首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout this century genetic polymorphisms for color have been widely used as a research tool to allow insights into key evolutionary processes. Although color variants can often be diverse within populations, frequencies of different morphs may be similar across populations, either as a result of balancing selection or gene flow. Under these circumstances selection can be extremely difficult to demonstrate. Here we test for balancing selection on the naturally occurring color forms of the Hawaiian happy-face spider, Theridion grallator with two approaches. First, allozyme loci are used to generate a null model against which to test selection. Frequencies of alleles involved in the color polymorphism of T. grallator are used to generate another estimate for comparison. The results suggest that statistically similar frequencies of color morphs among populations of T. grallator may be maintained by some form of balancing selection. Second, we make use of an unusual event in which the normally stable frequencies of unpatterned and patterned morphs within a population were found to have shifted toward an excess of unpatterned morphs. We scored offspring of all fertilized, unpatterned (bottom-recessive) females found during this period of skewed morph frequencies and also in a year when morph frequencies were normal to deduce paternal color phenotypes. Mating was found to be random in the normal year, but in the perturbed year females had mated with rare (patterned) males twice as frequently as expected on the basis of the frequency of this morph type in the population. Both of these results are consistent with selection operating on the color polymorphism, and we speculate that apostatic selection, perhaps mediated by bird predators, may provide the mechanism.  相似文献   

2.
Disentangling the relative importance and potential interactions of selection and genetic drift in driving phenotypic divergence of species is a classical research topic in population genetics and evolutionary biology. Here, we evaluate the role of stochastic and selective forces on population divergence of a colour polymorphism in seven damselfly species of the genus Ischnura, with a particular focus on I. elegans and I. graellsii. Colour-morph frequencies in Spanish I. elegans populations varied greatly, even at a local scale, whereas more similar frequencies were found among populations in eastern Europe. In contrast, I. graellsii and the other five Ischnura species showed little variation in colour-morph frequencies between populations. F(ST)-outlier analyses revealed that the colour locus deviated strongly from neutral expectations in Spanish populations of I. elegans, contrasting the pattern found in eastern European populations, and in I. graellsii, where no such discrepancy between morph divergence and neutral divergence could be detected. This suggests that divergent selection has been operating on the colour locus in Spanish populations of I. elegans, whereas processes such as genetic drift, possibly in combination with other forms of selection (such as negative frequency-dependent selection), appear to have been present in other regions, such as eastern Europe. Overall, the results indicate that both selective and stochastic processes operate on these colour polymorphisms, and suggest that the relative importance of factors varies between geographical regions.  相似文献   

3.
The existence and mode of selection operating on heritable adaptive traits can be inferred by comparing population differentiation in neutral genetic variation between populations (often using F(ST) values) with the corresponding estimates for adaptive traits. Such comparisons indicate if selection acts in a diversifying way between populations, in which case differentiation in selected traits is expected to exceed differentiation in neutral markers [F(ST )(selected) > F(ST )(neutral)], or if negative frequency-dependent selection maintains genetic polymorphisms and pulls populations towards a common stable equilibrium [F(ST) (selected) < F(ST) (neutral)]. Here, we compared F(ST) values for putatively neutral data (obtained using amplified fragment length polymorphism) with estimates of differentiation in morph frequencies in the colour-polymorphic damselfly Ischnura elegans. We found that in the first year (2000), population differentiation in morph frequencies was significantly greater than differentiation in neutral loci, while in 2002 (only 2 years and 2 generations later), population differentiation in morph frequencies had decreased to a level significantly lower than differentiation in neutral loci. Genetic drift as an explanation for population differentiation in morph frequencies could thus be rejected in both years. These results indicate that the type and/or strength of selection on morph frequencies in this system can change substantially between years. We suggest that an approach to a common equilibrium morph frequency across all populations, driven by negative frequency-dependent selection, is the cause of these temporal changes. We conclude that inferences about selection obtained by comparing F(ST) values from neutral and adaptive genetic variation are most useful when spatial and temporal data are available from several populations and time points and when such information is combined with other ecological sources of data.  相似文献   

