首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Infection with group B streptococci (GBS) is associated with a poor acute inflammatory response in which neutrophils fail to localize at the site of invasion. In the present studies, we have examined the effects of group B streptococci on C-derived chemotactic activity in human serum. Fresh human serum was activated to form C5a and C5adesarg by incubation with zymosan. The activated serum was then incubated with group B organisms, centrifuged, and the supernatants tested for chemotactic activity for human polymorphonuclear leukocytes. Group B organisms caused a dose-dependent decrease in C-dependent chemotactic activity. The degree of inhibition was profound with 1 X 10(9) bacteria/ml (10% of control). Experiments indicated that significant chemotactic factor inactivation occurred within 2 min of exposure to GBS organisms, while maximal inhibition occurred after 30 min incubation. A number of different strains of GBS of types I, II, and III possessed inhibitory activity. In contrast, group D streptococci, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae failed to inhibit the C-derived chemotactic activity in human serum. Group A streptococci that were M protein positive also inactivated C-dependent chemotactic activity in serum, as previously reported. The inhibitory activity of the GBS strains could be abolished by heat or trypsin treatment but not by neuraminidase, pronase, or pepsin. C5a levels in zymosan-activated serum as measured by RIA were not decreased after incubation with an inhibitory strain suggesting that absorption was not involved. SDS-PAGE analysis revealed that group B streptococci degrade the C5a molecule, increasing its electrophoretic mobility by removing a fragment with a m.w. of approximately 650 Da. Thus, one of the reasons for the poor inflammatory response at the site of GBS infection may reside in the ability of these pathogens to inactivate C-derived inflammatory mediators. The GBS C5a-ase activity probably serves as an additional virulence factor for these organisms contributing to the poor inflammatory response characteristic of group B streptococcal infection.  相似文献   

2.
We have investigated the mechanisms by which a murine IgA mAb directed against the type III Ag (IgA anti-III mAb) of group B streptococci (GBS) protects neonatal rats from lethal infection with these organisms. Purified IgA anti-III mAb enhanced phagocytosis of type III GBS by rat peritoneal macrophages in vitro by fourfold compared with phagocytosis of buffer-treated GBS. In the absence of antibody, neonatal rat serum did not promote phagocytosis, but addition of neonatal rat serum to GBS opsonized with IgA anti-III led to a sevenfold increase in phagocytosis. Heat inactivation of C destroyed the ability of neonatal rat serum to enhance phagocytosis in the presence of IgA. C3 deposition was observed when GBS coated with IgA anti-III mAb were incubated in untreated neonatal rat serum or in serum treated with Mg/EGTA. This latter observation suggested that C3 deposition occurred through activation of the alternative pathway. The control IgA mAb MOPC 315 did not enhance GBS ingestion or C3 deposition on GBS. Depletion of C in vivo by using cobra venom factor abolished the protective effect of IgA anti-III mAb in the neonatal rat model. These data suggest that the ability of this IgA to activate C further enhances its opsonic activity and may be essential for its protective effect in vivo.  相似文献   

3.
During characterization of the surface antigens of serotype III group B streptococci (GBS), a protein with an apparent M(r) of approximately 173,500 migrating on a SDS--polyacrylamide gel was found to have an N-terminal amino acid sequence identical to that of the plasmin receptor (Plr) of group A streptococci, a surface-localized glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This work begins to characterize GBS GAPDH and to assess its functional activity on the cell surface. The 1.0-kb gapC gene of GBS was amplified by PCR. plr and gapC demonstrated 87% homology. An anti-Plr monoclonal antibody reacted with GBS whole cells, suggesting GBS GAPDH is surface localized. Multiple serotypes of GBS demonstrated functional GAPDH on their surfaces. The anti-Plr monoclonal antibody recognized GBS protein bands of approximately 41 and 173.5 kDa, by Western blot. Presumably, these represent monomeric and tetrameric forms of the GAPDH molecule. GBS GAPDH was demonstrated by Western blot analysis to interact with lys- and glu-plasminogens. Fluid-phase GBS GAPDH interacted, by means of ELISA, with immobilized lys-plasminogen, glu-plasminogen, actin, and fibrinogen. Enzymatically active GAPDH, capable of binding cytoskeletal and extracellular matrix proteins, is expressed on the surface of GBS.  相似文献   

