首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IRE1-independent gain control of the unfolded protein response   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

2.
3.
4.
The aim of the study was the identification, cloning and disruption of the GAS1 homologue of Pichia pastoris. Gas1p is a glycoprotein anchored to the outer layer of the plasma membrane through a glycosylphosphatidylinositol (GPI) anchor. Gas1p is a beta-1,3-glucanosyltransglycosylase (EC 2.4.1.-). This cross-linking enzyme highly affects the structure and permeability of the yeast cell wall. The gene coding for the GAS1 homologue of P. pastoris was cloned by PCR, and its functionality was proven in a Saccharomyces cerevisiae GAS1 null mutant. Based on the nucleotide sequence information of the P. pastoris GAS1 homologue, a disruption cassette was constructed for the knockout of the GAS1 in P. pastoris. The morphology of DeltaGAS1 P. pastoris was identical to that of S. cerevisiae GAS1 mutants. Finally, the impact of GAS1 disruption on secretion of three recombinant model proteins in P. pastoris, human trypsinogen, human serum albumin and Rhizopus oryzae lipase, was evaluated. While the disruption had no effect on the secretion of trypsinogen and albumin, the amount of lipase released from the cells was doubled.  相似文献   

5.
6.
ER stress signaling by regulated splicing: IRE1/HAC1/XBP1   总被引:12,自引:0,他引:12  
  相似文献   

7.
We describe the introduction of the yeasts Saccharomyces cerevisiae and Pichia pastoris as eukaryotic hosts for the routine production of recombinant proteins for a structural genomics initiative. We have previously shown that human cDNAs can be efficiently expressed in both hosts using high throughput procedures. Expression clones derived from these screening procedures were grown in bioreactors and the over-expressed human proteins were purified, resulting in obtaining significant amounts suitable for structural analysis. We have also developed and optimized protocols enabling a high throughput, low cost fermentation and purification strategy for recombinant proteins for both S. cerevisiae and P. pastoris on a scale of 5 to 10 mg. Both batch and fed batch fermentation methods were applied to S. cerevisiae. The fed batch fermentations yielded a higher biomass production in all the strains as well as a higher productivity for some of the proteins. We carried out only fed batch fermentations on P. pastoris strains. Biomass was produced by cultivation on glycerol, followed by feeding methanol as carbon source to induce protein expression. The recombinant proteins were expressed as fusion proteins that include a N-terminal His-tag and a C-terminal Strep-tag. They were then purified by a two-step chromatographic procedure using metal-affinity chromatography and StrepTactin-affinity chromatography. This was followed by gel filtration for further purification and for buffer exchange. This three-step purification procedure is necessary to obtain highly purified proteins from yeast. The purified proteins have successfully been subjected to crystallization and biophysical analysis.  相似文献   

8.
9.
10.
Gas1p is a glycosylphosphatidylinositol-anchored plasma membrane glycoprotein of Saccharomyces cerevisiae and is a representative of Family GH72 of glycosidases/transglycosidases, which also includes proteins from human fungal pathogens. Gas1p, Phr1-2p from Candida albicans and Gel1p from Aspergillus fumigatus have been shown to be beta-(1,3)-glucanosyltransferases required for proper cell wall assembly and morphogenesis. Gas1p is organized into three modules: a catalytic domain; a cys-rich domain; and a highly O-glycosylated serine-rich region. In order to provide an experimental system for the biochemical and structural analysis of Gas1p, we expressed soluble forms in the methylotrophic yeast Pichia pastoris. Here we report that 48 h after induction with methanol, soluble Gas1p was produced at a yield of approximately 10 mg x L(-1) of medium, and this value was unaffected by the further removal of the serine-rich region or by fusion to a 6 x His tag. Purified soluble Gas1 protein showed beta-(1,3)-glucanosyltransferase activity that was abolished by replacement of the putative catalytic residues, E161 and E262, with glutamine. Spectral studies confirmed that the recombinant soluble Gas1 protein assumed a stable conformation in P. pastoris. Interestingly, thermal denaturation studies demonstrated that Gas1p is highly resistant to heat denaturation, and a complete refolding of the protein following heat treatment was observed. We also showed that Gas1p contains five intrachain disulphide bonds. The effects of the C74S, C103S and C265S substitutions in the membrane-bound Gas1p were analyzed in S. cerevisiae. The Gas1-C74S protein was totally unable to complement the phenotype of the gas1 null mutant. We found that C74 is an essential residue for the proper folding and maturation of Gas1p.  相似文献   

11.
12.
Farré JC  Vidal J  Subramani S 《Autophagy》2007,3(3):230-234
The cytoplasm-to-vacuole targeting (Cvt) pathway of Saccharomyces cerevisiae delivers aminopeptidase I (Ape1) from the cytosol to the vacuole, bypassing the normal secretory route. The Cvt pathway, although well-studied, was known only in S. cerevisiae. We demonstrate its existence in the methylotrophic yeast, Pichia pastoris, where it also delivers P. pastoris Ape1 (PpApe1) to the vacuole. Most proteins known to be required for the Cvt pathway in S. cerevisiae were, to the extent we found orthologs, also required in P. pastoris. The P. pastoris Cvt pathway differs, however, from that in S. cerevisiae, in that new proteins, such as PpAtg28 and PpAtg26, are involved. The discovery of a Cvt pathway in P. pastoris makes it an excellent model system for the dissection of autophagy-related pathways in a single organism and for the discovery of new Cvt pathway components.  相似文献   