4.
Genome scan-based tests for selection are directly applicable to natural populations to study the genetic and evolutionary mechanisms behind phenotypic differentiation. We conducted AFLP genome scans in three distinct geographic colour morphs of the cichlid fish Tropheus moorii to assess whether the extant, allopatric colour pattern differentiation can be explained by drift and to identify markers mapping to genomic regions possibly involved in colour patterning. The tested morphs occupy adjacent shore sections in southern Lake Tanganyika and are separated from each other by major habitat barriers. The genome scans revealed significant genetic structure between morphs, but a very low proportion of loci fixed for alternative AFLP alleles in different morphs. This high level of polymorphism within morphs suggested that colour pattern differentiation did not result exclusively from neutral processes. Outlier detection methods identified six loci with excess differentiation in the comparison between a bluish and a yellow-blotch morph and five different outlier loci in comparisons of each of these morphs with a red morph. As population expansions and the genetic structure of Tropheus make the outlier approach prone to false-positive signals of selection, we examined the correlation between outlier locus alleles and colour phenotypes in a genetic and phenotypic cline between two morphs. Distributions of allele frequencies at one outlier locus were indeed consistent with linkage to a colour locus. Despite the challenges posed by population structure and demography, our results encourage the cautious application of genome scans to studies of divergent selection in subdivided and recently expanded populations.  相似文献   

5.
Sequence polymorphisms in coding genes and variability in quantitative trait loci (QTL)-linked markers can be used to uncover the evolutionary mechanisms of traits involved in adaptive processes. We studied sequence variation in the EDA gene and allelic variation in 18 microsatellites - one of which (Gac4174) is linked with the EDA QTL - in low, partially and completely plated morphs from eight threespine stickleback European populations. The results agree with previous studies in that EDA polymorphism is closely related to plate number variation: EDA sequences grouped populations into low and completely plated morphs, whereas microsatellites failed to do so. Furthermore, partially plated fish were heterozygous with respect to the distinctive EDA alleles for completely and low plated morphs, indicating that completely plated morph alleles are not entirely dominant in controlling the expression of lateral plate number. An examination of population differentiation in plate number with quantitative genetic methods revealed that the degree of differentiation exceeded that expected from genetic drift alone (Q(ST) > F(ST)). Our results support the adaptive genetic differentiation of plate morphs and the view that distinctive EDA gene polymorphism occurs in similar sites across the distribution range of this species. Yet, allele frequency differentiation in the Gac4174 microsatellite locus, informative in experimental crosses for plate number variation, did not differ from that of neutral markers and, was therefore unable to detect the signature of natural selection responsible for population divergence.  相似文献   

6.
Y Takahashi  N Nagata  M Kawata 《Heredity》2014,112(4):391-398
Understanding the relative importance of selection and stochastic factors in population divergence of adaptive traits is a classical topic in evolutionary biology. However, it is difficult to separate these factors and detect the effects of selection when two or more contrasting selective factors are simultaneously acting on a single locus. In the damselfly Ischnura senegalensis, females exhibit color dimorphism and morph frequencies change geographically. We here evaluated the role of selection and stochastic factors in population divergence of morph frequencies by comparing the divergences in color locus and neutral loci. Comparisons between population pairwise FST for neutral loci and for the color locus did not detect any stochastic factors affecting color locus. Although comparison between population divergence in color and neutral loci using all populations detected only divergent selection, we detected two antagonistic selective factors acting on the color locus, that is, balancing and divergent selection, when considering geographical distance between populations. Our results suggest that a combination of two antagonistic selective factors, rather than stochastic factors, establishes the geographic cline in morph frequency in this system.  相似文献   

