首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pathogenesis of transaldolase deficiency   总被引:2,自引:0,他引:2  
Perl A 《IUBMB life》2007,59(6):365-373
The signaling networks that mediate cell growth, differentiation, and survival are dependent on complex metabolic and redox pathways. Metabolism of glucose through the pentose phosphate pathway (PPP) fulfills two unique functions: formation of ribose 5-phosphate for the synthesis of nucleotides, RNA, and DNA in support cell growth and formation of NADPH for biosynthetic reactions and neutralization of reactive oxygen intermediates (ROI). Balancing of NADPH and ROI levels by the PPP enzyme transaldolase (TAL) regulates the mitochondrial trans-membrane potential (Deltapsi(m)), a critical checkpoint of ATP synthesis and cell survival. While complete deficiency of glucose 6-phosphate dehydrogenase (G6PD) or transketolase (TK) is lethal, TAL-deficient mice developed normally with the exception of male sterility due to structural and functional damage of sperm cell mitochondria. Recently, two cases of complete TAL deficiency have been reported in patients with liver cirrhosis which results from increased cell death of hepatocytes. Delineation of the cell type-specific role that TAL plays in the PPP and cell death signal processing will be critical for understanding the pathogenesis of TAL deficiency.  相似文献   

2.
TAL (transaldolase) was originally described in the yeast as an enzyme of the PPP (pentose phosphate pathway). However, certain organisms and mammalian tissues lack TAL, and the overall reason for its existence is unclear. Recently, deletion of Ser(171) (TALDeltaS171) was found in five patients causing inactivation, proteasome-mediated degradation and complete deficiency of TAL. In the present study, microarray and follow-up Western-blot, enzyme-activity and metabolic studies of TALDeltaS171 TD (TAL-deficient) lymphoblasts revealed co-ordinated changes in the expression of genes involved in the PPP, mitochondrial biogenesis, oxidative stress, and Ca(2+) fluxing. Sedoheptulose 7-phosphate was accumulated, whereas G6P (glucose 6-phosphate) was depleted, indicating a failure to recycle G6P for the oxidative branch of the PPP. Nucleotide analysis showed depletion of NADPH and NAD(+) and accumulation of ADP-ribose. TD cells have diminished Deltapsi(m) (mitochondrial transmembrane potential) and increased mitochondrial mass associated with increased production of nitric oxide and ATP. TAL deficiency resulted in enhanced spontaneous and H(2)O(2)-induced apoptosis. TD lymphoblasts showed increased expression of CD38, which hydrolyses NAD(+) into ADP-ribose, a trigger of Ca(2+) release from the endoplasmic reticulum that, in turn, facilitated CD20-induced apoptosis. By contrast, TD cells were resistant to CD95/Fas-induced apoptosis, owing to a dependence of caspase activity on redox-sensitive cysteine residues. Normalization of TAL activity by adeno-associated-virus-mediated gene transfer reversed the elevated CD38 expression, ATP and Ca(2+) levels, suppressed H(2)O(2)- and CD20-induced apoptosis and enhanced Fas-induced cell death. The present study identified the TAL deficiency as a modulator of mitochondrial homoeostasis, Ca(2+) fluxing and apoptosis.  相似文献   

3.
In vivo pentose phosphate pathway (PPP) enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and transaldolase (TAL) activities as well as ATP- and ADP-level variations of Amycolatopsis orientalis were investigated with respect to glucose concentration and incubation period. G6PDH, 6PGDH, and TAL activities of A. orientalis reached maximum levels at 48 hr for all glucose concentrations used, after which the levels began to decline. G6PDH, 6PGDH, and TAL activities showed positive correlation with the glucose concentration up to 15 g/L, while further increases had an opposite effect. Intracellular ATP level showed a positive correlation with glucose concentrations, while ADP level increased up to 15 g/L. ATP concentration of A. orientalis increased rapidly at 48 hr of incubation, as was the case also for G6PDH, 6PGDH, and TAL activities, although the incubation period corresponding to maximum values of ADP shifted to 60 hr. Production of the glycopeptide antibiotic vancomycin increased with the increases in glucose concentrations up to 15 g/L, by showing coherence in the rates of oxidative and nonoxidative parts of the PPP.  相似文献   

