首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection; therefore, the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as "laws of evolutionary genomics" in the same sense "law" is understood in modern physics.  相似文献   

2.
ABSTRACT   Anthropologists often disagree about whether, or in what ways, anthropology is "evolutionary." Anthropologists defending accounts of primate or human biological development and evolution that conflict with mainstream "neo-Darwinian" thinking have sometimes been called "creationists" or have been accused of being "antiscience." As a result, many cultural anthropologists struggle with an "anti-antievolutionism" dilemma: they are more comfortable opposing the critics of evolutionary biology, broadly conceived, than they are defending mainstream evolutionary views with which they disagree. Evolutionary theory, however, comes in many forms. Relational evolutionary approaches such as Developmental Systems Theory, niche construction, and autopoiesis–natural drift augment mainstream evolutionary thinking in ways that should prove attractive to many anthropologists who wish to affirm evolution but are dissatisfied with current "neo-Darwinian" hegemony. Relational evolutionary thinking moves evolutionary discussion away from reductionism and sterile nature–nurture debates and promises to enable fresh approaches to a range of problems across the subfields of anthropology. [Keywords: evolutionary anthropology, Developmental Systems Theory, niche construction, autopoeisis, natural drift]  相似文献   

3.
Most phylogenetic comparative methods used for testing adaptive hypotheses make evolutionary assumptions that are not compatible with evolution toward an optimal state. As a consequence they do not correct for maladaptation. The "evolutionary regression" that is returned is more shallow than the optimal relationship between the trait and environment. We show how both evolutionary and optimal regressions, as well as phylogenetic inertia, can be estimated jointly by a comparative method built around an Ornstein-Uhlenbeck model of adaptive evolution. The method considers a single trait adapting to an optimum that is influenced by one or more continuous, randomly changing predictor variables.  相似文献   

4.

Background

Evolution is everywhere in Galápagos, especially regarding the role the islands have played in the history of evolutionary thought. In turn, the Galápagos National Park guides are in a unique position as informal science educators, as they are the primary points-of-contact for the islands’ ~ 200,000 tourists per year. Our goal was to assess the guides’ knowledge and acceptance of the theory of evolution, in addition to learning more about their perceptions of the connection between the islands and evolution.

Methods

We surveyed 63 guides in three towns on three of the archipelago’s populated islands. Surveys included items targeting the guides knowledge of evolution (via the Knowledge of Evolution Exam, or the KEE) and acceptance of the theory of evolution (via the Measure of Acceptance of the Theory of Evolution, or the MATE). Additional, novel items gauged the guides’ perceptions of the islands, insofar as Galápagos is connected to evolution and the history of evolutionary thought.

Results

Although acceptance of evolution was high, knowledge was relatively low. However, the guides are proud of the islands’ association with the history of evolutionary thought, and enjoy talking about evolution while giving tours. On open-ended responses, guides claimed to especially enjoy talking with tourists about geology and island culture, and a few voiced concerns about the conflict between evolution and religion. Finally, the overwhelming majority of the guides agreed or strongly agreed with the statement, “I would like to learn more about Galápagos and the history of evolutionary thought.”

Conclusions

Galápagos guides display a disconnect between what is felt about evolution, and what is known about how evolution actually works. We can probably trace their fondness for, and acceptance of, evolution to the clear connection between evolution, tourism, and the guides’ livelihoods. We can trace their lack of knowledge to their schooling, as prior work detected similarly low knowledge of evolution in the islands’ schoolteachers. However, the guides are a receptive audience for professional development pertaining to our contemporary understanding of the mechanics of biological evolution. Improving guides’ understanding of biological evolution could, in turn, inform the evolutionary understanding of thousands of tourists each year.
  相似文献   