7.
Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism.  相似文献   

8.
《Animal behaviour》2002,63(4):677-685
The existence of several female colour morphs is a conspicuous characteristic of many damselflies that show one male-like (androchrome) and several nonmale-like (gynochrome) morphs. We tested several adaptive hypotheses and the null model for the maintenance of female polychromatism (one androchrome and two gynochromes) in the damselfly Ceriagrion tenellum. We tested the null model by comparing the degree of genetic differentiation between the colour locus and a set of 19 neutral RAPD loci in five populations. Our results indicate that selection is acting to maintain similar frequencies between populations at the colour locus. Using mark–recapture techniques we found that mating success is not dependent on female coloration. We tested the mimicry hypothesis by presenting live and dead models to males. Dead models were highly attractive irrespective of coloration. In contrast, with live models males could not distinguish between androchromes and other males, and were more attracted to gynochrome females. Despite this, within populations morph frequencies remained constant over time and mating was at random with respect to female coloration. However, there was a positive relationship between male density and androchrome frequency in a comparative study of eight populations. We discuss our results in the framework of sexual conflict theory and suggest that andro- and gynochrome females are using different strategies to control their number of matings. The different morphs might be maintained in a balanced polymorphism by a combination of density- and frequency-dependent mechanisms.Copyright 2002 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour  相似文献   

9.
A central problem in evolutionary biology is to understand how spatial and temporal variation in selection maintain genetic variation within and among populations. Brown anole lizards ( Anolis sagrei ) exhibit a dorsal pattern polymorphism that is expressed only in females, which occur in "diamond,""bar," and intermediate "diamond-bar" morphs. To understand the inheritance of this polymorphism, we conducted a captive breeding study that refuted several single-locus models and supported a two-locus mode of inheritance. To describe geographic variation in morph frequencies, we surveyed 13 populations from two major islands in The Bahamas. Morph frequencies differed substantially between major islands but were highly congruent within each island. Finally, we measured viability selection on each island to test two hypotheses regarding the maintenance of the polymorphism: (1) that spatial variation in selection maintains variation in morph frequencies between islands, and (2) that temporal variation in selection across years maintains variation within islands. Although bar females had relatively lower survival where they were rare, our data do not otherwise suggest that selection varies spatially between islands. However, diamond-bar females were subject to positive frequency-dependent selection across years, and the relative fitness of bar and diamond females alternated across years. We propose that this polymorphism is maintained by temporal variation in selection coupled with the sheltering of alleles via a two-locus inheritance pattern and sex-limited expression.  相似文献   

10.
There is increasing evidence of segregating sexually antagonistic (SA) genetic variation for fitness in laboratory and wild populations, yet the conditions for the maintenance of such variation can be restrictive. Epistatic interactions between genes can contribute to the maintenance of genetic variance in fitness and we suggest that epistasis between SA genes should be pervasive. Here, we explore its effect on SA genetic variation in fitness using a two locus model with negative epistasis. Our results demonstrate that epistasis often increases the parameter space showing polymorphism for SA loci. This is because selection in one locus is affected by allele frequencies at the other, which can act to balance net selection in males and females. Increased linkage between SA loci had more marginal effects. We also show that under some conditions, large portions of the parameter space evolve to a state where male benefit alleles are fixed at one locus and female benefit alleles at the other. This novel effect of epistasis on SA loci, which we term the ‘equity effect’, may have important effects on population differentiation and may contribute to speciation. More generally, these results support the suggestion that epistasis contributes to population divergence.  相似文献   

