首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the influence of D-amino acid substitution in the flanking region on the antibody recognition of the 19TGTQ22 epitope core in the tandem repeat of mucin 2 (MUC2) glycoprotein. Analogue peptides corresponding to the optimal epitope sequence (16PTPTGTQ22) have been prepared by the replacement of single or multiple L-amino acid residues at the N-terminal part of the molecule. According to previous studies, this portion of the all-L 16PTPTGTQ22 peptide possesses a beta-turn secondary structure important for efficient monoclonal antibody interaction. The binding properties of sequentially modified peptides (pTPTGTQ, ptPTGTQ, ptpTGTQ, and ptptGTQ) have been analyzed by a MUC2 glycoprotein specific monoclonal antibody (MAb 996) using RIA inhibition assay and characterized by IC50 values. At the same time, we have investigated the secondary structure of the compounds by circular dichroism and Fourier transform infrared spectroscopy in solution. Our data showed that the presence of D-amino acid residue(s) at position(s) 16P, 16PT17, or 16PTP18 resulted in gradually decreasing antibody binding, but the replacement of the L-Thr at position 19 almost abolished activity. Parallel with this reduction, changes in the conformer population have been detected. The propensity of the pTPTGTQ peptide to adopt folded, most probably beta-turn, structure in water can be in correlation with its essentially preserved antibody recognition. After further substitution, the peptide still contained beta- and/or gamma-turn folded secondary structural elements. The conformation of peptide ptptGTQ could be characterized mostly by semiextended (polyproline II) and probably classic gamma-turn conformers built up from D residues.  相似文献   

2.
Antimicrobial peptides contribute to innate host defense against a number of bacteria and fungal pathogens. Some of antimicrobial synthetic peptides were systemically administered in vivo; however, effective protection has so far not been obtained because the effective dose of peptides in vivo seems to be very high, often close to the toxic level against the host. Alternatively, peptides administered in vivo may be degraded by certain proteases present in serum. In this study, D-amino acids were substituted for the L-amino acids of antimicrobial peptides to circumvent these problems. Initially a peptide (L-peptide) rich in five arginine residues and consisting of an 11-amino acid peptide (residues 32-42) of human granulysin was synthesized. Subsequently, the L-amino acids of the 11-amino acid peptide were replaced partially (D-peptide) or wholly (AD-peptide) with D-amino acids. Activity and stability to proteolysis, in particular, in the serum of antimicrobial peptides with D-amino acid substitutions were examined. Peptides with D-amino acid substitutions were found to lyse bacteria as efficiently as their all-L-amino acid parent, L-peptide. In addition, the peptide composed of L-amino acids was susceptible to trypsin, whereas peptides containing D-amino acid substitutions were highly stable to trypsin treatment. Similarly, the peptide consisting of L-amino acids alone was also susceptible to fetal calf serum (FCS), however, protease inhibitors restored the lowered antimicrobial activity of the FCS-incubated peptide. Thus, D-amino acid substitutions can make antimicrobial peptides resistant to proteolysis, suggesting that the antimicrobial peptides consisting of D-amino acids are potential candidates for clinical therapeutic use.  相似文献   

3.
4.
Avrahami D  Oren Z  Shai Y 《Biochemistry》2001,40(42):12591-12603
The initial stages leading to the binding and functioning of membrane-active polypeptides including hormones, signal sequences, and lytic peptides are mainly governed by electrostatic attraction and hydrophobic partitioning between water and lipid bilayers. Antimicrobial peptides serve as an important model for studying the details of these initial steps. However, a systematic analysis of the contribution of multiple hydrophobic amino acids to these steps have been hindered by the propensity of many peptides to aggregate and become inactivated in solution. To this end, we synthesized a series of model amphipathic all L-amino acid peptides and their diastereomers with the sequence KX(3)KWX(2)KX(2)K, where X = Gly, Ala, Val, Ile, or Leu. The effect of the aliphatic amino acids on the biological activity, binding, structure, membrane localization, and mode of action of these peptides was investigated. Most of the L-amino acid peptides oligomerized and adopted distinct structures in solution and in a membrane mimetic environment. Among this group only the Leu containing peptide was hemolytic and highly active on most bacteria tested. The Val- and Leu-containing peptides were hemolytic but inactive toward most bacteria tested. In contrast, the diastereomeric peptides were monomeric and unstructured in solution, but they adopted distinct structures upon membrane binding. While hemolytic activity was drastically reduced, the spectrum of antibacterial activity was preserved or increased. Importantly, we found a direct correlation with the diastereomers between hydrophobicity and propensity to form a helical/distorted-helix and activity (induced membrane leakage and antibacterial activity), despite the fact that they contained 30% D-amino acids. Furthermore, efficient increase in membrane permeability can proceed through different mechanisms. Specifically, the Leu-containing diastereomeric peptide micellized vesicles and possibly bacterial membranes while the Ile-containing diastereomeric peptide fused model membranes and irregularly disrupted bacterial membranes.  相似文献   