5.
In 19th century and at the beginning 20th century, reports appeared in the field of comparative and ontogenetic physiology and the value of these methods for understanding of evolution of functions. The term "evolutionary physiology" was suggested by A. N. Severtsov in 1914. In the beginning of 30s, in the USSR, laboratories for researches in problems of evolutionary physiology were created, the results of these researches having been published. In 1956 in Leningrad, the Institute of Evolutionary Physiology was founded by L. A. Orbeli. He formulates the goals and methods of evolutionary physiology. In the following half a century, the evolutionary physiology was actively developed. The evolutionary physiology solves problems of evolution of function of functions evolution, often involving methods of adjacent sciences, including biochemistry, morphology, molecular biology.  相似文献   

6.
Within-patient HIV populations evolve rapidly because of a high mutation rate, short generation time, and strong positive selection pressures. Previous studies have identified "consistent patterns" of viral sequence evolution. Just before HIV infection progresses to AIDS, evolution seems to slow markedly, and the genetic diversity of the viral population drops. This evolutionary slowdown could be caused either by a reduction in the average viral replication rate or because selection pressures weaken with the collapse of the immune system. The former hypothesis (which we denote "cellular exhaustion") predicts a simultaneous reduction in both synonymous and nonsynonymous evolution, whereas the latter hypothesis (denoted "immune relaxation") predicts that only nonsynonymous evolution will slow. In this paper, we present a set of statistical procedures for distinguishing between these alternative hypotheses using DNA sequences sampled over the course of infection. The first component is a new method for estimating evolutionary rates that takes advantage of the temporal information in longitudinal DNA sequence samples. Second, we develop a set of probability models for the analysis of evolutionary rates in HIV populations in vivo. Application of these models to both synonymous and nonsynonymous evolution affords a comparison of the cellular-exhaustion and immune-relaxation hypotheses. We apply the procedures to longitudinal data sets in which sequences of the env gene were sampled over the entire course of infection. Our analyses (1) statistically confirm that an evolutionary slowdown occurs late in infection, (2) strongly support the immune-relaxation hypothesis, and (3) indicate that the cessation of nonsynonymous evolution is associated with disease progression.  相似文献   

7.
Hadfield JD  Wilson AJ  Kruuk LE 《Genetics》2011,187(4):1099-1113
Cryptic evolution has been defined as adaptive evolutionary change being masked by concurrent environmental change. Empirical studies of cryptic evolution have usually invoked a changing climate and/or increasing population density as the form of detrimental environmental change experienced by a population undergoing cryptic evolution. However, Fisher (1958) emphasized that evolutionary change in itself is likely to be an important component of "environmental deterioration," a point restated by Cooke et al. (1990) in the context of intraspecific competition. In this form, environmental deterioration arises because a winning lineage has to compete against more winners in successive generations as the population evolves. This "evolutionary environmental deterioration" has different implications for the selection and evolution of traits influenced by resource competition than general environmental change. We reformulate Cooke's model as a quantitative genetic model to show that it is identical in form to more recent developments proposed by quantitative geneticists. This provides a statistical framework for discriminating between the alternative hypotheses of environmental change and environmental deterioration caused by evolutionary change. We also demonstrate that in systems where no phenotypic change has occurred, there are many reasonable biological processes that will generate patterns in predicted breeding values that are consistent with what has been interpreted as cryptic evolution, and care needs to be taken when interpreting these patterns. These processes include mutation, sib competition, and invisible fractions.  相似文献   

8.
In an influential paper, Stephen Jay Gould and Richard Lewontin (1979) contrasted selection-driven adaptation with phylogenetic, architectural, and developmental constraints as distinct causes of phenotypic evolution. In subsequent publications Gould (e.g., 1997a,b, 2002) has elaborated this distinction into one between a narrow "Darwinian Fundamentalist" emphasis on "external functionalist" processes, and a more inclusive "pluralist" emphasis on "internal structuralist" principles. Although theoretical integration of functionalist and structuralist explanations is the ultimate aim, natural selection and internal constraints are treated as distinct causes of evolutionary change. This distinction is now routinely taken for granted in the literature in evolutionary biology. I argue that this distinction is problematic because the effects attributed to non-selective constraints are more parsimoniously explained as the ordinary effects of selection itself. Although it may still be a useful shorthand to speak of phylogenetic, architectural, and developmental constraints on phenotypic evolution, it is important to understand that such "constraints" do not constitute an alternative set of causes of evolutionary change. The result of this analysis is a clearer understanding of the relationship between adaptation, selection and constraints as explanatory concepts in evolutionary theory.  相似文献   

9.
10.

