首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
Exposure to cigarette smoke extract (CSE) leads to airway and lung inflammation through an oxidant-antioxidant imbalance. Cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) have been shown to play critical roles in respiratory inflammation. Here, we show that COX-2/PGE2/IL-6 induction is dependent on Toll-like receptor 4 (TLR4)/NADPH oxidase signaling in human tracheal smooth muscle cells (HTSMCs). CSE induced COX-2 expression in vitro in HTSMCs and in vivo in the airways of mice. CSE also directly caused an increase in TLR4. Moreover, CSE-regulated COX-2, PGE2, and IL-6 generation was inhibited by pretreatment with TLR4 Ab; inhibitors of c-Src (PP1), NADPH oxidase (diphenylene iodonium chloride and apocynin), p38 MAPK (SB202190), MEK1/2 (U0126), JNK1/2 (SP600125), and NF-κB (helenalin); a ROS scavenger (N-acetyl-l-cysteine); and transfection with siRNA of TLR4, MyD88, TRAF6, Src, p47phox, p38, p42, JNK2, or p65. CSE-induced leukocyte numbers in BAL fluid were also reduced by pretreatment with these inhibitors. Furthermore, CSE induced p47phox translocation and TLR4/MyD88/TRAF6 and c-Src/p47phox complex formation. We found that PGE2 enhanced IL-6 production in HTSMCs and leukocyte count in BAL fluid. In addition, treatment with nicotine could induce COX-2, PGE2, and IL-6 generation in in vivo and in vitro studies. These results demonstrate that CSE-induced ROS generation was mediated through the TLR4/MyD88/TRAF6/c-Src/NADPH oxidase pathway, in turn initiated the activation of MAPKs and NF-κB, and ultimately induced COX-2/PGE2/IL-6-dependent airway inflammation.  相似文献   

3.
Reactive oxygen species (ROS) have been considered to mediate inflammation in Down syndrome (DS). The present study is purposed to examine the mechanism of increased ROS levels and inflammatory cytokine IL-8 expression in Down syndrome candidate region-1 (DSCR1)-transfected cells, by determining ROS levels, IL-8 expression, NF-κB activation, and SOD1 levels in human embryonic kidney (HEK) 293 cells. The cells were treated with an antioxidant N-acetyl cysteine (NAC) or a calcium chelator BAPTA and stimulated with or without IL-1β. As a result, basal levels of ROS, IL-8, and NF-κB-DNA binding activity were higher, and basal SOD1 levels were higher in DSCR1-transfected cells than pcDNA-transfected cells. BAPTA and NAC inhibited increase in ROS (intracellular and mitochondrial levels) in DSCR-1-transfected cells without treatment of IL-1β. DSCR1 transfection-induced changes were increased by treatment with IL-1β, which was suppressed by NAC and BAPTA. Transfection of SOD1 inhibited ROS levels in DSCR1-transfected cells. In conclusion, ROS activate NF-κB and IL-8 induction in DSCR1-transfected cells in a calcium-dependent manner, which is augmented by IL-1β since IL-1β increases calcium and ROS levels in the cells. Reducing ROS levels by treatment of antioxidants may be beneficial for preventing DS-associated inflammation by suppressing cytokine expression.  相似文献   

4.
5.
6.
Tumor necrosis factor-α (TNFα), a proinflammatory cytokine, causes vascular smooth muscle cell (VSMC) proliferation and migration and promotes inflammatory vascular lesions. Nuclear factor-kappa B (NF-κB) activation by TNFα requires endosomal superoxide production by Nox1. In endothelial cells, TNFα stimulates c-Jun N-terminal kinase (JNK), which inhibits NF-κB signaling. The mechanism by which JNK negatively regulates TNFα-induced NF-κB activation has not been defined. We hypothesized that JNK modulates NF-κB activation in VSMC, and does so via a Nox1-dependent mechanism. TNFα-induced NF-κB activation was TNFR1- and endocytosis-dependent. Inhibition of endocytosis with dominant-negative dynamin (DynK44A) potentiated TNFα-induced JNK activation, but decreased ERK activation, while p38 kinase phosphorylation was not altered. DynK44A attenuated intracellular, endosomal superoxide production in wild-type (WT) VSMC, but not in NADPH oxidase 1 (Nox1) knockout (KO) cells. siRNA targeting JNK1 or JNK2 potentiated, while a JNK activator (anisomycin) inhibited, TNFα-induced NF-κB activation in WT, but not in Nox1 KO cells. TNFα-stimulated superoxide generation was enhanced by JNK1 inhibition in WT, but not in Nox1 KO VSMC. These data suggest that JNK suppresses the inflammatory response to TNFα by reducing Nox1-dependent endosomal ROS production. JNK and endosomal superoxide may represent novel targets for pharmacologic modulation of TNFα signaling and vascular inflammation.  相似文献   