5.
A major barrier to the use of antimicrobial peptides as antibiotics is the toxicity or ability to lyse eukaryotic cells. In this study, a 26-residue amphipathic α-helical antimicrobial peptide A12L/A20L (Ac-KWKSFLKTFKSLK KTVLHTLLKAISS-amide) was used as the framework to design a series of D- and L-diastereomeric peptides and study the relationships of helicity and biological activities of α-helical antimicrobial peptides. Peptide helicity was measured by circular dichroism spectroscopy and demonstrated to correlate with the hydrophobicity of peptides and the numbers of D-amino acid substitutions. Therapeutic index was used to evaluate the selectivity of peptides against prokaryotic cells. By introducing D-amino acids to replace the original L-amino acids on the non-polar face or the polar face of the helix, the hemolytic activity of peptide analogs have been significantly reduced. Compared to the parent peptide, the therapeutic indices were improved of 44-fold and 22-fold against Gram-negative and Grampositive bacteria, respectively. In addition, D- and L-diastereomeric peptides exhibited lower interaction with zwitterionic eukaryotic membrane and showed the significant membrane damaging effect to bacterial cells. Helicity was proved to play a crucial role on peptide specificity and biological activities. By simply replacing the hydrophobic or the hydrophilic amino acid residues on the non-polar or the polar face of these amphipathic derivatives of the parent peptide with D-amino acids, we demonstrated that this method could have excellent potential for the rational design of antimicrobial peptides with enhanced specificity.  相似文献   

6.
The C-type natriuretic peptide from the platypus venom (OvCNP) exists in two forms, OvCNPa and OvCNPb, whose amino acid sequences are identical. Through the use of nuclear magnetic resonance, mass spectrometry, and peptidase digestion studies, we discovered that OvCNPb incorporates a D-amino acid at position 2 in the primary structure. Peptides containing a D-amino acid have been found in lower forms of organism, but this report is the first for a D-amino acid in a biologically active peptide from a mammal. The result implies the existence of a specific isomerase in the platypus that converts an L-amino acid residue in the protein to the D-configuration.  相似文献   

7.
MUC1 mucin is a large transmembrane glycoprotein whose extracelluler domain is composed of repeating units of a 20 amino acid sequence. In the cancer associated state, this protein expression becomes upregulated and underglycosylated. Previous studies, which show an enhanced binding of a 5-repeat over a 1-repeat MUC1 peptide to a panel of anti-MUC1 antibodies, have led us to investigate the structural and dynamic consequences of increasing repeat number. Two MUC1 peptides were studied: a 16mer corresponding to slightly less than one full repeat of the MUC1 tandem repeat sequence (GVTSAPDTRPAPGSTA) and a 40mer corresponding to two full repeats of the MUC1 sequence (VTSAPDTRPAPGSTAPPAHG)2. Isotopically labeled versions of these MUC1 peptides were cloned, expressed, purified, and evaluated structurally and dynamically using 15N- and 13C-edited NMR approaches. The data show that MUC1 structure, dynamics, and antibody binding affinity are invariant with increasing repeat number. In light of these results, we conclude that the enhanced antibody affinity of the 5-repeat over the 1-repeat MUC1 peptide is due to multivalency effects, and not due to the development of higher order structure in the longer length peptides. The implications of these results are discussed within the context of a multiple repeat MUC1 breast cancer vaccine design.  相似文献   

