDH was strictly aerobic. However, a variant with strongly enhanced diacetyl reductase activities (NADH/NAD+ dependent diacetyl reductase, acetoin reductase and butanediol dehydrogenase activities) was selected from this strain under anaerobic conditions by supplementing the medium with acetoin. This strain is strictly aerobic, unless supplied with acetoin.  相似文献   

20.
The central metabolic pathway of Corynebacterium glutamicum was engineered to produce ethanol. A recombinant strain which expressed the Zymomonas mobilis genes coding for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) was constructed. Both genes placed under the control of the C. glutamicum ldhA promoter were expressed at high levels in C. glutamicum, resulting, under oxygen-deprivation conditions, in a significant yield ofethanol from glucose in a process characterized by the absence of cellular growth. Addition of pyruvate in trace amounts to the reaction mixture induced a 2-fold increase in the ethanol production rate. A similar effect was observed when acetaldehyde was added. Disruption of the lactate dehydrogenase (ldhA) gene led to a 3-fold higher ethanol yield than wild type, with no lactate production. Moreover, inactivation of the phosphoenolpyruvate carboxylase (ppc) and ldhA genes revealed a significant amount of ethanol production and a dramatic decrease in succinate without any lactate production, when pyruvate was added. Since the reaction occurred in the absence of cell growth, the ethanol volumetric productivity increased in proportion to cell density of ethanologenic C. glutamicum in a process under oxygen-deprivation conditions. These observations corroborate the view that intracellular NADH concentrations in C. glutamicum are correlated to oxygen-deprived metabolic flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号