首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the early days of the discovery of the genetic code nonrandom patterns have been searched for in the code in the hope of providing information about its origin and early evolution. Here we present a new classification scheme of the genetic code that is based on a binary representation of the purines and pyrimidines. This scheme reveals known patterns more clearly than the common one, for instance, the classification of strong, mixed, and weak codons as well as the ordering of codon families. Furthermore, new patterns have been found that have not been described before: Nearly all quantitative amino acid properties, such as Woeses polarity and the specific volume, show a perfect correlation to Lagerkvists codon–anticodon binding strength. Our new scheme leads to new ideas about the evolution of the genetic code. It is hypothesized that it started with a binary doublet code and developed via a quaternary doublet code into the contemporary triplet code. Furthermore, arguments are presented against suggestions that a simpler code, where only the midbase was informational, was at the origin of the genetic code.  相似文献   

2.
A possible circular RNA at the origin of life   总被引:1,自引:0,他引:1  
The increasing volume of sequenced genomes and the recent techniques for performing in vitro molecular evolution have rekindled the interest for questions on the origin of life. Nevertheless, a gap continues to exist between the research on prebiotic chemistry and molecule generation, on one hand, and the study of molecular fossils preserved in genomes, on the other. Here we attempt to fill this gap by using some assumptions about the prebiotic scenario (including a strong stereochemical basis for the genetic code) to determine the RNA sequences more likely to appear and subsist. A set of minimal RNA rings is exhaustively determined; a subset of them is then selected through stability arguments, and a particular ring (AL ring) is finally singled out as the most likely winner of this prebiotic game. The rings happen to have several structural and statistical properties of modern genes: a repeated AUG codon appears spontaneously (and is thus made available for becoming a start signal), the form AUG/STOP emerges, and frequency patterns resemble those of present genes. The whole set of rings was also compared to a database of tRNAs, considering the conserved positions (located in the free parts of the molecule, essentially the loops); the ring that most closely matched tRNA sequences-and matched, in fact, the consensus of tRNA at all the aligned positions-was AL, the same ring independently selected before. The unselected emergence of gene-like features through two simple selection steps and the close similarity between the finally selected ring and tRNA (including some remarkable features of the resulting alignment) suggest a possible link between the prebiotic world and the first biological molecules, which is amenable for experimental testing. Even if our scenario is partially wrong, the unlikely coincidences should provide useful hints for other efforts.  相似文献   

3.
Studies on the origin of the genetic code compare measures of the degree of error minimization of the standard code with measures produced by random variant codes but do not take into account codon usage, which was probably highly biased during the origin of the code. Codon usage bias could play an important role in the minimization of the chemical distances between amino acids because the importance of errors depends also on the frequency of the different codons. Here I show that when codon usage is taken into account, the degree of error minimization of the standard code may be dramatically reduced, and shifting to alternative codes often increases the degree of error minimization. This is especially true with a high CG content, which was probably the case during the origin of the code. I also show that the frequency of codes that perform better than the standard code, in terms of relative efficiency, is much higher in the neighborhood of the standard code itself, even when not considering codon usage bias; therefore alternative codes that differ only slightly from the standard code are more likely to evolve than some previous analyses suggested. My conclusions are that the standard genetic code is far from being an optimum with respect to error minimization and must have arisen for reasons other than error minimization.[Reviewing Editor: Martin Kreitman]  相似文献   