4.
We investigated the role of complement component C1q in the IgG-independent opsonophagocytosis of type III group B Streptococcus (GBS) by peripheral blood leukocytes. We report that C1q binds to type III GBS both in normal human serum deficient in IgG specific for type III capsular polysaccharide and in a low-ionic strength buffer. The dissociation constant Kd ranged from 2.0 to 5.5 nM, and the number of binding sites Bmax ranged from 630 to 1360 molecules of C1q per bacterium (CFU). An acapsular mutant strain of GBS bound C1q even better than the wild type, indicating that the polysaccharide capsule is not the receptor for C1q. In serum, binding of C1q to GBS was associated with activation of the classical complement pathway. However, normal human serum retained significant opsonic activity after complete depletion of C1q, suggesting that the serum contains a molecule that is able to replace C1q in opsonization and/or complement activation. Mannan-binding lectin, known to share some functions with C1q, appeared not to be involved, since its depletion from serum had little effect on opsonic activity. Excess soluble C1q or its collagen-like fragment inhibited phagocytosis mediated by normal human serum, suggesting that C1q may compete with other opsonins for binding to receptor(s) on phagocytes. We conclude that, although C1q binds directly to GBS, C1q binding is neither necessary nor sufficient for IgG-independent opsonophagocytosis. The results raise the possibility that additional unknown serum factor(s) may contribute to opsonization of GBS directly or via a novel mechanism of complement activation.  相似文献   

5.
Serotype III group B streptococci (GBS) are a common cause of neonatal sepsis and meningitis. Although deficiency in maternal capsular polysaccharide (CPS)-specific IgG correlates with susceptibility of neonates to the GBS infection, serum deficient in CPS-specific IgG mediates significant opsonophagocytosis. This IgG-independent opsonophagocytosis requires activation of the complement pathway, a process requiring the presence of both Ca(2+) and Mg(2+), and is significantly reduced by chelating Ca(2+) with EGTA. In these studies, we defined a role of L-ficolin/mannose-binding lectin-associated serine protease (MASP) complexes in Ca(2+)-dependent, Ab-independent opsonophagocytosis of serotype III GBS. Incubation of GBS with affinity-purified L-ficolin/MASP complexes and C1q-depleted serum deficient in CPS-specific Ab supported opsonophagocytic killing, and this killing was inhibited by fluid-phase N-acetylglucosamine, the ligand for L-ficolin. Binding of L-ficolin was proportional to the CPS content of individual strains, and opsonophagocytic killing and C4 activation were inhibited by fluid-phase CPS, suggesting that L-ficolin binds to CPS. Sialic acid is known to inhibit alternative complement pathway activation, and, as expected, the bactericidal index (percentage of bacteria killed) for individual strains was inversely proportional to the sialic acid content of the CPS, and L-ficolin-initiated opsonophagocytic killing was significantly increased by addition of CPS-specific IgG2, which increased activation of the alternative pathway. We conclude that binding of L-ficolin/MASP complexes to the CPS generates C3 convertase C4b2a, which deposits C3b on GBS. C3b deposited by this lectin pathway forms alternative pathway C3 convertase C3bBb whose activity is enhanced by CPS-specific IgG2, leading to increased opsonophagocytic killing by further deposition of C3b on the GBS.  相似文献   

