首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADP(+)-isocitrate dehydrogenase (NADP(+)-IDH) from the dinitrogen-fixing filamentous cyanobacterium Anabaena sp. strain PCC 7120 was purified to homogeneity. The native enzyme is composed of two identical subunits (M(r), 57,000) and cross-reacts with antibodies obtained against the previously purified NADP(+)-IDH from the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Anabaena NADP(+)-IDH resembles in its physicochemical and kinetic parameters the typical dimeric IDHs from prokaryotes. The gene encoding Anabaena NADP(+)-IDH was cloned by complementation of an Escherichia coli icd mutant with an Anabaena genomic library. The complementing DNA was located on a 6-kb fragment. It encodes an NADP(+)-IDH that has the same mobility as that of Anabaena NADP(+)-IDH on nondenaturing polyacrylamide gels. The icd gene was subcloned and sequenced. Translation of the nucleotide sequence gave a polypeptide of 473 amino acids that showed high sequence similarity to the E. coli enzyme (59% identity) and with IDH1 and IDH2, the two subunits of the heteromultimeric NAD(+)-IDH from Saccharomyces cerevisiae (30 to 35% identity); however, a low level of similarity to NADP(+)-IDHs of eukaryotic origin was found (23% identity). Furthermore, Anabaena NADP(+)-IDH contains a 44-residue amino acid sequence in its central region that is absent in the other IDHs so far sequenced. Attempts to generate icd mutants by insertional mutagenesis were unsuccessful, suggesting an essential role of IDH in Anabaena sp. strain PCC 7120.  相似文献   

2.
An enantiomer-selective amidase active on several 2-aryl and 2-aryloxy propionamides was identified and purified from Brevibacterium sp. strain R312. Oligonucleotide probes were designed from limited peptide sequence information and were used to clone the corresponding gene, named amdA. Highly significant homologies were found at the amino acid level between the deduced sequence of the enantiomer-selective amidase and the sequences of known amidases such as indoleacetamide hydrolases from Pseudomonas syringae and Agrobacterium tumefaciens and acetamidase from Aspergillus nidulans. Moreover, amdA is found in the same orientation and only 73 bp upstream from the gene coding for nitrile hydratase, strongly suggesting that both genes are part of the same operon. Our results also showed that Rhodococcus sp. strain N-774 and Brevibacterium sp. strain R312 are probably identical, or at least very similar, microorganisms. The characterized amidase is an apparent homodimer of Mr 2 x 54,671 which exhibited under our conditions a specific activity of about 13 to 17 mumol of 2-(4-hydroxyphenoxy)propionic R acid formed per min per mg of enzyme from the racemic amide. Large amounts of an active recombinant enzyme could be produced in Escherichia coli at 30 degrees C under the control of an E. coli promoter and ribosome-binding site.  相似文献   

3.
The Coxiella burnetii icd gene encoding an immunogenic dimeric NADP(+)-dependent isocitrate dehydrogenase (IDH) was cloned by screening a C. burnetii genomic library with a human positive serum and sequenced. The predicted gene product consists of 427 amino acids (M(r) = 46,600) and showed high identity to the IDHs of Escherichia coli (74%), Salmonella enterica (73%) and IDH-I of Vibrio sp. (71%). The cloned gene complemented an icd-defective E. coli mutant producing a recombinant IDH that had the same biochemical properties as the enzyme from purified C. burnetii. Unlike the homologs from other bacteria, the cloned enzyme was expressed to the highest level in low pH conditions. This distinct property of the cloned IDH suggests that C. burnetii icd gene may have a role in the adaptation of the organism to the harsh acidic environment of the eucaryotic phagolysosomes.  相似文献   

4.
A Fibrobacter succinogenes S85 gene that encodes endoglucanase hydrolysing CMC and xylan was cloned and expressed in Escherichia coli DH5 by using pUC19 vector. Recombinant plasmid DNA from a positive clone hydrolysing CMC and xylan was designated as pCMX1, harboring 2,043 bp insert. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The nucleotide sequence accession number of the cloned gene sequence in Genbank is U94826. The endoglucanase gene cloned in this study does not have amino sequence homology to the other endoglucanase genes from F. succinogenes S85, but does show sequence homology to family 5 (family A) of glycosyl hydrolases from several species. The ORF encodes a polypeptide of 654 amino acids with a measured molecular weight of 81.3 kDa on SDS-PAGE. Putative signal sequences, Shine-Dalgarno-type ribosomal binding site and promoter sequences (-10) related to the consensus promoter sequences were deduced. The recombinant endoglucanase by E. coli harboring pCMX1 was partially purified and characterized. N-terminal sequences of endoglucanase were Ala-Gln-Pro-Ala-Ala, matched with deduced amino sequences. The temperature range and pH for optimal activity of the purified enzyme were 55 approximately 65 degrees C and 5.5, respectively. The enzyme was most stable at pH 6 but unstable under pH 4 with a K(m) value of 0.49% CMC and a V(max) value of 152 U/mg.  相似文献   