4.
The genetic code is the syntactic foundation underlying the structure and function of every protein in the history of the biological world. Its highly ordered degenerate complexity suggests an incremental evolution, the result of a combination of selective, mechanistic, and random processes. These evolutionary processes are still poorly understood and remain an open question in the study of early life on Earth. We perform a compositional analysis of ribosomal proteins and ATPase subunits in bacterial and archaeal lineages, using conserved positions that came and remained under purifying selection before and up to the most recent common ancestor. An observable shift in amino acid usage at these conserved positions likely provides an untapped window into the history of protein sequence space, allowing events of genetic code expansion to be identified. We identify Cys, Glu, Phe, Ile, Lys, Val, Trp, and Tyr as recent additions to the genetic code, with Asn, Gln, Gly, and Leu among the more ancient. Our observations are consistent with a scenario in which genetic code expansion primarily favored amino acids that promoted an increase in polypeptide size and functionality. We propose that this expansion would have been critical in the takeover of many RNA-mediated processes, as well as the addition of novel biological functions inaccessible to an RNA-based physiology, such as crossing lipid membranes. Thus, expansion of the genetic code likely set the stage for the transition from RNA-based to protein-based life. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
An algebraic and geometrical approach is used to describe the primaeval RNA code and a proposed Extended RNA code. The former consists of all codons of the type RNY, where R means purines, Y pyrimidines, and N any of them. The latter comprises the 16 codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type), and the third, (YRN type) reading frames. In each of these reading frames, there are 16 triplets that altogether complete a set of 48 triplets, which specify 17 out of the 20 amino acids, including AUG, the start codon, and the three known stop codons. The other 16 codons, do not pertain to the Extended RNA code and, constitute the union of the triplets YYY and RRR that we define as the RNA-less code. The codons in each of the three subsets of the Extended RNA code are represented by a four-dimensional hypercube and the set of codons of the RNA-less code is portrayed as a four-dimensional hyperprism. Remarkably, the union of these four symmetrical pairwise disjoint sets comprises precisely the already known six-dimensional hypercube of the Standard Genetic Code (SGC) of 64 triplets. These results suggest a plausible evolutionary path from which the primaeval RNA code could have originated the SGC, via the Extended RNA code plus the RNA-less code. We argue that the life forms that probably obeyed the Extended RNA code were intermediate between the ribo-organisms of the RNA World and the last common ancestor (LCA) of the Prokaryotes, Archaea, and Eucarya, that is, the cenancestor. A general encoding function, E, which maps each codon to its corresponding amino acid or the stop signal is also derived. In 45 out of the 64 cases, this function takes the form of a linear transformation F, which projects the whole six-dimensional hypercube onto a four-dimensional hyperface conformed by all triplets that end in cytosine. In the remaining 19 cases the function E adopts the form of an affine transformation, i.e., the composition of F with a particular translation. Graphical representations of the four local encoding functions and E, are illustrated and discussed. For every amino acid and for the stop signal, a single triplet, among those that specify it, is selected as a canonical representative. From this mapping a graphical representation of the 20 amino acids and the stop signal is also derived. We conclude that the general encoding function E represents the SGC itself.  相似文献   

7.
Tamura K 《Bio Systems》2008,92(1):91-98
The origin of homochirality of l-amino acids has long been a mystery. Aminoacylation of tRNA might have provided chiral selectivity, since it is the first process encountered by amino acids and RNA. An RNA minihelix (progenitor of the modern tRNA) was aminoacylated by an aminoacyl phosphate oligonucleotide that exhibited a clear preference for l- as opposed to d-amino acids. A mirror-image RNA system with l-ribose exhibited the opposite selectivity, i.e., it exhibited an apparent preference for the d-amino acid. The selectivity for l-amino acids is based on the stereochemistry of RNA. The side chain of d-amino acids is located much closer to the terminal adenosine of the minihelix, causing them collide and interfere during the amino acid-transfer step. These results suggest that the putative RNA world that preceded the protein theatre determined the homochirality of l-amino acids through tRNA aminoacylation.  相似文献   

8.
We have previously proposed an SNS hypothesis on the origin of the genetic code (Ikehara and Yoshida 1998). The hypothesis predicts that the universal genetic code originated from the SNS code composed of 16 codons and 10 amino acids (S and N mean G or C and either of four bases, respectively). But, it must have been very difficult to create the SNS code at one stroke in the beginning. Therefore, we searched for a simpler code than the SNS code, which could still encode water-soluble globular proteins with appropriate three-dimensional structures at a high probability using four conditions for globular protein formation (hydropathy, α-helix, β-sheet, and β-turn formations). Four amino acids (Gly [G], Ala [A], Asp [D], and Val [V]) encoded by the GNC code satisfied the four structural conditions well, but other codes in rows and columns in the universal genetic code table do not, except for the GNG code, a slightly modified form of the GNC code. Three three-amino acid systems ([D], Leu and Tyr; [D], Tyr and Met; Glu, Pro and Ile) also satisfied the above four conditions. But, some amino acids in the three systems are far more complex than those encoded by the GNC code. In addition, the amino acids in the three-amino acid systems are scattered in the universal genetic code table. Thus, we concluded that the universal genetic code originated not from a three-amino acid system but from a four-amino acid system, the GNC code encoding [GADV]-proteins, as the most primitive genetic code. Received: 11 June 2001 / Accepted: 11 October 2001  相似文献   