11.
The candy-stripe spider, Enoplognatha ovata, exhibits a striking color polymorphism comprising three morphs. A number of lines of evidence strongly suggest that this polymorphism is maintained by natural selection: its presence in a sister species, E. latimana; the physical nature of the variation; the virtual lack of monomorphic populations; the highly consistent rank-order of morphs within populations; and the presence of large-scale clines associated with climatic variables. However, the absence of selection is equally strongly suggested by very local surveys of morph frequencies over space and time, perturbation experiments, and a variance in morph frequency between populations that is virtually independent of spatial scale. In addition, local spatial patterns in one study site (Nidderdale, Yorkshire, England) have been explained in terms of intermittent drift over half a century ago, a hypothesis supported here by the distributions of four other genetic markers (two allozyme and two visible polymorphisms). A heuristic model is suggested that reconciles these apparently contradictory messages regarding the importance of drift and selection in this system. It is proposed that when allele frequencies of the color morph redimita lie between approximately 0.05 and 0.3, the deltaq on q plot is very shallow, so that within this region, where the majority of populations lie, selection is weak and drift is the major force determining local morph frequencies. However, outside this range of frequencies, powerful selection acts to protect the polymorphism. This model may apply to polymorphisms in other species and explain why evidence of selection in natural populations is often elusive.  相似文献   

12.
Genetic polymorphisms are powerful model systems to study the maintenance of diversity in nature. In some systems, polymorphisms are limited to female coloration; these are thought to have arisen as a consequence of reducing male mating harassment, commonly resulting in negative frequency‐dependent selection on female color morphs. One example is the damselfly Ischnura elegans, which shows three female color morphs and strong sexual conflict over mating rates. Here, we present research integrating male tactics, and female evolutionary strategies (female mating behavior and morph‐specific female fecundity) in populations with different morph‐specific mating frequencies, to obtain an understanding of mating rates in nature that goes beyond the mere measure of color frequencies. We found that female morph behavior differed significantly among but not within morphs (i.e., female morph behavior was fixed). In contrast, male tactics were strongly affected by the female morph frequency in the population. Laboratory work comparing morph‐specific female fecundity revealed that androchrome females have lower fecundity than both of the gynochrome female morphs in the short term (3‐days), but over a 10‐day period one of the gynochrome female morphs became more fecund than either of the other morphs. In summary, our study found sex‐specific dynamics in response to different morph frequencies and also highlights the importance of studying morph‐specific fecundities across different time frames to gain a better understanding of the role of alternative reproductive strategies in the maintenance of female‐limited color polymorphism.  相似文献   

13.
Study of variability of size-age indices and polymorphism of 6 microsatellite loci, 5 loci of SNP, and accidentally amplified polymorphic DNA (RAPD) of sockeye salmon Oncorhynchus nerka of three largest populations from the western coast of Kamchatka Peninsula was performed. The efficiency of using different types of markers for the differentiation of populations and determination of the population belonging of sockeye salmon from lake-river systems of western Kamchatka was analyzed. Significant interpopulation differences were revealed from the frequencies of alleles of genetic markers and from a set of biological indices. It was established that genetic markers are characterized by a better differentiating capacity, as compared to biological characteristics. The most satisfactory results during determination of population belonging of sockeye salmon were obtained using an integrated data base of allele frequencies of microsatellite and SNP loci.  相似文献   

14.
Genetic diversity and population genetic structure of natural Oryza rufipogon populations in China were studied based on ten microsatellite loci. For a total of 237 individuals of 12 populations collected from four regions, a moderate to high level of genetic diversity was observed at population levels with the number of alleles per locus ( A) ranging from 2 to 18 (average 10.6), and polymorphic loci ( P) from 40.0% to 100% (average 83.3%). The observed heterozygosity ( H(O)) varied from 0.163 to 0.550 with the mean of 0.332, and the expected heterozygosity ( H(E)) from 0.164 to 0.648 with the mean of 0.413. The level of genetic diversity for Guangxi was the highest. These results are in good agreement with previous allozyme and RAPD studies. However, it was unexpected that high genetic differentiation among populations was found ( R(ST) = 0.5199, theta = 0.491), suggesting that about one-half of the genetic variation existed between the populations. Differentiation (pairwise theta) was positively correlated with geographical distance ( r = 0.464), as expected under the isolation by distance model. The habitat destruction and degradation throughout the geographic range of O. rufipogon may be the main factor attributed to high genetic differentiation among populations of O. rufipogon in China.  相似文献   