Background

The elucidation of the dominant role of horizontal gene transfer (HGT) in the evolution of prokaryotes led to a severe crisis of the Tree of Life (TOL) concept and intense debates on this subject.

Concept

Prompted by the crisis of the TOL, we attempt to define the primary units and the fundamental patterns and processes of evolution. We posit that replication of the genetic material is the singular fundamental biological process and that replication with an error rate below a certain threshold both enables and necessitates evolution by drift and selection. Starting from this proposition, we outline a general concept of evolution that consists of three major precepts.1. The primary agency of evolution consists of Fundamental Units of Evolution (FUEs), that is, units of genetic material that possess a substantial degree of evolutionary independence. The FUEs include both bona fide selfish elements such as viruses, viroids, transposons, and plasmids, which encode some of the information required for their own replication, and regular genes that possess quasi-independence owing to their distinct selective value that provides for their transfer between ensembles of FUEs (genomes) and preferential replication along with the rest of the recipient genome.2. The history of replication of a genetic element without recombination is isomorphously represented by a directed tree graph (an arborescence, in the graph theory language). Recombination within a FUE is common between very closely related sequences where homologous recombination is feasible but becomes negligible for longer evolutionary distances. In contrast, shuffling of FUEs occurs at all evolutionary distances. Thus, a tree is a natural representation of the evolution of an individual FUE on the macro scale, but not of an ensemble of FUEs such as a genome.3. The history of life is properly represented by the "forest" of evolutionary trees for individual FUEs (Forest of Life, or FOL). Search for trends and patterns in the FOL is a productive direction of study that leads to the delineation of ensembles of FUEs that evolve coherently for a certain time span owing to a shared history of vertical inheritance or horizontal gene transfer; these ensembles are commonly known as genomes, taxa, or clades, depending on the level of analysis. A small set of genes (the universal genetic core of life) might show a (mostly) coherent evolutionary trend that transcends the entire history of cellular life forms. However, it might not be useful to denote this trend "the tree of life", or organismal, or species tree because neither organisms nor species are fundamental units of life.

Conclusion

A logical analysis of the units and processes of biological evolution suggests that the natural fundamental unit of evolution is a FUE, that is, a genetic element with an independent evolutionary history. Evolution of a FUE on the macro scale is naturally represented by a tree. Only the full compendium of trees for individual FUEs (the FOL) is an adequate depiction of the evolution of life. Coherent evolution of FUEs over extended evolutionary intervals is a crucial aspect of the history of life but a "species" or "organismal" tree is not a fundamental concept.

Reviewers

This articles was reviewed by Valerian Dolja, W. Ford Doolittle, Nicholas Galtier, and William Martin
  相似文献   

11.
Thermodynamics and evolutionary theory have spent most of their shared history in adversarial relationship to one another. The point of this paper is to consider some qualitative ways in which thermodynamics can enrich both the theory and epistemology of evolution. The "autonomy of biology" posture in evolutionary theory hangs on the supposed uniqueness of why-questions in biology. With this posture, and with the general obstruction of constructive dialogue between evolution and the physical sciences it fosters, come the perennial accusations that Darwinism deals in adaptational teleology but not mechanisms. Thermodynamics provides for a two-tiered hierarchy of causation in nature in which the why-question is rendered not only legitimate materialistically, but essential to understanding the evolutionary process in its totality--from the emergence of life to the branching of lineages in speciation.  相似文献   