7.
Inflammation involves in many cigarette smoke (CS) related diseases including the chronic obstructive pulmonary disease (COPD). Lung epithelial cell released IL-8 plays a crucial role in CS induced lung inflammation. CS and cigarette smoke extracts (CSE) both induce IL-8 secretion and subsequently, IL-8 recruits inflammatory cells into the lung parenchyma. However, the molecular and cellular mechanisms by which CSE triggers IL-8 release remain not completely understood. In this study, we identified a novel extracellular matrix (ECM) molecule, CCN1, which mediated CSE induced IL-8 secretion by lung epithelial cells. We first found that CS and CSE up-regulated CCN1 expression and secretion in lung epithelial cells in vivo and in vitro. CSE up-regulated CCN1 via induction of reactive oxygen spices (ROS) and endoplasmic reticulum (ER) stress. p38 MAPK and JNK activation were also found to mediate the signal pathways in CSE induced CCN1. CCN1 was secreted into ECM via Golgi and membrane channel receptor aquaporin4. After CSE exposure, elevated ECM CCN1 functioned via an autocrine or paracrine manner. Importantly, CCN1 activated Wnt pathway receptor LRP6, subsequently stimulated Wnt pathway component Dvl2 and triggered beta-catenin translocation from cell membrane to cytosol and nucleus. Treatment of Wnt pathway inhibitor suppressed CCN1 induced IL-8 secretion from lung epithelial cells. Taken together, CSE increased CCN1 expression and secretion in lung epithelial cells via induction of ROS and ER stress. Increased ECM CCN1 resulted in augmented IL-8 release through the activation of Wnt pathway.  相似文献   

8.
9.
Non-small cell lung carcinoma (NSCLC) accounts for most of all lung cancers, which is the leading cause of mortality in human beings. High level of cyclooxygenase-2 (COX-2) is one of the features of NSCLC and related to the low survival rate of NSCLC. However, whether extracellular nucleotides releasing from stressed resident tissues contributes to the expression of COX-2 remains unclear. Here, we showed that stimulation of A549 cells by adenosine 5'-O-(3-thiotriphosphate) (ATPγS) led to an increase in COX-2 gene expression and prostaglandin E(2) (PGE(2)) synthesis, revealed by Western blotting, RT-PCR, promoter assay, and enzyme-linked immunosorbent assay. In addition, ATPγS induced intracellular reactive oxygen species (ROS) generation through the activation of NADPH oxidase. The increase of ROS level resulted in activation of the c-Src/epidermal growth factor receptor (EGFR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor (NF)-κB cascade. We also found that activated Akt was translocated into the nucleus and recruited with NF-κB and p300 to form a complex. Thus, activation of p300 modulated the acetylation of histone H4 via the NADPH oxidase/c-Src/EGFR/PI3K/Akt/NF-κB cascade stimulated by ATPγS. Our results are the first to show a novel role of NADPH oxidase-dependent Akt/p65/p300 complex formation that plays a key role in regulating COX-2/PGE(2) expression in ATPγS-treated A549 cells. Taken together, we demonstrated that ATPγS stimulated activation of NADPH oxidase, resulting in generation of ROS, which then activated the downstream c-Src/EGFR/PI3K/Akt/NF-κB/p300 cascade to regulate the expression of COX-2 and synthesis of PGE(2) in A549 cells. Understanding the regulation of COX-2 expression and PGE(2) release by ATPγS on A549 cells may provide potential therapeutic targets of NSCLC.  相似文献   