9.
A new method for looking at relationships between nucleotide sequences has been used to analyze divergence both within and between the families of isoaccepting tRNA sets. A dendrogram of the relationships between 21 tRNA sets with different amino acid specificities is presented as the result of the analysis. Methionine initiator tRNAs are included as a separate set. The dendrogram has been interpreted with respect to the final stage of the evolutionary pathway with the development of highly specific tRNAs from ambiguous molecular adaptors. The location of the sets on the dendrogram was therefore analyzed in relation to hypotheses on the origin of the genetic code: the coevolution theory, the physicochemical hypothesis, and the hypothesis of ambiguity reduction of the genetic code. Pairs of 16 sets of isoacceptor tRNAs, whose amino acids are in biosynthetic relationships, occupied contiguous positions on the dendrogram, thus supporting the coevolution theory of the genetic code. Received: 4 May 1998 / Accepted: 11 July 1998  相似文献   

10.
Two aspects of the evolution of aminoacyl-tRNA synthetases are discussed. Firstly, using recent crystal structure information on seryl-tRNA synthetase and its substrate complexes, the coevolution of the mode of recognition between seryl-tRNA synthetase and tRNAser in different organisms is reviewed. Secondly, using sequence alignments and phylogenetic trees, the early evolution of class 2 Amnoacyl-tRNA synthetases is traced. Arguments are presented to suggest that synthetases are not the oldest of protein enzymes, but survived as RNA enzymes during the early period of the evolution of protein catalysts. In this view, the relatedness of the current synthetases, as evidenced by the division into two classes with their associated subclasses, reflects the replacement of RNA synthetases by protein synthetases. This process would have been triggered by the acquisition of tRNA 3 end charging activity by early proteins capable of activating small molecules (e.g., amino acids) with ATP. If these arguments are correct, the genetic code was essentially frozen before the protein synthetases that we know today came into existence. Correspondence to: S. CusackBased on a presentation made at a workshop-Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code-held at Berkeley, CA, July 17–20, 1994  相似文献   

11.
A paper (Amirnovin R, J Mol Evol 44:473–476, 1997) seems to undermine the validity of the coevolution theory of genetic code origin by shedding doubt on the connection between the biosynthetic relationships between amino acids and the organization of the genetic code, at a time when the literature on the topic takes this for granted. However, as a few papers cite this paper as evidence against the coevolution theory, and to cast aside all doubt on the subject, we have decided to reanalyze the statistical bases on which this theory is founded. We come to the following conclusions: (1) the methods used in the above referred paper contain certain mistakes, and (2) the statistical foundations on which the coevolution theory is based are extremely robust. We have done this by critically appraising Amirnovin's paper and suggesting an alternative method based on the generation of random codes which, along with the method reported in the literature, allows us to evaluate the significance, in the genetic code, of different sets of amino acid pairs in biosynthetic relationships. In particular, by using this method and after building up a certain set of amino acid pairs reflecting the expectations of the coevolution theory, we show that the presence of this set in the genetic code would be obtained, purely by chance, with a probability of 6 × 10−5. This observation seems to provide particularly strong support to the coevolution theory. Received: 28 June 1999 / Accepted: 23 October 1999  相似文献   