8.
Human monoclonal antibodies are promising agents for the development of more selective anticancer therapeutics. However, the tumor-targeting efficiency of most anticancer antibodies is severely limited by their poor penetration into the tumor mass. Recent studies have shown that a peptide derived from the HIV TAT protein could improve the distribution of cytoplasmic reporter proteins when administered systemically as fusion proteins or cross-linked chimeras. In this article, we tested by quantitative biodistribtution analysis whether conjugation to TAT peptides could improve the tumor targeting properties of scFv(L19)-Cys: an engineered human antibody fragment specific for the ED-B domain of fibronectin, a marker located in the modified extracellular matrix surrounding tumor neovasculature. Our results show that TAT peptides, consisting either of L-amino acids or D-amino acids, can efficiently transduce target cells when conjugated to fluorophores and/or antibody fragments, suggesting a receptor-independent cell entry mechanism. However, conjugation of scFv(L19)-Cys to TAT peptides resulted in a severely reduced tumor targeting performance compared to the unconjugated antibody, as measured in murine F9 teratocarcinoma-bearing mice, after intravenous injection of the radiolabeled antibody preparations. Our results outline the usefulness of TAT peptides for the efficient in vitro transduction of cells with globular proteins. In particular, the use of TAT peptides composed of D-amino acids may significantly reduce proteolytic degradation. At the same time, the poor biodistribution properties of antibody-TAT conjugates cast doubts over the applicability of this methodology for the delivery of biopharmaceuticals in vivo.  相似文献   

9.
Han W  Christen P 《FEBS letters》2004,563(1-3):146-150
Chimeric peptides, comprising a DnaK-binding sequence of L-amino acid residues (motif k) and an exclusive DnaJ-binding sequence of D-amino acid residues (motif j) connected through a 22-residue linker, were examined as minisubstrates for the DnaK chaperone system. The DnaJ-stimulated ATPase activity of DnaK was three times higher in the presence of the chimeric peptides pjk or pkj than in the simultaneous presence of the corresponding single-motif peptides ala-p5 (k motif) plus D-p5 (j motif). Apparently, pjk and pkj mimic unfolded proteins by forming ternary (ATP x DnaK) x peptide x DnaJ complexes which favor cis-interaction of DnaJ with DnaK. Consistent with this interpretation, the specific stimulatory effect of the chimeric peptides was abolished by either single-motif peptide in excess.  相似文献   

10.
An enzymatic assay system of D-amino acids was established using the D-amino acid oxidase of Schizosaccharomyces pombe. In this method, the enzyme converts the D-amino acids to the corresponding α-keto acids, which are then reacted with 1,2-diamino-4,5-methylenedioxybenzene (DMB) in an organic solvent. The resultant fluorescent compounds are separated and quantified by high-performance liquid chromatography (HPLC). Use of an organic solvent following the α-keto acid modification with DMB prevents the non-enzymatic deamination of L-amino acids, which are generally present at much higher concentrations than D-amino acids in biological samples. With this method, D-Glu, D-Asn, D-Gln, D-Ala, D-Val, D-Leu, D-Phe, and D-Ile can be quantified in the order of micromolar, and other D-amino acids except D-Asp can be assayed within a sensitivity range of 50-100 μM. The established enzymatic method was used to analyze the d-amino acid contents in human urine. The concentration of D-Ser obtained using this enzymatic method (223 μM) was in good agreement with that obtained using the conventional HPLC method (198 μM). The enzymatic method also demonstrated that the human urine contained 5.45 μM of d-Ala and 0.91 μM of D-Asn. Both D-amino acids were difficult to be identified using the conventional method, because the large signals from L-amino acids masked those from d-amino acids. The enzymatic method that we have developed can circumvent this problem.  相似文献   

11.
A new method has been devised for the complete hydrolysis of proteins with an extremely low level of racemization of amino acids. Proteins are incubated in 10 M HCl at a low temperature to obtain partial hydrolysis. They are then incubated with pronase and finally with leucine aminopeptidase and peptidyl-D-amino-acid hydrolase from Loligo vulgaris. The proposed method ensures the total hydrolysis of either purified proteins or proteins contained in a crude homogenate of animal or vegetable tissue. In both cases, the racemization of amino acids (expressed as rate of D form/D + L form X 100) was lower than 0.015% for aspartic acid and lower than 0.01% for other amino acids. D-Amino acids released from peptides or proteins were estimated with enzymatic methods based on the use of octopus D-aspartate oxidase or hog kidney D-amino acid oxidase; with these enzymes, 0.05 nmol of a D-amino acid was determined in the presence of up to 20 mumols of a mixture of L-amino acids (ratio %D/D + L = 0.00025). The method allows the determination of D-amino acids either in tissues in which they are present in high concentrations (as human cataract lenses, tooth enamel, etc.) or in those with low enantiomer content (as brain, erythrocytes, etc.). Using the method described, we hydrolyzed several synthetic peptides consisting of D- and L-amino acids and determined the amount of D-amino acids. In addition, we totally hydrolyzed all the nuclear proteins of human cataractous lenses. The amount of D-aspartic acid was 0.026 mumols/mg in lenses of women aged between 71 and 76 years and 0.0256 mumols/mg in lenses of men aged between 55 and 72 years. The D-aspartic acid measured corresponds to about 12% with respect to total aspartic acid.  相似文献   