6.
We have compared the opsonic and complement-triggering activity of transfectoma-derived, class-switched human IgG1 and IgM mAb (HumAb) against types Ia, II and III group B streptococci (GBS). These antibodies appear to be directed against the common group B cell wall Ag of these organisms. The HumAb IgM promotes uptake of type Ia and II GBS at concentrations as low as 37 ng/ml and type III GBS at concentrations of 150 ng/ml in the presence of human neonatal complement. In contrast, the IgG1 GBS HumAB showed no detectable opsonic activity in concentrations up to 600 ng/ml. When the concentration of HumAb IgG1 is raised to 2.5 micrograms/ml, significant opsonic activity against GBS is detected and when the concentration is approximately 40 micrograms/ml, the opsonic activity peaked at a slightly higher level than that with the HumAb IgM. Thus, approximately 100- fold higher concentrations of the IgG1 than the IgM HumAb are required for optimal opsonization. The opsonic activity of the IgM and IgG1 HumAb are closely related to their ability to consume complement and deposit C3 on the surface of type Ia, II, and III GBS (r = 0.959). We believe that the marked opsonic and protective activity of the IgM GBS HumAb is due to its enhanced avidity and ability to trigger the complement system. Further studies are indicated to determine the feasibility of employing human IgM antibody preparations in the immunotherapy of neonatal GBS disease.  相似文献   

7.
AIMS: The purpose of this study was to determine if DNA polymorphisms generated by RAPD-PCR could be used to characterize Group B streptococci (GBS) for epidemiological purposes. METHODS AND RESULTS: 30 unrelated, previously serotyped strains were analysed by RAPD-PCR using two 10-mer primers (5' TGCGAGAGTC 3' and 5' AGAGGGCACA 3'). Both primers generated DNA electropherotype patterns which, on analysis, clustered the isolates within their respective serotypes. A blind test of a further 3 field isolates also defined these strains within their subsequently determined serotypes. The detection of DNA polymorphisms between isolates within a serotype confirmed previous reports of the heterogenous nature of individual GBS serotypes. CONCLUSIONS: The RAPD-PCR is a potentially useful assay for the rapid characterization of neonatal infections associated with group B streptococci. The method appears to be more discriminatory than conventional serological assays. SIGNIFICANCE AND IMPACT OF THE STUDY: The RAPD-PCR assay is faster, more convenient and easier to perform than alternative DNA analytical procedures such as Pulsfield Gel Electrophoresis. We were able to reproduce the same results following re-testing of all isolates some 12 months later which suggests that the assay may be robust enough for use in routine epidemiological investigations.  相似文献   

8.
Neuraminidase production has been found to vary among individual strains of type III group B streptococci (GBS). The production of neuraminidase has been shown to be affected by different environmental factors. In this study, oxygen concentration was found to influence the amount of enzyme produced. The effect of oxygen on enzyme production was examined in a highneuraminidase-producing strain and a low-neuraminidase-producing strain. With the batch culture technique, the following trend of neuraminidase production was observed: Maximum enzyme production occurred at oxygen concentrations of 5% and 10%, intermediate production occurred at 0%, and lowest production occurred at 15% and 20%. Continuous culture technique confirmed these findings at 5% and 15% oxygen concentrations. Since neuraminidase is believed to be a virulence factor in GBS syndrome in neonates, it is possible that maximum enzyme production may occur at oxygen levels similar to those found in neonatal blood.  相似文献   

9.
Efficient allelic exchange mutagenesis in group B streptococci (GBS) has been hampered by the lack of a counterselectable marker system. Growth inhibition of GBS by the glutamine analog gamma-glutamyl hydrazide requires glnQ. We have used this phenomenon to create a counterselectable marker system for efficient selection of allelic exchange mutants in GBS.  相似文献   

10.
Opacity factor from group A streptococci is an apoproteinase   总被引:7,自引:0,他引:7  
Opacity factor (OF) is an enzyme, elaborated by certain serotypes of group A streptococci, which produces opalescence in mammalian sera. OF has been designated a lipoproteinase. Lipoproteins are complex structures and many enzymes are involved in their catalysis. We therefore set out to establish which of the many enzymes OF could be. Results showed that OF rendered high density lipoprotein (HDL) insoluble, accounting for the opalescence in serum, and altered its electrophoretic mobility. Electron microscopy revealed that OF caused an aggregation of HDL and an alteration in molecule shape. OF specifically split apoprotein AI of HDL into two fragments demonstrable by SDS-PAGE. We therefore designate OF as an apoproteinase.  相似文献   