12.
13.
The discovery of catalytic RNA has revolutionised modern molecular biology and bears important implications for the origin of Life research. Catalytic RNA, in particular self-replicating RNA, prompted the hypothesis of an early “RNA world” where RNA molecules played all major roles such information storage and catalysis. The actual role of RNA as primary actor in the origin of life has been under debate for a long time, with a particular emphasis on possible pathways to the prebiotic synthesis of mononucleotides; their polymerization and the possibility of spontaneous emergence of catalytic RNAs synthesised under plausible prebiotic conditions. However, little emphasis has been put on the chemical reality of an RNA world; in particular concerning the chemical constrains that such scenario should have met to be feasible. This paper intends to address those concerns with regard to the achievement of high local RNA molecules concentration and the aetiology of unique sequence under plausible prebiotic conditions. Presented at: International School of Complexity – 4th Course: Basic Questions on the Origins of Life; “Ettore Majorana” Foundation and Centre for Scientific Culture, Erice, Italy, 1–6 October 2006.  相似文献   

14.
Theoretical arguments and statistical analyses of present-day coding sequences have long suggested the existence of primitive patterns in RNA sequences, which were thought to have been predominant at the time of the origin of the genetic code. The main propositions were centered around the base-patterns GNC and RNY, where R = A or G , Y = C or U and N = A, G, C or U. A theoretical model of the primitive process of translation explaining the origin of this type of pattern was recently published in the Journal of Theoretical Biology. On the basis of this previous analysis, and on physico-chemical evidence supporting the idea of the GNC base-pattern as the most primitive one, the present paper shows the results of folding simulations of small RNA strands displaying this pattern, which enabled us to specify the characteristics of the suggested primitive form of tRNA. This analysis is notably based on a conjecture of Eigen and Schuster of an early structural (or pattern) similarity between mRNA and tRNA, and, more specifically, of a "joint function of messenger and adaptor". Working with this conjecture, we show that the convergence of the primitive pool of RNAs toward a system containing a high proportion of sequences displaying the GNC base-pattern (according to the evolutionary model) is accompanied by a significant gain in stability of the translation process. In particular, it is demonstrated how the reading frame would be automatically discriminated without the presence of a start codon.  相似文献   

15.
Error detection and correction properties are fundamental for informative codes. Hamming's distance allows us to study this noise resistance. We present codes characterized by the resistance optimization to nonsense mutational effects. The calculation of the cumulated Hamming's distance allowing to determine the number of optimal codes and their structure can be detailed. The principle of these laws of optimization of resistance consists of choosing constituent codons connected by mutational neighbouring in such a way that random application of mutations on such a code minimize the occurrence of nonsense n-uplets or terminators. New coding symmetries are then described and screened using Galois's polynomials properties and Baudot's code. Such a study can be applied to any length of the codons. Here we present the principles of this optimization for the most simple doublet codes. Another constraint is discussed: the distribution of optimal subcodes for synonymity and the frequencies of utilization of the different codons.We compare these results to those of the present genetic code, and we observe that all coded amino acids (except the particular case of SER) are using optimal sub-codes of synonymity.This work suggests that the appearance of the genetic code was provoked by mutations while optimizing on several levels its resistance to their effects. Thus genetic coding would have been the best automata that could be produced in prebiotic conditions.  相似文献   

16.
    

Background

While the RNA world hypothesis is widely accepted, it is still far from complete: the existence of self-replicating ribozyme, consisting of potentially hundreds of nucleotides, is a core assumption for the majority of RNA world models. The appearance of such long RNA molecules under prebiotic conditions is not self-evident. Recombination seems to be a plausible way of creating RNA diversity, resulting in the appearance of functional RNAs, capable of self-replicating.

Methods

We report here on the study of recombination process modelled with two 96 nts RNA fragments. Detection of recombination products was performed with RT-PCR followed by TA-cloning and Sanger sequencing.

Results

A wide range of recombinant products was detected. We found that (i) the most efficient ligation was observed for RNA species forming bulges or internal loops, with ligation partners located within the loop; (ii) a strong preference was observed for formation of a few types of major products with a large variety of minor products; (iii) ligation could occur with participation of either 2′,3′-cyclophosphate or 5′-ppp; (iv) the presence of key reaction components, i.e. 5′ppp-RNAs, enabled the formation of additional types of product; (v) molecular dynamics simulations of one of the most abundant products suggests that the ligation results in a preferable formation of 2′-5′- rather than 3′-5′-linkages.

Conclusions

The study demonstrates regularities of new RNA molecules formation with non-enzymatic recombination process.