12.
Gramicidin S (GS) is a 10-residue cyclic beta-sheet peptide with lytic activity against the membranes of both microbial and human cells, i.e. it possesses little to no biologic specificity for either cell type. Structure-activity studies of de novo-designed 14-residue cyclic peptides based on GS have previously shown that higher specificity against microbial membranes, i.e. a high therapeutic index (TI), can be achieved by the replacement of a single L-amino acid with its corresponding D-enantiomer [Kondejewski, L.H. et al. (1999) J. Biol. Chem. 274, 13181]. The diastereomer with a D-Lys substituted at position 4 caused the greatest improvement in specificity vs. other L to D substitutions within the cyclic 14-residue peptide GS14, through a combination of decreased peptide amphipathicity and disrupted beta-sheet structure in aqueous conditions [McInnes, C. et al. (2000) J. Biol. Chem. 275, 14287]. Based on this information, we have created a series of peptide diastereomers substituted only at position 4 by a D- or L-amino acid (Leu, Phe, Tyr, Asn, Lys, and achiral Gly). The amino acids chosen in this study represent a range of hydrophobicities/hydrophilicities as a subset of the 20 naturally occurring amino acids. While the D- and L-substitutions of Leu, Phe, and Tyr all resulted in strong hemolytic activity, the substitutions of hydrophilic D-amino acids D-Lys and D-Asn in GS14 at position 4 resulted in weaker hemolytic activity than in the L-diastereomers, which demonstrated strong hemolysis. All of the L-substitutions also resulted in poor antimicrobial activity and an extremely low TI, while the antimicrobial activity of the D-substituted peptides tended to improve based on the hydrophilicity of the residue. D-Lys was the most polar and most efficacious substitution, resulting in the highest TI. Interestingly, the hydrophobic D-amino acid substitutions had superior antimicrobial activity vs. the L-enantiomers although substitution of a hydrophobic D-amino acid increases the nonpolar face hydrophobicity. These results further support the role of hydrophobicity of the nonpolar face as a major influence on microbial specificity, but also highlights the importance of a disrupted beta-sheet structure on antimicrobial activity.  相似文献   

13.
Several D-amino acid-containing peptides (DAACPs) with antimicrobial, cardio-excitatory, or neuronal activities have been found in several species. Here, we demonstrated the chiral separation of the antimicrobial peptide diastereomers, D-phenylseptin and L-phenylseptin using (S) and (R) 3,3′-phenyl-1,1′-binaphthyl-18-crown-6-ether columns (CR-I (+) and CR-I (−), respectively) and also investigated the underlying mechanism. First, using D-amino acid-containing tripeptide Phe-Phe-Phe-OH, we found that CR-I (+) could be used to recognize diastereomeric tripeptides containing an L-amino acid as the first residue. On the contrary, CR-I (−) enabled separation of a series of diastereomers with D-amino acid as the first residue. Therefore, we achieved separation of the stereoisomers using the chiral columns depending on the position of the D- amino acid in the peptide and demonstrated the orthogonality of separations of the chiral columns. Then, using CR-I (+), we separated amphibian antimicrobial peptide diastereomers, L- and D-phenylseptin, which have the sequences, L-Phe-L-Phe-L-Phe and L-Phe-D-Phe-L-Phe at their N-termini, respectively. In order to understand the host-guest interactions, we performed molecular dynamics simulations for L-Phe-L-Phe-L-Phe tripeptide-CR-I molecule complex systems. Three hydrogen bonds between the N-terminal amine group -NH3+ and the crown ether oxygens were the dominant interactions. The hydrophobic interactions between phenyl-rings in the chiral selector unit of CR-I (+) and the side chains of 2nd and 3rd residues of the peptide also contributed to the affinity. Our results show that the CR-I (+)-column can be applied for the separation of endogenous DAACPs generated by the post-translational modification.  相似文献   