12.
This paper reviews the scientific career of Rupert Riedl and his contributions to evolutionary biology. Rupert Riedl, a native of Vienna, Austria, began his career as a marine biologist who made important contributions to the systematics and anatomy of major invertebrate groups, as well as to marine ecology. When he assumed a professorship at the University of North Carolina in 1968, the predominant thinking in evolutionary biology focused on population genetics, to the virtual exclusion of most of the rest of biology. In this atmosphere Riedl developed his "systems theory" of evolution, which emphasizes the role of functional and developmental integration in limiting and enabling adaptive evolution by natural selection. The main objective of this theory is to account for the observed patterns of morphological evolution, such as the conservation of body plans. In contrast to other "alternative" theories of evolution, Riedl never denied the importance of natural selection as the driving force of evolution, but thought it necessary to contextualize natural selection with the organismal boundary conditions of adaptation. In Riedl's view development is the most important factor besides natural selection in shaping the pattern and processes of morphological evolution.  相似文献   

13.
Major differences between the Western and "Russian" (Zavarzin, 1995) paradigms in ecology and evolutionary biology are described. The "Russian" paradigm suggests that there exist two, rather than one, quite independent lineages--species evolution and ecosystem evolution. This is based on the idea that life may exist just as a nutrient cycle. The main terms and concepts of the "Russian" paradigm are defined more exactly. An attempt is made to develop this paradigm so that it would be possible to describe not only phenomenology, but also mechanisms of ecosystem evolution. To simplify evolutionary phenomena logically, it is suggested to use the concept of conditionally complete causal explanation (Lekevicius, 1984; 1985), i.e. deduce evolutionary mechanisms from major principles of functioning. This methodology is adapted to model the main stages of the evolution of nutrient cycles (3.8-2.0 bln. y.a.) and the appearance and evolution of biophagy (1.7-0 bln. y.a.). Based on a multitude of examples, it is shown that these are functional constraints that are the forces directing evolution; those constraints emerge during the interaction of organisms and while the latter interact with the abiotic environment. Since the structure of an ecosystem is non-rigid, each species is able to accumulate features useful to both an ecosystem and itself. Those are individuals that die and reproduce, whereas all structures, from macromolecules to ecosystems, evolve.  相似文献   

14.
The mouse genome has undergone extensive chromosome rearrangement relative to the human genome since these species last shared a common ancestor. One possible consequence of these rearrangements is the deletion of genes that are located within evolutionary breakpoint regions. In this article, we present evidence of four human genes (COL21A1, STK17A, GPR145 and ARHI) that are located in regions corresponding to evolutionary breakpoints in rodents and lack mouse and rat orthologues. We propose that "evolutionary breakpoint-associated gene deletion" is an unexpected consequence of evolutionary chromosome rearrangement, and we describe a novel mechanism through which genes can be lost during evolution.  相似文献   

15.
The tempo and mode of morphological evolution are influencedby several factors, among which evolutionary transformationsin developmental processes are likely to be important. Comparingthe embryos of extant species in an explicit phylogenetic framwork allows the estimation of minimum average rates of evolutionin quantitative developmental parameters. It also allows delineationof the maximum time that complex qualitative transformationsin developmental mechanism take to evolve. This paper analyzesrates of quantitative and qualitative developmental evolutionusing examples drawn primarily from echinoderms. The resultsdemonstrate that rates of developmental evolution can be comparableto rates of morphological evolution. There is no indicationthat rates of evolution in development are lower for earlierstages, contrary to the prediction of "tree" models of epigeneticinteractions. In particular, rates of evolution in oogenesiscan exceed rates of evolution in adult body size. Rates of developmentalevolution can vary by up to two orders of magnitude within aclade. Whether such large scale variation in evolutionary ratesof developmental processes is a general phenomenon can onlybe answered by further study.  相似文献   

16.
Abstract Understanding biodiversity gradients is a long-standing challenge, and progress requires theory unifying ecology and evolution. Here, we unify concepts related to the speed of evolution, the influence of species richness on diversification, and niche-based coexistence. We focus on the dynamics, through evolutionary time, of community invasibility and species richness across a broad thermal gradient. In our framework, the evolution of body size influences the ecological structure and dynamics of a trophic network, and organismal metabolism ties temperature to eco-evolutionary processes. The framework distinguishes ecological invasibility (governed by ecological interactions) from evolutionary invasibility (governed by local ecology and constraints imposed by small phenotypic effects of mutation). The model yields four primary predictions: (1) ecological invasibility declines through time and with increasing temperature; (2) average evolutionary invasibility across communities increases and then decreases through time as the richness-temperature gradient flattens; (3) in the early stages of diversification, richness and evolutionary invasibility both increase with increasing temperature; and (4) at equilibrium, richness does not vary with temperature, yet evolutionary invasibility decreases with increasing temperature. These predictions emerge from the "evolutionary-speed" hypothesis, which attempts to account for latitudinal species richness gradients by invoking faster biological rates in warmer, tropical regions. The model contrasts with predictions from other richness-gradient hypotheses, such as "niche conservatism" and "species energy." Empirically testing our model's predictions should help distinguish among these hypotheses.  相似文献   