11.
The adherence of group B streptococci (GBS) of serotypes Ia, II and III to human vaginal cells was studied in vitro. The adherence was not dependent on the viability of bacteria; killing of GBS by UV irradiation or glutaraldehyde treatment did not inhibit the adherence. Killing of GBS by heating to 56 degrees C for 1 h led to a pronounced decrease of adherence, demonstrating the thermosensitivity of the GBS structures involved. The protein nature of these structures was proved by a significant reduction of adherence after pretreatment of GBS with trypsin or pepsin. Pretreatment of GBS with sialidase had no influence on the adherence. Such a pretreatment of vaginal cells caused an increase of adherence showing that the receptors on epithelial cells may be partly masked by sialic acid.  相似文献   

12.
Efficient allelic exchange mutagenesis in group B streptococci (GBS) has been hampered by the lack of a counterselectable marker system. Growth inhibition of GBS by the glutamine analog gamma-glutamyl hydrazide requires glnQ. We have used this phenomenon to create a counterselectable marker system for efficient selection of allelic exchange mutants in GBS.  相似文献   

13.
We have identified and characterized an Enterococcus faecalis alkaline phosphatase (AP, encoded by phoZ). The predicted gene product shows homology with alkaline phosphatases from a variety of species; it has especially high similarity with two alkaline phosphatases from Bacillus subtilis. Expression of phoZ in Escherichia coli, E. faecalis, Streptococcus agalactiae (group B streptococcus [GBS]), or Streptococcus pyogenes (group A streptococcus [GAS]) produces a blue-colony phenotype on plates containing a chromogenic substrate, 5-bromo-4-chloro-3-indolylphosphate (XP or BCIP). Two tests were made to determine if the activity of the enzyme is dependent upon the enzyme's subcellular location. First, elimination of the signal sequence reduced AP activity to 3% of the wild-type activity (or less) in three species of gram-positive bacteria. Restoration of export, using the signal sequence from C5a peptidase, restored AP activity to at least 50% of that of the wild type. Second, we engineered two chimeric proteins in which AP was fused to either a periplasmic domain or a cytoplasmic domain of lactose permease (a membrane protein). In E. coli, the periplasmic fusion had 17-fold-higher AP activity than the cytoplasmic fusion. We concluded that AP activity is export dependent. The signal sequence deletion mutant, phoZDeltass, was used to identify random genomic fragments from GBS that encode exported proteins or integral membrane proteins. Included in this set of fragments were genes that exhibited homology with the Rib protein (a cell wall protein from GBS) or with DppB (an integral membrane protein from GAS). AP acts as a reporter enzyme in GBS, GAS, and E. faecalis and is expected to be useful in a variety of gram-positive bacteria.  相似文献   

14.
Streptococcus agalactiae (GBS) is a major cause of serious newborn bacterial infections. Crucial to GBS evasion of host immunity is the production of a capsular polysaccharide (CPS) decorated with sialic acid, which inactivates the alternative complement pathway. The CPS operons of serotypes Ia and III GBS have been described, but the CPS sialyltransferase gene was not identified. We identified cpsK, an open reading frame in the CPS operon of most serotypes, which was homologous to the lipooligosaccharide (LOS) sialyltransferase gene, lst, of Haemophilus ducreyi. To determine if cpsK might encode a sialyltransferase, we complemented a H. ducreyi lst mutant with cpsK. CpsK was expressed in H. ducreyi and LOS was isolated and analysed for sialic acid content by SDS-PAGE and high-performance liquid chromatography (HPLC). Sialo-LOS was seen in the wild-type, cpsK- or lst-complemented mutant strains, but not in the mutant without cpsK. Addition of Neu5Ac to the LOS was confirmed by mass spectroscopy. Lectin binding studies detected terminal Neu5Ac(alpha 2-->3)Gal(beta 1- on LOS produced by the wild-type, cpsK or lst-complemented mutant strain LOS, compared with the mutant alone. Our data characterize the first sialyltransferase gene from a Gram- positive bacterium and provide compelling evidence that its product catalyses the alpha2,3 addition of Neu5Ac to H. ducreyi LOS and therefore the terminal side-chain of GBS CPS. Phylogenetic studies further indicated that lst and cpsK are related but distinct from sialyltransferases of most other bacteria and, along with their similar codon usage bias and G + C content, suggests acquisition by lateral transfer from an ancestral low G + C organism.  相似文献   