14.
A unique enzyme with some properties favorable for the synthesis of D-amino acid-containing peptides has been purified from the culture broth of Saccharothrix sp. AS-2. The purification steps included ammonium sulfate fractionation, chromatographies on CM-Toyopearl 650M and ProtEx Butyl, and sucrose density-gradient isoelectric focusing. The enzyme, consisting of four subunits of 56 kDa, showed its maximum transfer activity at around pH 8.2 and 35 degrees C, and had an isoelectric point of 5.8. The enzyme yielded homooligomers from methyl esters of D-Asp(OMe), D-Met, D-Phe, D-Trp, D-Tyr, and L-Glu(OMe), but showed no hydrolytic activity toward any of the D- or L-amino acid methyl esters tested. The homooligomers were not formed from the corresponding free amino acids. The reaction of Ac-D-Phe-OMe with DL-Ala-NH(2), DL-Leu-NH(2), DL-Phe-NH(2), or DL-Trp-NH(2) was effectively catalyzed by the enzyme, both the DD- and DL-stereoisomers of the expected N-acetyldipeptide being yielded. The resulting dipeptides remained unhydrolyzed even after 48 h incubation. Also, it showed no detectable hydrolytic activity toward casein, diastereomers of diAla, diMet, and diPhe, D-/L-amino acid amides, or D-/L-amino acid p-nitroanilides, indicating that the enzyme had no peptidase activity leading to secondary hydrolysis of the growing peptide. The enzyme activity was strongly depressed by phenylmethanesulfonyl fluoride, but not by penicillin G or ampicillin, suggesting that the protein is a serine enzyme lacking penicillin-binding ability. These observations lead us to the conclusion that the enzyme from Saccharothrix sp. AS-2 characterized in this study is a new type of aminoacyltransferase with an amino acid ester as the acyl donor, and has potential utility as a catalyst for the synthesis of D-amino acid-containing peptides.  相似文献   

15.
16.
A series of 2-substituted dynorphin A-(1-13) amide (Dyn A-(1-13)NH2) analogues was prepared by solid phase peptide synthesis and evaluated for opioid receptor affinities in radioligand binding assays and for opioid activity in the guinea pig ileum (GPI) assay. Amino acid substitution at the 2 position produced marked differences in both opioid receptor affinities and potency in the GPI assay; Ki values for the analogues in the radioligand binding assays and IC50 values in the GPI assay varied over three to four orders of magnitude. The parent peptide, Dyn A-(1-13)NH2, exhibited the greatest affinity and selectivity for kappa receptors and was the most potent peptide examined in the GPI assay. The most important determinant of opioid receptor selectivity and opioid potency for the synthetic analogues was the stereochemistry of the amino acid at the 2 position. Except for [D-Lys2]Dyn A-(1-13)NH2 in the kappa receptor binding assay, the analogues containing a D-amino acid at position 2 were much more potent in all of the assays than their corresponding isomers containing an L-amino acid at this position. The L-amino acid-substituted analogues generally retained some selectivity for kappa opioid receptors. The more potent derivatives with a D-amino acid in position 2, however, preferentially interacted with mu opioid receptors. Introduction of a positively charged amino acid into the 2 position generally decreased opioid receptor affinities and potency in the GPI assay.  相似文献   

17.
Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly expressed in diverse human carcinomas and certain hematologic malignancies. The oncogenic MUC1 transmembrane C-terminal subunit (MUC1-C) functions in part by transducing growth and survival signals from cell surface receptors. However, little is known about the structure of the MUC1-C cytoplasmic domain as a potential drug target. Using methods for structural predictions, our results indicate that a highly conserved CQCRRK sequence, which is adjacent to the cell membrane, forms a small pocket that exposes the two cysteine residues for forming disulfide bonds. By contrast, the remainder of the MUC1-C cytoplasmic domain has no apparent structure, consistent with an intrinsically disordered protein. Our studies thus focused on targeting the MUC1 CQCRRK region. The results show that L- and D-amino acid CQCRRK-containing peptides bind directly to the CQC motif. We further show that the D-amino acid peptide, designated GO-203, blocks homodimerization of the MUC1-C cytoplasmic domain in vitro and in transfected cells. Moreover, GO-203 binds directly to endogenous MUC1-C in breast and lung cancer cells. Colocalization studies further demonstrate that GO-203 predominantly binds to MUC1-C at the cell membrane. These findings support the further development of agents that target the MUC1-C cytoplasmic domain CQC motif and thereby MUC1-C function in cancer cells.  相似文献   