4.
Biological production of p-hydroxycinnamic acid (pHCA) from glucose can be achieved via deamination of the aromatic amino acids l-tyrosine or l-phenylalanine. Deamination of l-phenylalanine produces trans-cinnamic acid (CA) which is further hydroxylated in the para position to produce pHCA. However, when tyrosine is used as the substrate, trans-pHCA is produced in one step. This reaction is accomplished by phenylalanine ammonia-lyase (PAL)/tyrosine ammonia-lyase (TAL). Various bacteria and eukaryotic microorganisms were screened for their ability to produce a PAL/TAL enzyme with high TAL activity. Cell-free extracts of the yeast Rhodotorula glutinis possessed the highest level of TAL activity (0.0143U/mg protein) and the lowest PAL/TAL ratio (1.68) amongst species examined. The gene for this enzyme was cloned and expressed in Escherichia coli and the kinetics of the purified PAL/TAL determined. The recombinant PAL/TAL possessed characteristics similar to those of the wild-type enzyme. Functional expression of R. glutinis PAL/TAL enzyme in Saccharomyces cerevisiae cells containing the plant C4H P-450 and P-450 reductase enzymes from Helianthus tuberosus allowed conversion of glucose to pHCA. Addition of l-phenylalanine to these cultures increased pHCA production confirming its production via the PAL route. When R. glutinis PAL/TAL was synthesized in an E. colil-phenylalanine producing strain (ATCC 31882) and grown on glucose, pHCA was formed in the absence of the Cytochrome P-450 and the P-450 reductase enzymes underlining its production via the TAL route without CA intermediacy.  相似文献   

5.
The role of the enzyme transaldolase (TAL) in central metabolism, its biochemical properties, structure, and role in human disease is reviewed. The nearly ubiquitous enzyme transaldolase is a part of the pentose phosphate pathway and transfers a dihydroxyacetone group from donor compounds (fructose 6-phosphate or sedoheptulose 7-phosphate) to aldehyde acceptor compounds. The phylogeny of transaldolases shows that five subfamilies can be distinguished, three of them with proven TAL enzyme activity, one with unclear function, and the fifth subfamily comprises transaldolase-related enzymes, the recently discovered fructose 6-phosphate aldolases. The three-dimensional structure of a bacterial (Escherichia coli TAL B) and the human enzyme (TALDO1) has been solved. Based on the 3D-structure and mutagenesis studies, the reaction mechanism was deduced. The cofactor-less enzyme proceeds with a Schiff base intermediate (bound dihydroxyacetone). While a transaldolase deficiency is well tolerated in many microorganisms, it leads to severe symptoms in homozygous TAL-deficient human patients. The involvement of TAL in oxidative stress and apoptosis, in multiple sclerosis, and in cancer is discussed.  相似文献   

6.
【目的】木糖发酵是纤维素燃料乙醇生产的一个关键瓶颈,同时木质纤维素水解液中的乙酸严重抑制酿酒酵母的木糖发酵过程,因此通过基因工程手段提高菌株对木糖的利用以及对乙酸的耐受性具有重要意义。本研究以非氧化磷酸戊糖途径(PPP途径)中关键基因转醛醇酶基因(TAL1)为研究对象,探讨了3种不同启动子PTDH3、PAHP1和PUBI4,控制其表达对菌株利用木糖和耐受乙酸的影响。【方法】通过同源重组用3种启动子替换酿酒酵母基因工程菌NAPX37的TAL1基因的启动子PTAL1,再通过孢子分离和单倍体交配构建了纯合子,利用批次发酵比较了在以木糖为唯一碳源和混合糖(葡萄糖和木糖)为碳源条件下,3种启动子控制TAL1基因表达导致的发酵和乙酸耐受能力的差异。【结果】启动子PTDH3、PAHP1和PUBI4在不同程度上提高了TAL1基因的转录水平,提高了菌株对木糖的利用速率及乙酸耐受能力,提高了菌株在60 mmol/L乙酸条件下的葡萄糖利用速率。在以木糖为唯一碳源且无乙酸存在、以及混合糖为碳源的条件下,PAHP1启动子控制TAL1表达菌株的发酵结果优于PTDH3和PUBI4启动子的菌株,PAHP1启动子控制的TAL1基因的转录水平比较合适。在木糖为唯一碳源且乙酸为30 mmol/L时,PUBI4启动子控制TAL1基因表达的菌株发酵结果则优于PAHP1和PTDH3启动子菌株,此时PUBI4启动子控制的TAL1的转录水平比较合适。【结论】启动子PTDH3、PAHP1和PUBI4不同程度地提高TAL1基因的表达,在不同程度上改善了酵母菌株的木糖发酵速率和耐受乙酸性能,改善程度受发酵条件的影响。  相似文献   