15.
Contrasting patterns of variation in MHC loci in the Alpine newt   总被引:1,自引:1,他引:0  
Babik W  Pabijan M  Radwan J 《Molecular ecology》2008,17(10):2339-2355
Major histocompatibility complex (MHC) genes are essential in pathogen recognition and triggering an adaptive immune response. Although they are the most polymorphic genes in vertebrates, very little information on MHC variation and patterns of evolution are available for amphibians, a group known to be declining rapidly worldwide. As infectious diseases are invoked in the declines, information on MHC variation should contribute to devising appropriate conservation strategies. In this study, we examined MHC variation in 149 Alpine newts ( Mesotriton alpestris ) from three allopatric population groups in Poland at the northeastern margin of the distribution of this species. The genetic distinctiveness of the population groups has previously been shown by studies of skin graft rejection, allozymes and microsatellites. Two putative expressed MHC II loci with contrasting levels of variation and clear evidence of gene conversion/recombination between them were detected. The Meal-DAB locus is highly polymorphic (37 alleles), and shows evidence of historical positive selection for amino acid replacements and substantial geographical differentiation in allelic richness. On the contrary, the Meal-DBB locus exhibits low polymorphism (three alleles differing by up to two synonymous substitutions) and a uniform distribution of three alleles among geographical regions. The uniform frequencies of the presumptively neutral Meal-DBB alleles may be explained by linkage to Meal-DAB . We found differences in allelic richness in Meal-DAB between regions, consistent with the hypothesis that genetic drift prevails with increasing distance from glacial refugia. Pseudogene loci appear to have evolved neutrally. The level of DAB variation correlated with variation in microsatellite loci, implying that selection and drift interplayed to produce the pattern of MHC variation observed in marginal populations of the Alpine newt.  相似文献   

16.
Polymorphisms provide one of the most useful tools for understanding the maintenance of genetic and phenotypic variation in nature. We have previously described a genetically based polymorphism in dorsal patterning that is expressed by female brown anole lizards, Anolis sagrei, which occur in Bar, Diamond and intermediate Diamond-Bar morphs. Previous studies of island populations in The Bahamas support a role for selection in maintaining the polymorphism, but the agents responsible for this selection remain unclear. We tested two main hypotheses regarding the importance of predation as a selective agent that maintains the polymorphism within populations. First, we tested whether correlational selection favours different combinations of morph, locomotor performance and escape behaviour by measuring morph-specific natural selection on sprint speed, running endurance and the propensity of females to either 'freeze' or 'run' in response to attempted capture. Morphs did not differ in any of these traits, nor did correlational selection consistently favour any particular combinations of morph and antipredator behaviour. Second, we experimentally excluded bird and snake predators from two entire island populations, allowed these predators access to two additional islands and then measured subsequent differences in natural selection on morphs in each population. Predators reduced the survival of Bar and Diamond females, but not of genetically intermediate Diamond-Bar females. These results provide limited evidence that predation may play a role in maintaining this polymorphism, although the functional traits that could account for differential susceptibility to predation remain unclear.  相似文献   

17.
Understanding the evolutionary mechanisms that contribute to the local genetic differentiation of populations is a major goal of evolutionary biology, and debate continues regarding the relative importance of natural selection and random genetic drift to population differentiation. The desert plant Linanthus parryae has played a prominent role in these debates, with nearly six decades of empirical and theoretical work into the causes of spatial differentiation for flower color. Plants produce either blue or white flowers, and local populations often differ greatly in the frequencies of the two color morphs. Sewall Wright first applied his model of "isolation by distance" to investigate spatial patterns of flower color in Linanthus. He concluded that the distribution of flower color morphs was due to random genetic drift, and that Linanthus provided an example of his shifting balance theory of evolution. Our results from comprehensive field studies do not support this view. We studied an area in which flower color changed abruptly from all-blue to all-white across a shallow ravine. Allozyme markers sampled across these regions showed no evidence of spatial differentiation, reciprocal transplant experiments revealed natural selection favoring the resident morph, and soils and the dominant members of the plant community differed between regions. These results support the hypothesis that local differences in flower color are due to natural selection, not due to genetic drift.  相似文献   