10.
Interleukin-1β (IL-1β) induces cell death in chondrocytes in a nitric oxide (NO)- and reactive oxygen species (ROS)-dependent manner. In this study, increased production of lactate was observed in IL-1β-treated mouse chondrocytic ATDC5 cells prior to the onset of their death. IL-1β-induced cell death in ATDC5 cells was suppressed by introducing an siRNA for monocarboxylate transporter-1 (MCT-1), a lactate transporter distributed in plasma and mitochondrial inner membranes. Mct-1 knockdown also prevented IL-1β-induced expression of phagocyte-type NADPH oxidase (NOX-2), an enzyme specialized for production of ROS, whereas it did not have an effect on inducible NO synthase. Suppression of IL-1β-induced cell death by Nox-2 siRNA indicated that NOX-2 is involved in cell death. Phosphorylation and degradation of inhibitor of κBα (IκBα) from 5 to 20 min after the addition of IL-1β was not affected by Mct-1 siRNA. In addition, IκBα was slightly decreased after 12 h of incubation with IL-1β, and the decrease was prominent after 36 h, whereas activation of p65/RelA was observed from 12 to 48 h after exposure to IL-1β. These changes were not seen in Mct-1-silenced cells. Forced expression of IκBα super repressor as well as treatment with the IκB kinase inhibitor BAY 11-7082 suppressed NOX-2 expression. Furthermore, Mct-1 siRNA lowered the level of ROS generated after 15-h exposure to IL-1β, whereas a ROS scavenger, N-acetylcysteine, suppressed both late phase degradation of IκBα and Nox-2 expression. These results suggest that MCT-1 contributes to NOX-2 expression via late phase activation of NF-κB in a ROS-dependent manner in ATDC5 cells exposed to IL-1β.  相似文献   

11.
Renal hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy. Hyperglycemia-induced oxidative stress is implicated in the etiology of diabetic nephropathy. Resveratrol has potent antioxidative and protective effects on diabetic nephropathy. We aimed to examine whether high glucose (HG)-induced NADPH oxidase activation and reactive oxygen species (ROS) production contribute to glomerular mesangial cell proliferation and fibronectin expression and the effect of resveratrol on HG action in mesangial cells. By using rat mesangial cell line and primary mesangial cells, we found that NADPH oxidase inhibitor (apocynin) and ROS inhibitor (N-acetyl cysteine) both inhibited HG-induced mesangial cell proliferation and fibronectin expression. HG-induced elevation of NADPH oxidase activity and production of ROS in mesangial cells was inhibited by apocynin. These results suggest that HG induces mesangial cell proliferation and fibronectin expression through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunits p22(phox) and p47(phox) expression through JNK/NF-κB pathway, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced mesangial cell proliferation and fibronectin expression through inhibiting HG-induced JNK and NF-κB activation, NADPH oxidase activity elevation and ROS production. These results demonstrate that HG enhances mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide novel therapeutic targets for diabetic nephropathy.  相似文献   

12.
Acute lung injury (ALI) and its more serious form, respiratory distress syndrome (ARDS), are considered as an acute and severe inflammatory process existing in lungs, and still remain high mortality rates. Tripartite motif 8 (TRIM8) contains an N-terminal RING finger, which is followed by two B-boxes and a coiled-coil domain, belonging to the TRIM/RBCC family and playing significant role in meditating inflammation, oxidative stress and apoptosis. In the study, we investigated the role of TRIM8 in ALI induced by lipopolysaccharide (LPS) and the underlying molecular mechanisms. The in vitro results indicated that LPS time-dependently enhanced TRIM8 expression in lung epithelial cells. Suppressing TRIM8 markedly ameliorated LPS-elicited inflammatory response, as evidenced by the down-regulated mRNA levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in cells mainly through inactivating nuclear factor-kappa B (NF-κB) signaling pathway; however, over-expressing TRIM8 markedly promoted inflammation in LPS-challenged cells. In addition, LPS-induced oxidative stress was accelerated by TRIM8 over-expression, while being alleviated by TRIM8 knockdown by regulating Nrf2 signaling. Importantly, TRIM8 could negatively meditate AMP-activated protein kinase-α (AMPKα) activation to modulate LPS-triggered inflammatory response and ROS generation in vitro. Additionally, our in vivo findings suggested that TRIM8 knockdown effectively attenuated LPS-induced lung injury nu decrease of lung wet/dry (W/T) ratio, protein concentrations, neutrophil infiltration, myeloperoxidase (MPO) activity, reactive oxygen species (ROS) production and superoxide dismutase (SOD) depletion. Meanwhile, the loss of TRIM8 markedly lessened IL-1β, IL-6 and TNF-α expression in lung tissues of LPS-challenged mice, and reduced NF-κB phosphorylation. Furthermore, TRIM8 knockdown evidently improved nuclear factor-erythroid 2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions in lung of LPS-treated mice. The anti-inflammation and anti-oxidant role of TRIM8-silence might be associated with AMPKα phosphorylation. Together, our study firstly provided a support that TRIM8 knockdown effectively protected LPS-induced ALI against inflammation and oxidative stress largely dependent on the promotion of AMPKα pathway.  相似文献   