15.
Group B streptococci (GBS) express a β-haemolysin/cytolysin that contributes to disease pathogenesis. We report an independent discovery and extension of a genetic locus encoding the GBS β-haemolysin/cytolysin activity. A plasmid library of GBS chromosomal DNA was cloned into Escherichia coli , and a transformant was identified as β-haemolytic on blood agar. The purified plasmid contained a 4046 bp insert of GBS DNA encoding two complete open reading frames (ORFs). A partial upstream ORF ( cyl B) and the first complete ORF ( cyl E) represent the 3' end of a newly reported genetic locus ( cyl ) required for GBS haemolysin/cytolysin activity . ORF cyl E is predicted to encode a 78.3 kDa protein without GenBank homologies. The GBS DNA fragment also includes a previously unreported ORF, cyl F, with homology to bacterial aminomethyltransferases, and the 5' end of cyl H, with homology to 3-ketoacyl-ACP synthases. Southern analysis demonstrated that the cyl locus was conserved among GBS of all common serotypes. Targeted plasmid integrational mutagenesis was used to disrupt cyl B, cyl E, cyl F and cyl H in three wild-type GBS strains representing serotypes Ia, III and V. Targeted integrations in cyl B, cyl F and cyl H retaining wild-type haemolytic activity were identified in all strains. In contrast, targeted integrations in cyl E were invariably non-haemolytic and non-cytolytic, a finding confirmed by in frame allelic exchange of the cyl E gene. The haemolytic/cytolytic activity of the cyl E allelic exchange mutants could be restored by reintroduction of cyl E on a plasmid vector. Inducible expression of cyl E, cyl F and cyl EF demonstrated that it is CylE that confers haemolytic activity in E. coli . We conclude that cyl E probably represents the structural gene for the GBS haemolysin/cytolysin, a novel bacterial toxin.  相似文献   

16.
Protein phosphorylation is essential for the regulation of cell growth, division, and differentiation in both prokaryotes and eukaryotes. Signal transduction in prokaryotes was previously thought to occur primarily by histidine kinases, involved in two-component signaling pathways. Lately, bacterial homologues of eukaryotic-type serine/threonine kinases and phosphatases have been found to be necessary for cellular functions such as growth, differentiation, pathogenicity, and secondary metabolism. The Gram-positive bacteria Streptococcus agalactiae (group B streptococci, GBS) is an important human pathogen. We have identified and characterized a eukaryotic-type serine/threonine protein kinase (Stk1) and its cognate phosphatase (Stp1) in GBS. Biochemical assays revealed that Stk1 has kinase activity and localizes to the membrane and that Stp1 is a soluble protein with manganese-dependent phosphatase activity on Stk1. Mutations in these genes exhibited pleiotropic effects on growth, virulence, and cell segregation of GBS. Complementation of these mutations restored the wild type phenotype linking these genes to the regulation of various cellular processes in GBS. In vitro phosphorylation of cell extracts from wild type and mutant strains revealed that Stk1 is essential for phosphorylation of six GBS proteins. We have identified the predominant endogenous substrate of both Stk1 and Stp1 as a manganese-dependent inorganic pyrophosphatase (PpaC) by liquid chromatography/tandem mass spectrometry. These results suggest that these eukaryotic-type enzymes regulate pyrophosphatase activity and other cellular functions of S. agalactiae.  相似文献   

17.
Individual features of sensitivity of some strains of group B streptococci (GBS) to influence of 2 probiotic cultures of Enterococcus faecium (SF68 and L3) have been studied by double agar test. E. faecium L3 strain had higher antagonistic activity to GBS. Two genes encoding enterocins A and B as well as genes responsible for the expression of the former two genes were found in the genome of this strain. The supernatant and peptide extract of E. faecium L3 contained thermostable low molecular weight peptides which inhibited growth of listeria and GBS but at lesser extent compared with native enterococci. Obtained data allow to suggest that antagonistic activity of enterococci against GBS may be affiliated with production of enterocins A and B and can be increased by the presence of other metabolites.  相似文献   