General significance

Our findings provide new data supporting the RNA World hypothesis and show the way of new RNA sequences emergence under prebiotic conditions.  相似文献   

17.
A computer program was used to test Wong's coevolution theory of the genetic code. The codon correlations between the codons of biosynthetically related amino acids in the universal genetic code and in randomly generated genetic codes were compared. It was determined that many codon correlations are also present within random genetic codes and that among the random codes there are always several which have many more correlations than that found in the universal code. Although the number of correlations depends on the choice of biosynthetically related amino acids, the probability of choosing a random genetic code with the same or greater number of codon correlations as the universal genetic code was found to vary from 0.1% to 34% (with respect to a fairly complete listing of related amino acids). Thus, Wong's theory that the genetic code arose by coevolution with the biosynthetic pathways of amino acids, based on codon correlations between biosynthetically related amino acids, is statistical in nature. Received: 8 August 1996 / Accepted: 26 December 1996  相似文献   

18.
Summary The ribosome is proposed to have evolved from an earlier RNA-replisome, which synthesized RNA. Ancestral tRNA molecules originally were loaded with trinucleotide sequences and donated them to growing RNA chains. The enzymatic addition of the C-C-A trinucleotide to presentday transfer RNA molecules is a carryover from this function. The strategies of reading RNA sequences by triplet codons and of housing information genetically in special repository molecules predates the origin of protein and DNA. These latter two polymers arose together at the time when the RNA replisome was converted to a ribosome.  相似文献   

19.
We have assumed that the coevolution theory of genetic code origin (Wong JT, Proc Natl Acad Sci USA 72:1909–1912, 1975) is essentially correct. This theory makes it possible to identify at least 10 evolutionary stages through which genetic code organization might have passed prior to reaching its current form. The calculation of the minimization level of all these evolutionary stages leads to the following conclusions. (1) The minimization percentages increased linearly with the number of amino acids codified in the codes of the various evolutionary stages when only the sense changes are considered in the analysis. This seems to favor the physicochemical theory of genetic code origin even if, as discussed in the paper, this observation is also compatible with the coevolution theory. (2) For the first seven evolutionary stages of the genetic code, this trend is less clear and indeed is inverted when we consider the global optimisation of the codes due to both sense changes and synonymous changes. This inverse correlation between minimization percentages and the number of amino acids codified in the codes of the intermediate stages seems to favor neither the physicochemical nor the stereochemical theories of genetic code origin, as it is in the early and intermediate stages of code development that these theories would expect minimization to have played a crucial role, and this does not seem to be the case. However, these results are in agreement with the coevolution theory, which attributes a role to the physicochemical properties of amino acids that, while important, is nevertheless subordinate to the mechanism which concedes codons from the precursor amino acids to the product amino acids as the primary factor determining the evolutionary structuring of the genetic code. The results are therefore discussed in the context of the various theories proposed to explain genetic code origin. Received: 25 October 1998 / Accepted: 19 February 1999  相似文献   

20.
We consider a model of the origin of genetic code organization incorporating the biosynthetic relationships between amino acids and their physicochemical properties. We study the behavior of the genetic code in the set of codes subject both to biosynthetic constraints and to the constraint that the biosynthetic classes of amino acids must occupy only their own codon domain, as observed in the genetic code. Therefore, this set contains the smallest number of elements ever analyzed in similar studies. Under these conditions and if, as predicted by physicochemical postulates, the amino acid properties played a fundamental role in genetic code organization, it can be expected that the code must display an extremely high level of optimization. This prediction is not supported by our analysis, which indicates, for instance, a minimization percentage of only 80%. These observations can therefore be more easily explained by the coevolution theory of genetic code origin, which postulates a role that is important but not fundamental for the amino acid properties in the structuring of the code. We have also investigated the shape of the optimization landscape that might have arisen during genetic code origin. Here, too, the results seem to favor the coevolution theory because, for instance, the fact that only a few amino acid exchanges would have been sufficient to transform the genetic code (which is not a local minimum) into a much better optimized code, and that such exchanges did not actually take place, seems to suggest that, for instance, the reduction of translation errors was not the main adaptive theme structuring the genetic code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号