18.
Homochirality is essential for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, d-amino acids, which are enantiomers of L-amino acids, were recently detected in various living organisms in the form of free D-amino acids and D-amino acid residues in peptides and proteins. In particular, D-aspartyl (Asp) residues have been detected in various proteins from diverse tissues of elderly individuals. Here, we describe three important aspects of our research: (i) a method for detecting D-β-Asp at specific sites in particular proteins, (ii) a likely spontaneous mechanism by which Asp residues in proteins invert and isomerize to the D-β-form with age under physiological conditions, (iii) a discussion of factors that favor such a reaction.  相似文献   

19.
In the present study, the 26-residue peptide sequence Ac-KWKSFLKTFKSAVKTVLHTALKAISS-amide (V681) was utilized as the framework to study the effects of peptide hydrophobicity/hydrophilicity, amphipathicity, and helicity (induced by single amino acid substitutions in the center of the polar and nonpolar faces of the amphipathic helix) on biological activities. The peptide analogs were also studied by temperature profiling in reversed-phase high performance liquid chromatography, from 5 to 80 degrees C, to evaluate the self-associating ability of the molecules in solution, another important parameter in understanding peptide antimicrobial and hemolytic activities. A higher ability to self-associate in solution was correlated with weaker antimicrobial activity and stronger hemolytic activity of the peptides. Biological studies showed that strong hemolytic activity of the peptides generally correlated with high hydrophobicity, high amphipathicity, and high helicity. In most cases, the D-amino acid substituted peptides possessed an enhanced average antimicrobial activity compared with L-diastereomers. The therapeutic index of V681 was improved 90- and 23-fold against Gram-negative and Gram-positive bacteria, respectively. By simply replacing the central hydrophobic or hydrophilic amino acid residue on the nonpolar or the polar face of these amphipathic derivatives of V681 with a series of selected D-/L-amino acids, we demonstrated that this method has excellent potential for the rational design of antimicrobial peptides with enhanced activities.  相似文献   

20.
In the altered form of MUC1 mucin associated with breast cancer, the highly immunogenic sequence PDTRPAP is exposed, and may be an immunologically relevant target for the development of diagnostics or cancer immunotherapy. In this study, we report the preparation and antibody binding properties of monomeric and dimeric MUC1 peptides containing the epitope region recognized by monoclonal antibody (mAb) C595. Peptides contained a single or two copies of the whole 20-mer repeat unit (VTSAPDTRPAPGSTAPPAHG) of MUC1 protein. MUC1 40-mer peptides were prepared by the condensation of semi-protected fragments of the repeat unit, in solution or by chemical ligation. In the first case, cyclohexyl-type protecting groups were used for the synthesis of semi-protected fragments by the Boc/Bzl strategy. Unprotected fragments were used in the chemical ligation to produce thioether linkages. In one of the fragments, a Gly residue was replaced by Cys at the C-terminus and the other fragment was chloroacetylated at the N-terminus. In addition, the short peptide APDTRPAPG, and its disulfide dimer, (APDTRPAPGC)(2) were produced. The antibody binding properties of these MUC1 peptide constructs were tested by competition enzyme-linked immunosorbent assay (ELISA). The short epitope region peptide, APDTRPAPG and its dimer (APDTRPAPGC)(2) showed higher IC(50) values (IC(50) = 56.3 and 53.2 micromol/l, respectively). While the 20-mer peptide (IC(50) = 25.9 micromol/l) and more markedly its 40-mer dimers (IC(50) = 0.62 and 0.78 micromol/l) were recognized better. CD data obtained in water or in TFE indicated no significant conformational differences between the 20-mer and 40-mer peptides. We found a high level of similarity between the binding properties of the 40-mer peptides with amide or thioether links, providing a new possibility to build up oligomeric MUC1 peptides by thioether bond formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号