17.
18.
The rediscovery of Mendel's laws a century ago launched the science that William Bateson called "genetics," and led to a new view of evolution combining selection, particulate inheritance, and the newly characterized phenomenon of "mutation." This "mutationist" view clashed with the earlier view of Darwin, and the later "Modern Synthesis," by allowing discontinuity, and by recognizing mutation (or more properly, mutation-and-altered-development) as a source of creativity, direction, and initiative. By the mid-20th century, the opposing Modern Synthesis view was a prevailing orthodoxy: under its influence, "evolution" was redefined as "shifting gene frequencies," that is, the sorting out of pre-existing variation without new mutations; and the notion that mutation-and-altered-development can exert a predictable influence on the course of evolutionary change was seen as heretical. Nevertheless, mutationist ideas re-surfaced: the notion of mutational determinants of directionality emerged in molecular evolution by 1962, followed in the 1980s by an interest among evolutionary developmental biologists in a shaping or creative role of developmental propensities of variation, and more recently, a recognition by theoretical evolutionary geneticists of the importance of discontinuity and of new mutations in adaptive dynamics. The synthetic challenge presented by these innovations is to integrate mutation-and-altered-development into a new understanding of the dual causation of evolutionary change--a broader and more predictive understanding that already can lay claim to important empirical and theoretical results--and to develop a research program appropriately emphasizing the emergence of variation as a cause of propensities of evolutionary change.  相似文献   

19.
Molecular data are ideal for exploring evolutionary history because of its universality, stochasticity, and abundance. These features provide a means of exploring the evolutionary history of all organisms (including those that do not tend to leave fossils), potentially within a statistical framework that allows testing of evolutionary hypotheses. However, the discrepancy between molecular and paleontological dates for three key "explosive" radiations inferred from the fossil record--the Cambrian explosion of animal phyla and the post-KT radiations of modern orders of mammals and birds--have led to a reexamination of the assumptions on which molecular dates are based. Could variation in the rate of molecular evolution, perhaps associated with "explosive" radiations, cause overestimation of diversification dates? Here I examine four hypothetical causes of fast molecular rates in explosive radiations--body size, morphological rate, speciation rate, and ecological diversification--using available empirical evidence on patterns of variation in rate of molecular evolution.  相似文献   

20.
The evolutionary history of morphological structures generally is equated with that of the taxa that carry them. It is argued here that, analogous to genes, developmental genetic pathways underlying morphological structures may be subject to developmental evolutionary changes that result, for instance, in duplication (serial homology analogous to gene duplication and paralogy). Entities that undergo evolution are expected to be related to each other as a tree. Just as with molecular evolution, "structure trees" and species trees sometimes may be incongruent, with implications for morphological homology concepts. Detection of structure trees through morphological evolutionary analyses may point to an entity that is maintained through evolution, possibly in part because it is a developmentally integrated structure ("individualized"). This idea is illustrated in a morphological evolutionary analysis of leaf primordia. These analyses suggest that leaf primordia in monocots and close relatives are related to each other as a tree and, therefore, are developmentally integrated, evolving entities. Among monocot primordia this tree structure breaks down, and it is concluded that there is no entity, the "monocot leaf primordium." However, one group of primordia is identified within monocots that have uniform characteristics and that are well represented by model species maize and rice. Such analyses of structure trees can facilitate the extrapolation and interpretation of results from molecular developmental and other comparative studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号