18.
Genome scans of population differentiation identify candidate loci for adaptation but provide little information on how selection has influenced the genetic structure of these loci. Following a genome scan, we investigated the nature of the selection responsible for the outlying differentiation observed between populations of the marine mussel Mytilus edulis at a leucine/arginine polymorphism (L31R) in the antimicrobial peptide MGD2. We analysed DNA sequence polymorphisms, allele frequencies and population differentiation of polymorphisms closely linked to L31R, and pairwise and third‐order linkage disequilibria. An outlying level of population differentiation was observed at L31R only, while no departure from panmixia was observed at linked loci surrounding L31R, as in most of the genome. Selection therefore seems to affect L31R directly. Three hypotheses can explain the lack of differentiation in the chromosomal region close to L31R: (i) hitchhiking has occurred but migration and recombination subsequently erased the signal, (ii) selection was weak enough and recombination strong enough to limit the hitchhiking effect to a very small chromosomal region or (iii) selection acted on a pre‐existing polymorphism (i.e. standing variation) at linkage equilibrium with its background. Linkage equilibrium was observed between L31R and linked polymorphisms in every population analysed, as expected under the three hypotheses. However, linkage disequilibrium was observed in some populations between pairs of loci located upstream and downstream to L31R, generating a complex pattern of third‐order linkage disequilibria which is best explained by the hypothesis of selection on a pre‐existing polymorphism. We hypothesise that selection could be either balanced, maintaining alleles at different frequencies depending on the pathogen community encountered locally by mussels, or intermittent, resulting in sporadic fluctuations in allele frequency.  相似文献   

19.
Variability at eight microsatellite loci was examined in five populations of chum salmon Oncorhynchus keta Walbaum from Sakhalin hatcheries. The population of Kalinino hatchery had the lowest heterozygosity and the lowest average number of alleles per locus. The populations examined exhibited significant differentiation, theta ST = 0.026 on average per locus. The maximum genetic differences were found between the populations of the Kalinino and the Ado-Tymovo hatcheries; the latter differs from the remaining populations also by the highest number and high frequencies of specific alleles. The genetic features of the Taranai hatchery population, observed at microsatellite loci, reflect its "mixed" origin.  相似文献   

20.
利用RAPD 分子标记技术对5 个居群的90 个大针茅个体间的遗传关系以及RAPD 多态性与所在生境的相关性进行了研究。16 个引物共扩增得到310 个RAPD 位点, 利用几种多元分析方法对所得位点进行分析, 结果显示: 主轴法分析能够在三维坐标下将90 个大针茅个体按居群来源进行分类, 前三个轴虽然只解释了总变异的21 . 91% , 却能将所研究的居群完全分开; 典范判别分析可以将97 .8%的大针茅个体正确地分类到已知居群, 且在二维功能轴下能够清晰地看到个体按居群来源进行了分类; Spearman 秩相关分析和多元逐步回归分析均得出大针茅RAPD 位点的Nei′s 基因多样性与气候因子( 包括年降水量、积温、年均温、一月份均温和七月份均温) 之间存在显著的关联性。基于以上结果我们可以得出: 大针茅地理居群分化显著; 大针茅RAPD 多样性并非随机分布而是与生境气候因子相联系; 气候差异的自然选择, 对大针茅遗传多样性和遗传结构的特点起决定作用。研究结果对大针茅种质资源的保护具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号