7.
Preuss J  Jortzik E  Becker K 《IUBMB life》2012,64(7):603-611
Malaria is still one of the most threatening diseases worldwide. The high drug resistance rates of malarial parasites make its eradication difficult and furthermore necessitate the development of new antimalarial drugs. Plasmodium falciparum is responsible for severe malaria and therefore of special interest with regard to drug development. Plasmodium parasites are highly dependent on glucose and very sensitive to oxidative stress; two observations that drew interest to the pentose phosphate pathway (PPP) with its key enzyme glucose-6-phosphate dehydrogenase (G6PD). A central position of the PPP for malaria parasites is supported by the fact that human G6PD deficiency protects to a certain degree from malaria infections. Plasmodium parasites and the human host possess a complete PPP, both of which seem to be important for the parasites. Interestingly, there are major differences between parasite and human G6PD, making the enzyme of Plasmodium a promising target for antimalarial drug design. This review gives an overview of the current state of research on glucose-6-phosphate metabolism in P. falciparum and its impact on malaria infections. Moreover, the unique characteristics of the enzyme G6PD in P. falciparum are discussed, upon which its current status as promising target for drug development is based.  相似文献   

8.
Guo  Jizheng  Zhang  Qixiang  Su  Ying  Lu  Xiaochen  Wang  Yiping  Yin  Miao  Hu  Weiguo  Wen  Wenyu  Lei  Qun-Ying 《中国科学:生命科学英文版》2020,63(9):1394-1405
Cancer cells remodel their metabolic network to adapt to variable nutrient availability. Pentose phosphate pathway(PPP) plays protective and biosynthetic roles by oxidizing glucose to generate reducing power and ribose. How cancer cells modulate PPP activity in response to glucose supply remains unclear. Here we show that ribose-5-phosphate isomerase A(RPIA), an enzyme in PPP, directly interacts with co-activator associated arginine methyltransferase 1(CARM1) and is methylated at arginine 42(R42). R42 methylation up-regulates the catalytic activity of RPIA. Furthermore, glucose deprivation strengthens the binding of CARM1 with RPIA to induce R42 hypermethylation. Insufficient glucose supply links to RPIA hypermethylation at R42, which increases oxidative PPP flux. RPIA methylation supports ROS clearance by enhancing NADPH production and fuels nucleic acid synthesis by increasing ribose supply. Importantly, RPIA methylation at R42 significantly potentiates colorectal cancer cell survival under glucose starvation. Collectively, RPIA methylation connects glucose availability to nucleotide synthesis and redox homeostasis.  相似文献   

9.
Jiang P  Du W  Wang X  Mancuso A  Gao X  Wu M  Yang X 《Nature cell biology》2011,13(3):310-316
Cancer cells consume large quantities of glucose and primarily use glycolysis for ATP production, even in the presence of adequate oxygen. This metabolic signature (aerobic glycolysis or the Warburg effect) enables cancer cells to direct glucose to biosynthesis, supporting their rapid growth and proliferation. However, both causes of the Warburg effect and its connection to biosynthesis are not well understood. Here we show that the tumour suppressor p53, the most frequently mutated gene in human tumours, inhibits the pentose phosphate pathway (PPP). Through the PPP, p53 suppresses glucose consumption, NADPH production and biosynthesis. The p53 protein binds to glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the PPP, and prevents the formation of the active dimer. Tumour-associated p53 mutants lack the G6PD-inhibitory activity. Therefore, enhanced PPP glucose flux due to p53 inactivation may increase glucose consumption and direct glucose towards biosynthesis in tumour cells.  相似文献   

10.
The most common enzyme defect in humans is glucose‐6‐phosphate dehydrogenase (G6PD) deficiency, which affects more than 400 million people. G6PD shunts glucose into the pentose phosphate pathway (PPP) to generate nucleotides and reducing potential in the form of NADPH. In this issue, Wang et al ( 2014 ) show that G6PD activity is post‐translationally regulated by SIRT2, a cytoplasmic NAD+‐dependent deacetylase, thereby linking NAD+ levels to DNA repair and oxidative defences, and identifying potential new approaches to treating this common genetic disease.  相似文献   