5.
Sequences of the icd gene, encoding isocitrate dehydrogenase (IDH), were obtained for 33 strains representing the major phylogenetic lineages of Escherichia coli and Salmonella enterica. Evolutionary relationships of the strains based on variation in icd are generally similar to those previously obtained for several other housekeeping and for invasion genes, but the sequences of S. enterica subspecies V strains are unusual in being almost intermediate between those of the other S. enterica subspecies and E. coli. For S. enterica, the ratio of synonymous (silent) to nonsynonymous (replacement) nucleotide substitutions between pairs of strains was larger than comparable values for 12 other housekeeping and invasion genes, reflecting unusually strong purifying selection against amino acid replacement in the IDH enzyme. All amino acids involved in the catalytic activity and conformational changes of IDH are strictly conserved within and between species. In E. coli, the level of variation at the 3' end of the gene is elevated by the presence in some strains of a 165-bp replacement sequence supplied by the integration of either lambdoid phage 21 or defective prophage element e14. The 72 members of the E. coli Reference Collection (ECOR) and five additional E. coli strains were surveyed for the presence of phage 21 (as prophage) by PCR amplification of a phage 21-specific fragment in and adjacent to the host icd, and the sequence of the phage 21 segment extending from the 3' end of icd through the integrase gene (int) was determined in nine strains of E. coli. Phage 21 was found in 39% of E. coli strains, and its distribution among the ECOR strains is nonrandom. In two ECOR strains, the phage 21 int gene is interrupted by a 1,313-bp insertion element that has 99.3% nucleotide sequence identity with IS3411 of E. coli. The phylogenetic relationships of phage 21 strains derived from sequences of two different genomic regions were strongly incongruent, providing evidence of frequent recombination.  相似文献   

6.
7.
8.
The gene encoding L-rhamnose isomerase (L-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the L-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of L-RhI from E. coli are conserved in that from P. stutzeri. The L-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of L-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant L-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant L-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60 degrees C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.  相似文献   

9.
10.
11.
12.
13.
14.
15.
NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae is composed of two nonidentical subunits, designated IDH1 (Mr approximately 40,000) and IDH2 (Mr approximately 39,000). We have isolated and characterized a yeast genomic clone containing the IDH2 gene. The amino acid sequence deduced from the gene indicates that IDH2 is synthesized as a precursor of 369 amino acids (Mr 39,694) and is processed upon mitochondrial import to yield a mature protein of 354 amino acids (Mr 37,755). Amino acid sequence comparison between S. cerevisiae IDH2 and S. cerevisiae NADP(+)-dependent isocitrate dehydrogenase shows no significant sequence identity, whereas comparison of IDH2 and Escherichia coli NADP(+)-dependent isocitrate dehydrogenase reveals a 33% sequence identity. To confirm the identity of the IDH2 gene and examine the relationship between IDH1 and IDH2, the IDH2 gene was disrupted by genomic replacement in a haploid yeast strain. The disruption strain expressed no detectable IDH2, as determined by Western blot analysis, and was found to lack NAD(+)-dependent isocitrate dehydrogenase activity, indicating that IDH2 is essential for a functional enzyme. Overexpression of IDH2, however, did not result in increased NAD(+)-dependent isocitrate dehydrogenase activity, suggesting that both IDH1 and IDH2 subunits are required for catalytic activity. The disruption strain was unable to utilize acetate as a carbon source and exhibited a 2-fold slower growth rate than wild type strains on glycerol or lactate. This growth phenotype is consistent with NAD(+)-dependent isocitrate dehydrogenase performing an essential role in the oxidative function of the citric acid cycle.  相似文献   

16.
The nucleotide sequence of the alpha-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes EM1 suggested that the alpha-amylase is translated from mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature alpha-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 alpha-amylase with those from other bacterial and eucaryotic alpha-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca(2+)-binding site (consensus region I) of this Ca(2+)-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the alpha-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the beta-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.  相似文献   

17.
18.
19.
20.
The nucleotide sequence of the alpha-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes EM1 suggested that the alpha-amylase is translated from mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature alpha-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 alpha-amylase with those from other bacterial and eucaryotic alpha-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca(2+)-binding site (consensus region I) of this Ca(2+)-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the alpha-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the beta-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号