13.
Reactive oxygen species (ROS) contribute to chronic airway inflammation, and NADPH oxidase (Nox) is an important source of ROS. However, little is known of the role that ROS play in chronic upper respiratory tract inflammation. We investigated the mechanism of ROS generation and its association with mucin gene overexpression in the nasal epithelium. The level of platelet-derived growth factor (PDGF) expression was increased in sinusitis mucosa, and high-level PDGF expression induced intracellular ROS, followed by MUC8 gene overexpression in normal human nasal epithelial cells. Knockdown of Nox4 expression with Nox4 siRNA decreased PDGF-induced intracellular ROS and MUC8 expression. Infection with an adenovirus containing Nox4 cDNA resulted in Nox4 overexpression and increased intracellular levels of ROS and MUC8 expression. PDGF and Nox4 overexpression are essential components of intracellular ROS generation and may contribute to chronic inflammation in the nasal epithelium through induction of MUC8 overexpression.  相似文献   

14.
15.
8-Oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein affects allergic airway inflammation after sensitization and challenge by ovalbumin(OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased IFN-γ production in cultured epithelial cells after exposure to house dust mite extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1 deficiency negatively regulates allergen-induced airway inflammatory response.  相似文献   

16.
We recently demonstrated that hyperoxia (HO) activates lung endothelial cell NADPH oxidase and generates reactive oxygen species (ROS)/superoxide via Src-dependent tyrosine phosphorylation of p47(phox) and cortactin. Here, we demonstrate that the non-muscle ~214-kDa myosin light chain (MLC) kinase (nmMLCK) modulates the interaction between cortactin and p47(phox) that plays a role in the assembly and activation of endothelial NADPH oxidase. Overexpression of FLAG-tagged wild type MLCK in human pulmonary artery endothelial cells enhanced interaction and co-localization between cortactin and p47(phox) at the cell periphery and ROS production, whereas abrogation of MLCK using specific siRNA significantly inhibited the above. Furthermore, HO stimulated phosphorylation of MLC and recruitment of phosphorylated and non-phosphorylated cortactin, MLC, Src, and p47(phox) to caveolin-enriched microdomains (CEM), whereas silencing nmMLCK with siRNA blocked recruitment of these components to CEM and ROS generation. Exposure of nmMLCK(-/-) null mice to HO (72 h) reduced ROS production, lung inflammation, and pulmonary leak compared with control mice. These results suggest a novel role for nmMLCK in hyperoxia-induced recruitment of cytoskeletal proteins and NADPH oxidase components to CEM, ROS production, and lung injury.  相似文献   