11.
Glucose metabolism is necessary for successful fertilization in the mouse. Both spermatozoa and oocytes metabolize glucose through the pentose phosphate pathway (PPP), and NADPH appears required for gamete fusion. The aims of this study were to further characterize the utilization of glucose by the fertilizing spermatozoon and the fertilized oocyte, to demonstrate the importance of the PPP in different steps of fertilization, and to examine whether the beneficial effect of glucose could be mediated by a NADPH-dependent enzyme involved in redox regulation. By using a fluorescent analog of 2-deoxyglucose, glucose uptake was evidenced in both the head and flagellum of motile spermatozoa. After sperm-oocyte fusion, an increase in glucose uptake by the fertilized oocyte was observed but not before the formation of the male and female pronuclei. By using a microphotometric technique, activity of glucose 6-phosphate dehydrogenase (G6PDH), the key enzyme of the PPP, was localized to the sperm head and midpiece. When epididymal spermatozoa were released into a glucose-containing medium, the NADPH/NADP ratio increased with capacitation. Sperm-oocyte fusion and meiosis reinitiation of the fertilized oocyte was inhibited by the PPP inhibitor 6-aminonicotinamide (6-AN); inhibition of sperm-oocyte fusion was relieved by NADPH. Sperm-oocyte fusion and meiosis reinitiation were also inhibited by diphenylamine iodonium, which is a flavoenzyme inhibitor reported to prevent reactive oxygen species (ROS) generation in mouse spermatozoa and embryos. These findings indicate that the PPP is involved in different steps of fertilization. Subsequent regulation of a NADPH-dependent flavoenzyme responsible of ROS production is envisaged.  相似文献   

12.
Saccharomyces cerevisiae is able to ferment xylose, when engineered with the enzymes xylose reductase (XYL1) and xylitol dehydrogenase (XYL2). However, xylose fermentation is one to two orders of magnitude slower than glucose fermentation. S. cerevisiae has been proposed to have an insufficient capacity of the non-oxidative pentose phosphate pathway (PPP) for rapid xylose fermentation. Strains overproducing the non-oxidative PPP enzymes ribulose 5-phosphate epimerase (EC 5.1.3.1), ribose 5-phosphate ketol isomerase (EC 5.3.1.6), transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1), as well as all four enzymes simultaneously, were compared with respect to xylose and xylulose fermentation with their xylose-fermenting predecessor S. cerevisiae TMB3001, expressing XYL1, XYL2 and only overexpressing XKS1 (xylulokinase). The level of overproduction in S. cerevisiae TMB3026, overproducing all four non-oxidative PPP enzymes, ranged between 4 and 23 times the level in TMB3001. Overproduction of the non-oxidative PPP enzymes did not influence the xylose fermentation rate in either batch cultures of 50 g l(-1) xylose or chemostat cultures of 20 g l(-1) glucose and 20 g l(-1) xylose. The low specific growth rate on xylose was also unaffected. The results suggest that neither of the non-oxidative PPP enzymes has any significant control of the xylose fermentation rate in S. cerevisiae TMB3001. However, the specific growth rate on xylulose increased from 0.02-0.03 for TMB3001 to 0.12 for the strain overproducing only transaldolase (TAL1) and to 0.23 for TMB3026, suggesting that overproducing all four enzymes has a synergistic effect. TMB3026 consumed xylulose about two times faster than TMB30001 in batch culture of 50 g l(-1) xylulose. The results indicate that growth on xylulose and the xylulose fermentation rate are partly controlled by the non-oxidative PPP, whereas control of the xylose fermentation rate is situated upstream of xylulokinase, in xylose transport, in xylose reductase, and/or in the xylitol dehydrogenase.  相似文献   

13.
The present article describes the first patient with a deficiency of ribose-5-phosphate isomerase (RPI) (Enzyme Commission number 5.3.1.6) who presented with leukoencephalopathy and peripheral neuropathy. Proton magnetic resonance spectroscopy of the brain revealed highly elevated levels of the polyols ribitol and D-arabitol, which were subsequently also found in high concentrations in body fluids. Deficient activity of RPI, one of the pentose-phosphate-pathway (PPP) enzymes, was demonstrated in fibroblasts. RPI gene-sequence analysis revealed a frameshift and a missense mutation. Recently, we described a patient with liver cirrhosis and abnormal polyol levels in body fluids, related to a deficiency of transaldolase, another enzyme in the PPP. RPI is the second known inborn error in the reversible phase of the PPP, confirming that defects in pentose and polyol metabolism constitute a new area of inborn metabolic disorders.  相似文献   