18.
Platelet aggregation by group B streptococci   总被引:1,自引:0,他引:1  
Forty-six strains of group B streptococci (GBS), including various serotypes and non-serotypable strains, were tested for their ability to induce platelet aggregation in human platelet-rich plasma; four strains, all belonging to type III, showed a positive reaction. The characteristics of the reaction were investigated in these four positive strains. Aggregation was dependent on the ratio of bacteria to platelets, being maximal at a ratio of 4.3. Platelet aggregation was inhibited by EDTA (100% inhibition at 3.1 mM), indomethacin (100% inhibition at 10 mM), acetylsalicylic acid (93-100% inhibition at 5.0 mM) and quinacrine (100% inhibition at 0.25 mM). Thus the reaction was cation-dependent and required cyclooxygenase activity. Assays for cytosolic lactate dehydrogenase did not indicate platelet lysis. GBS induced the release of [3H]serotonin, which was maximal (68-78%) at 10 min after the reaction was started. Experiments with gel-filtered platelets suggested that GBS-induced platelet aggregation required both fibrinogen and heat-resistant (56 degrees C, 30 min) serum factors. Type-specific antisera prevented the platelet aggregation activity of heat-killed bacteria, but not of live bacteria. Trypsin digestion of the bacterial cells caused an almost complete loss of the platelet aggregation activity.  相似文献   

19.
Group B streptococci (GBS) remain the most significant bacterial pathogen causing neonatal sepsis, pneumonia and meningitis in the USA despite CDC-recommended chemoprophylaxis strategies for preventing infection. To cause infection pathogens such as GBS must evade recognition and clearance by the host's immune system. Strategies for avoidance of opsonization and phagocytic killing include elaboration of antiopsonophagocytic capsules and surface proteins. During screening for mutants of GBS that were attenuated for virulence in a neonatal rat sepsis model, we identified a mutant with a transposon insertion in the ponA gene. ponA encodes an extra-cytoplasmic penicillin-binding protein PBP1a, a newly identified virulence trait for GBS that promotes resistance to phagocytic killing independent of capsular polysaccharide. Complementation analysis in vivo and in vitro confirmed that the altered phenotypes observed in the mutant were due to the transposon insertion in ponA. Deletion of PBP1a does not affect C3 deposition on GBS suggesting that mechanism by which PBP1a protects GBS from phagocytic killing is distinct from the antiopsonic activity of capsular polysaccharide. This is the first report describing expression of an antiphagocytic surface protein by GBS and represents a novel mechanism for evasion of immune recognition and clearance that may explain the decreased virulence observed in Gram-positive bacterial species for penicillin-binding protein mutants.  相似文献   

20.
Group B streptococci (GBS) are the leading cause of neonatal meningitis and sepsis worldwide. Intrapartum antibiotic prophylaxis (IAP) is the current prevention strategy given to pregnant women with confirmed vaginal GBS colonization. Due to antibiotic resistance identified in GBS, we previously developed another strategy using a bacteriophage lytic enzyme, PlyGBS, to reduce vaginal GBS colonization. In this study, various DNA mutagenesis methods were explored to produce PlyGBS mutants with increased lytic activity against GBS. Several hyperactive mutants were identified that contain only the endopeptidase domain found in the N-terminal region of PlyGBS and represent only about one-third of the wild-type PlyGBS in length. Significantly, these mutants not only have 18–28-fold increases in specific activities compared to PlyGBS, but they also have a similar activity spectrum against several streptococcal species. One of the hyperactive mutants, PlyGBS90-1, reduced the GBS colonization from >5 logs of growth per mouse to <50 colony-forming units (cfu) 4 h post treatment (∼4-log reduction) using a single dose in a mouse vaginal model. A reduction in GBS colonization before delivery should significantly reduce neonatal GBS infection providing a safe alternative to IAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号