17.
18.
Vascular remodeling is characterized by the aggregation of vascular smooth muscle cells (VSMCs) in intima. Previous studies have demonstrated that dehydroepiandrosterone (DHEA), a steroid hormone, can reverse vascular remodeling. However, it is still far clear that whether and how DHEA participates in the modulation of VSMCs activation and vascular remodeling. VSMCs were obtained from the thoracic aorta of SD rats. Cell proliferation was evaluated by CCK-8 assay and BrdU assay. To measure VSMCs migration activity, a transwell chamber assay was performed. Quantitative real-time RT-PCR and western blot were used to explore the molecular mechanisms. ROS generation by VSMCs was measured by DCF fluorescence. NADPH oxidase activity and SOD activity were measured by the corresponding kits. NF-κB activity was detected by NF-κB luciferase reporter gene assay. A rat carotid artery balloon injury model was built to evaluate the neointimal formation, and plasma PGF2 was measured by ELISA. Our results showed that DHEA significantly inhibited VSMCs proliferation after angiotensin (Ang II) stimulation by down-regulation of NADPH oxidase activity and ERK1/2 phosphorylation. Ang II can increase IL-6 and MCP-1 expression, but DHEA reverses these changes via inhibiting p38-MAPK/NF-κB (p65) signaling pathway. DHEA has no significant effects on VSMCs phenotype transition, but can reduce the neointimal to media area ratio after balloon injury. DHEA can alleviate oxidative stress and inflammation in VSMCs via ERK1/2 and NF-κB signaling pathway, but has no effect on VSMCs phenotype transition. Furthermore, DHEA attenuates VSMCs activation and neointimal formation after carotid injury in vivo. Taken together, DHEA might be a promising treatment for vascular injury under pathological condition.  相似文献   

19.
目的观察早期戒烟后大鼠肺组织病理及炎性介质表达变化规律。方法选用Wistar雄性大鼠80只,随机分为对照组及早期戒烟后0天、1周、2周、4周、6周、8周、12周组。采用酶联免疫吸附方法测定各组大鼠血清中IL-8的蛋白质含量,S-P免疫组化学方法检测肺组织NF-κB p65的表达,并光镜下观察HE染色切片、对大鼠气道炎症进行病理学评分。结果早期戒烟组大鼠可见气道上皮细胞纤毛发生粘连、倒伏,上皮细胞空泡变形、坏死、增生,炎症细胞浸润;其血清IL-8浓度、肺组织NF-κB的表达及气道炎症病理评分在戒烟后各时相点较未吸烟对照组明显升高,有统计学意义(P〈0.05)。早期戒烟组大鼠血清IL-8的浓度、肺组织NF-κB的表达及肺组织病理炎症评分在戒烟后略有上升、且在戒烟后8周达到高峰,但随后在戒烟12周时可见IL-8的浓度有下降趋势,肺组织病理炎症反应有所减轻。结论早期戒烟大鼠在戒烟早期虽可见炎症反应略有加重,但随戒烟时间延长,仍可见炎症反应有所减轻。因此,提倡及早且坚持戒烟。  相似文献   

20.
Type 2 diabetes (T2DM) is characterized by hyperglycemia, dyslipidemia, and increased inflammation. Previously, we showed that high glucose (HG) induces Toll-like receptor (TLR) expression, activity, and inflammation via NF-κB followed by cytokine release in vitro and in vivo. Here, we determined how HG-induced inflammation is affected by free fatty acids (FFA) in human monocytes. THP-1 monocytic cells, CD14(+) human monocytes, and transiently transfected HEK293 cells were exposed to various FFA (0-500 μM) and glucose (5-20 mM) for evaluation of TLR2, TLR4, NF-κB, IL-1β, monocyte chemoattractant protein-1 (MCP-1), and superoxide release. In THP-1 cells, palmitate increased cellular TLR2 and TLR4 expression, generated reactive oxygen species (ROS), and increased NF-κB activity, IL-1β, and MCP-1 release in a dose- and time-dependent manner. Similar data were observed with stearate and FFA mixture but not with oleate. Conversely, NADPH oxidase inhibitor treatment repressed glucose- and palmitate-stimulated ROS generation and NF-κB activity and decreased IL-1β and MCP-1 expression. Silencing TLR2, TLR4, and p47phox with small inhibitory RNAs (siRNAs) significantly reduced superoxide release, NF-κB activity, IL-1β, and MCP-1 secretion in HG and palmitate-treated THP-1 cells. Moreover, data from transient transfection experiments suggest that TLR6 is required for TLR2 and MD2 for TLR4 to augment inflammation in FFA- and glucose-exposed cells. These findings were confirmed with human monocytes. We conclude that FFA exacerbates HG-induced TLR expression and activity in monocytic cells with excess superoxide release, enhanced NF-κB activity, and induced proinflammatory factor release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号