14.
A tyrosine ammonia-lyase (TAL) enzyme from the photosynthetic bacterium Rhodobacter sphaeroides (RsTAL) was identified, cloned and functionally expressed in Escherichia coli, where conversion of tyrosine to p-hydroxycinnamic acid (pHCA) was demonstrated. The RsTAL enzyme is implicated in production of pHCA, which serves as the cofactor for synthesis of the photoactive yellow protein (PYP) in photosynthetic bacteria. The wild type RsTAL enzyme, while accepting both tyrosine and phenylalanine as substrate, prefers tyrosine, but a serendipitous RsTAL mutant identified during PCR amplification of the RsTAL gene, demonstrates much higher preference for phenylalanine as substrate and deaminates it to produces cinnamic acid. Sequence analysis showed the presence of three mutations: Met4 → Ile, Ile325 → Val and Val409 → Met in this mutant. Sequence comparison with Rhodobacter capsulatus TAL (RcTAL) shows that Val409 is conserved between RcTAL and RsTAL. Two single mutants of RsTAL, Val409 → Met and Val 409 → Ile, generated by site-directed mutagenesis, demonstrate greater preference for phenylalanine compared to the wild type enzyme. Our studies illustrate that relatively minor changes in the primary structure of an ammonia-lyase enzyme can significantly affect its substrate specificity.  相似文献   

15.

Background  

Human glucose 6-phosphate dehydrogenase (G6PD), active in both dimer and tetramer forms, is the key entry enzyme in the pentose phosphate pathway (PPP), providing NADPH for biosynthesis and various other purposes, including protection against oxidative stress in erythrocytes. Accordingly haemolytic disease is a major consequence of G6PD deficiency mutations in man, and many severe disease phenotypes are attributed to G6PD folding problems. Therefore, a robust refolding method with high recovery yield and reproducibility is of particular importance to study those clinical mutant enzymes as well as to shed light generally on the refolding process of large multi-domain proteins.  相似文献   

16.
The cytotoxicity of asbestos has been related to its ability to increase the production of reactive oxygen species (ROS), via the iron-catalyzed reduction of oxygen and/or the activation of NADPH oxidase. The pentose phosphate pathway (PPP) is generally activated by the cell exposure to oxidant molecules. Contrary to our expectations, asbestos (crocidolite) fibers caused a dose- and time-dependent inhibition of PPP and decreased its activation by an oxidative stress in human lung epithelial cells A549. In parallel, the intracellular activity of the PPP rate-limiting enzyme, glucose 6-phosphate dehydrogenase (G6PD), was significantly diminished by crocidolite exposure. This inhibition was selective, as the activity of other PPP and glycolysis enzymes was not modified, and was not attributable to a decreased expression of G6PD. On the opposite, the incubation with glass fibers MMVF10 did not modify PPP and G6PD activity. PPP and G6PD inhibition did not correlate with the increased nitric oxide (NO) production elicited by crocidolite in A549 cells. Experiments with the purified enzyme suggest that crocidolite inhibits G6PD by directly interacting with the protein. We propose here a new mechanism of asbestos-evoked oxidative stress, wherein fibers increase the intracellular ROS levels also by inhibiting the main antioxidant pathway of the cell.  相似文献   

17.
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. It provides precursors for the biosynthesis of nucleotides and contributes to the production of reducing power in the form of NADPH. It has been hypothesized that mammalian cells may contain a hidden reaction in PPP catalyzed by transketolase-like protein 1 (TKTL1) that is closely related to the classical transketolase enzyme; however, until now there has been no direct experimental evidence for this reaction. In this work, we have applied state-of-the-art techniques in 13C metabolic flux analysis (13C-MFA) based on parallel labeling experiments and integrated flux fitting to estimate the TKTL1 flux in CHO cells. We identified a set of three parallel labeling experiments with [1-13C]glucose+[4,5,6-13C]glucose, [2-13C]glucose+[4,5,6-13C]glucose, and [3-13C]glucose+[4,5,6-13C]glucose and developed a new method to measure 13C-labeling of fructose 6-phosphate by GC-MS that allows intuitive interpretation of mass isotopomer distributions to determine key fluxes in the model, including glycolysis, oxidative PPP, non-oxidative PPP, and the TKTL1 flux. Using these tracers we detected a significant TKTL1 flux in CHO cells at the stationary phase. The flux results suggest that the main function of oxidative PPP in CHO cells at the stationary phase is to fuel the TKTL1 reaction. Overall, this study demonstrates for the first time that carbon atoms can be lost in the PPP, by means other than the oxidative PPP, and that this loss of carbon atoms is consistent with the hypothesized TKTL1 reaction in mammalian cells.  相似文献   