13.
14.
Esaki M  Liu Y  Glick BS 《FEBS letters》2006,580(22):5215-5221
In Pichia pastoris, coat protein complex II (COPII) vesicles form at discrete transitional ER (tER) sites. Analyzing COPII coat proteins in this yeast will help to reveal the mechanisms of tER organization. Here, we show that like Saccharomyces cerevisiae, P. pastoris contains essential SEC23 and SEC24 genes, as well as the non-essential SEC24 homolog LST1. In addition, P. pastoris contains a novel non-essential SEC23 homolog that we have designated SHL23. The products of all four genes are concentrated at tER sites. Deletion of SHL23 does not disrupt tER morphology. As judged by two-hybrid analysis, Sec23p associates with both Sec24p and Lst1p, whereas Shl23p associates selectively with Lst1p. These results suggest that P. pastoris COPII vesicles contain an Shl23p/Lst1p complex that is absent in S. cerevisiae.  相似文献   

15.
Previous results suggest that methylotrophic yeasts may contain factors that modulate prion stability. Alcohol oxidase (AOX), a key enzyme in methanol metabolism, is an abundant protein that is specific to methylotrophic yeasts. We examined the effect of Pichia pastoris AOX1 on prion phenotypes in Saccharomyces cerevisiae . The S. cerevisiae prion states [ PSI +] and [ URE3 ] arise from aggregation of the proteins Sup35p and Ure2p respectively, and correlate with the ability of Sup35p and Ure2p to form amyloid-like fibrils in vitro . We found that expression of P. pastoris AOX1 in S. cerevisiae had no effect on propagation of the [ PSI +] prion, but inhibited propagation of [ URE3 ]. Addition of AOX1 early in the time-course of fibril formation inhibits Ure2p fibril formation in vitro . AOX1 has not previously been identified as an ATPase. However, we discovered that in addition to its flavin adenine dinucleotide-dependent AOX activity, AOX1 possesses ATPase activity. This study identifies AOX1 as a novel prion inhibitory factor and a potential ATPase.  相似文献   

16.
17.
Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis   总被引:8,自引:3,他引:5       下载免费PDF全文
《The Journal of cell biology》1994,127(5):1259-1273
Several groups have reported the cloning and sequencing of genes involved in the biogenesis of yeast peroxisomes. Yeast strains bearing mutations in these genes are unable to grow on carbon sources whose metabolism requires peroxisomes, and these strains lack morphologically normal peroxisomes. We report the cloning of Pichia pastoris PAS1, the homologue (based on a high level of protein sequence similarity) of the Saccharomyces cerevisiae PAS1. We also describe the creation and characterization of P. pastoris pas1 strains. Electron microscopy on the P. pastoris pas1 cells revealed that they lack morphologically normal peroxisomes, and instead contain membrane-bound structures that appear to be small, mutant peroxisomes, or "peroxisome ghosts." These "ghosts" proliferated in response to induction on peroxisome-requiring carbon sources (oleic acid and methanol), and they were distributed to daughter cells. Biochemical analysis of cell lysates revealed that peroxisomal proteins are induced normally in pas1 cells. Peroxisome ghosts from pas1 cells were purified on sucrose gradients, and biochemical analysis showed that these ghosts, while lacking several peroxisomal proteins, did import varying amounts of several other peroxisomal proteins. The existence of detectable peroxisome ghosts in P. pastoris pas1 cells, and their ability to import some proteins, stands in contrast with the results reported by Erdmann et al. (1991) for the S. cerevisiae pas1 mutant, in which they were unable to detect peroxisome-like structures. We discuss the role of PAS1 in peroxisome biogenesis in light of the new information regarding peroxisome ghosts in pas1 cells.  相似文献   

18.
目的:提高外源蛋白可溶性肿瘤坏死因子相关促凋亡配体(sTRAIL)在巴斯德毕赤酵母中的分泌表达。方法:根据GenBank公共数据库中公布的模式生物酿酒酵母的分子伴侣(Ssa1p、YDJ1、Kar2p和PDI)基因序列设计引物,利用PCR方法从酿酒酵母基因组中得到各基因片段,并将单独Ssa1p或Kar2p、组合YDJ1 PDI、Kar2p PDI或YDJ1 PDI PDI分别构建到pPIB2Z表达载体中,并整合到外源蛋白sTRAIL工程菌(毕赤酵母GS115)中进行筛选和诱导表达。结果:SDS-PAGE分析表明,sTRAIL的表达量明显提高,特别是整合了分子伴侣组合YDJ1 PDI的工程菌。Western印迹分析整合的分子伴侣基因后,分子伴侣蛋白在工程菌中的表达量得到了提高。结论:提高细胞内分子伴侣的表达,可以增加外源蛋白的分泌表达,为进一步研究巴斯德毕赤酵母奠定了基础。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号