18.
The chemical monomer p-hydroxystyrene (pHS) is used for producing a number of important industrial polymers from petroleum-based feedstocks. In an alternative approach, the microbial production of pHS can be envisioned by linking together a number of different metabolic pathways, of which those based on using glucose for carbon and energy are currently the most economical. The biological process conserves petroleum when glucose is converted to the aromatic amino acid L-tyrosine, which is deaminated by a tyrosine/phenylalanine ammonia-lyase (PAL/TAL) enzyme to yield p-hydroxycinnamic acid (pHCA). Subsequent decarboxylation of pHCA gives rise to pHS. Bacteria able to efficiently decarboxylate pHCA to pHS using a pHCA decarboxylase (PDC) include Bacillus subtilis, Pseudomonas fluorescens and Lactobacillus plantarum. Both B. subtilis and L. plantarum possess high levels of pHCA-inducible decarboxylase activity and were chosen for further studies. The genes encoding PDC in these organisms were cloned and the pHCA decarboxylase expressed in Escherichia coli strains co-transformed with a plasmid encoding a bifunctional PAL/TAL enzyme from the yeast Rhodotorula glutinis. Production of pHS from glucose was ten-fold greater for the expressed L. plantarum pdc gene (0.11mM), compared to that obtained when the B. subtilis PDC gene (padC) was used. An E. coli strain (WWQ51.1) expressing both tyrosine ammonia-lyase(PAL) and pHCA decarboxylase (pdc), when grown in a 14L fermentor and under phosphate limited conditions, produced 0.4g/L of pHS from glucose. We, therefore, demonstrate pHS production from an inexpensive carbohydrate feedstock by fermentation using a novel metabolic pathway comprising genes from E. coli, L. plantarum and R. glutinis.  相似文献   

19.
The transport of glucose by canine thick ascending limbs (TAL) and inner medullary collecting ducts (IMCD) was studied using tubule suspensions and membrane vesicles. The uptake of D-[14C(U)]glucose by a suspension of intact TAL tubules was reduced largely by phloretin (Pt), moderately by phlorizin (Pz), and completely suppressed by a combination of both agents. A selective effect of Pz on the transport of [14C]alpha-methyl-D-glucoside, but not on 2-[3H]deoxyglucose, was also observed in TAL tubules. In contrast, glucose transport was unaffected by Pz but entirely suppressed by Pt alone in IMCD tubules. The metabolism of glucose was largely suppressed by Pt but unaffected by Pz in both types of tubules. Membrane vesicles were prepared from the red medulla and the white papilla or from TAL and IMCD tubules isolated from these tissues. Vesicle preparations from both tissues demonstrated a predominant carrier-mediated, sodium-independent, Pt- and cytochalasin B-sensitive glucose transport. Following purification of basolateral membrane on a Percoll gradient, the sodium-insensitive D-[14C(U)]glucose transport activity copurified with the activity of the basolateral marker Na(+)-K+ ATPase in both tissues. However, a small sodium-dependent and Pz-sensitive component of glucose transport was found in membrane vesicles prepared from the red medulla or from thick ascending limb tubules but not from the papilla nor collecting duct tubules. The kinetic analysis of the major sodium-independent processes showed that the affinity of the transporter for glucose was greater in collecting ducts (Km = 2.3 mM) than in thick ascending limbs (Km = 4.9 mM). We conclude that glucose gains access into the cells largely through a basolateral facilitated diffusion process in both segments. However a small sodium-glucose cotransport is also detected in membranes of TAL tubules. The transport of glucose presents an axial differentiation in the affinity of glucose transporters in the renal medulla, ensuring an adequate supply of glucose to the glycolytic inner medullary structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号