首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low concentrations of ethylene inhibit hypocotyl elongation of etiolated lettuce seedlings (Lactuca sativa cv. Grand Rapids), whereas red light does not inhibit it. The plumular hook tightens in response to either ethylene or red light. A combination of these two factors gives an additive response. Red light has no effect on ethylene production and red light will cause hook closure even under hypobaric pressure which removes endogenous ethylene. This suggests that ethylene and red light act independently in causing hook closure.  相似文献   

2.
There is indirect evidence that soil microorganisms producing ethylene (C(2)H(4)) can influence plant growth and development, but unequivocal proof is lacking in the literature. A laboratory study was conducted to demonstrate the validity of this speculation. Four experiments were carried out to observe the characteristic "triple" response of etiolated pea seedlings to C(2)H(4) microbially derived from l-methionine as a substrate in the presence or absence of Ag(I), a potent inhibitor of C(2)H(4) action. In two experiments, the combination of l-methionine and Acremonium falciforme (as an inoculum) was used, while in another study the indigenous soil microflora was responsible for C(2)H(4) production. A standardized experiment was conducted with C(2)H(4) gas to compare the contribution of the microflora to plant growth. In all cases, etiolated pea seedlings exhibited the classical triple response, which includes reduction in elongation, swelling of the hypocotyl, and a change in the direction of growth (horizontal). The presence of Ag(I) afforded protection to the pea seedlings against the microbially derived C(2)H(4). This study demonstrates that microbially produced C(2)H(4) in soil can influence plant growth.  相似文献   

3.
Externally applied GA greatly promoted elongation of the plumularhook section of the etiolated Alaska pea seedling, but IAA hadno such effect when given either alone or with GA. PCIB inhibitedelongation of the plumular hook section both in the presenceand absence of applied GA. The PCIB effect in the absence ofGA was partially overcome by IAA, but not completely. On theother hand, the PCIB effect in the presence of GA was completelyovercome by IAA. No antagonic response was, however, obtainedbetween GA and PCIB. CCC also retarded elongation of the sectionand this inhibition was completely overcome by GA, but not byIAA. There was little difference in the amount of endogenous auxindetectable in GA treated and untreated sections. These resultssuggest that auxin is necessary for the growth of both GA treatedand untreated plumular hook sections and that auxin and gibberellinact differently on the growth of the section. (Received April 24, 1968; )  相似文献   

4.
InHordeum vulgare cultivar “Kirin-choku No. 1”, the final length of intact coleoptiles of totally etiolated seedlings was approximately twice as long as that of those grown under continuous red light. The fluence response curve of the latter was biphasic; the low-energy effect was saturated by red light of ca. 50 J m−2 which gave rise to about 40% of the maximum inhibition by continuous irradiation with red light of 1.2 W m−2, whereas the high-energy effect was induced by irradiation for 1 hr or longer. Coleoptiles of 3-day-old seedlings were most sensitive to light causing the low-energy effect, which was repeatedly red/far-red reversible. The growth inhibition was correlated to the photometrically measured percentage of Pfr so that the maximum effect was induced by red light of 50 J m−2 which transformed 70% of phytochrome to Pfr in the coleoptile tip. Wavelength dependence of the high-energy effect showed that monochromatic light of 400, 600 and 650 nm greatly inhibited the coleoptile growth, whereas light of 700 and 750 nm promoted it instead. The effect was also induced by intermittent irradiation with red light, and the more frequently the intermittent treatment was given, the more the growth was inhibited.  相似文献   

5.
6.
The stem elongation responses of etiolated peas (Pisum sativum L.) to fluorescent light (35–45 mol.mt-2.s-1) were recorded using high resolution position transducers. Continuous fluorescent light decreased growth by 70% within 9 min. The growth rate declined to 5% of the control over the next 2 h and remained at this level for 7 h. Pulses of fluorescent light ranging from 8 s to 34 min led to partial suppression of growth and resulted in a complex kinetic response. The distinctive kinetics of blue and red light inhibition were apparent as components of the responses to non-saturating levels of fluorescent light. The rapid suppression of growth by blue light was not affected by concomitant red light. The lag time for the onset of red light inhibition was not affected by concomitant blue, but the rate of inhibition appeared accelerated.  相似文献   

7.
Samimy C 《Plant physiology》1978,61(5):772-774
The apical 1-cm hypocotyl of dark-grown `Clark' soybean (Glycine max [L.] Merr.) seedlings produced ethylene at rates of 7 to 11 nanoliters per hour per gram when attached to the cotyledons. Such physiologically active rates occurred prior to the deceleration of hypocotyl elongation caused by the temperature of 25 C.

Daily exposure of the etiolated seedlings to red light promoted hypocotyl elongation and prevented its lateral swelling. Red light treatment also caused a 45% decrease in ethylene production. Far red irradiation following the red treatment reversed the red effects, suggesting that the ethylene intervenes as a regulator in the phytochrome control of `Clark' soybean hypocotyl growth at 25 C.

  相似文献   

8.
9.
Data regarding the interrelation of nitric oxide (NO) content in roots of 3-day-old etiolated pea seedlings and their growth under different concentrations of N-containing compounds were obtained. The concentration of exogenous compounds (sodium nitroprusside SNP, KNO3, NaNO2, L-arginine) rendering an inhibiting effect on the growth of roots were established, and the NO content in roots was determined at these concentration. It was shown that the inhibition of growth and highest NO content in the roots was determined with SNP (4 mM) and NaNO2 (2 mM) during 24 h exposition of seedlings. This dependence was not established in combinations with KNO3 (20 mM) and L-arginine (4 mM). We established that a NO scavenger, hemoglobin (4 μM), fully or partially removed the toxic effect of SNP, nitrate, and nitrite on growth. The effect of NO on the growth and the participation of N-containing compounds in generation of NO in roots of pea seedlings is discussed.  相似文献   

10.
The effects of a series of concentrations of ethylene (10, 20, 40, to 10,240 nl/l) on elongation, diameter, and geotropism of the stems and roots of etiolated seedlings of Pisum sativum L., Arachis hypogea L., Phaseolus vulgaris L., and Gossypium hirsutum L. were measured or observed. Of the 24 possible responses, 4 were unaffected at the concentrations used, 5 were affected slightly, and the remaining responses exhibited a 14-fold range of apparent half-maximum concentration dependencies (i.e. 95 nl/l for the effect on pea epicotyl geotropism to 1350 nl/l for the promotion of cotton hypocotyl diameter). Six or possibly eight of these responses appear to have the same concentration dependencies while the others fell in pairs or as individual responses. The data, if interpreted in a manner analogous to enzyme kinetics, are indicative of more than one primary mechanism for ethylene action in plants.  相似文献   

11.
The biosynthetic basis for the high rates of ethylene production by the apical region of etiolated pea (Pisum sativum L.) seedlings was investigated. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was quantified in extracts of various regions of seedlings by measuring isotopic dilution of a 2H-labelled internal standard using selected-ion-monitoring gas chromatography/mass spectrometry. The ACC levels in the apical hook and leaves were much higher than in the expanded internodes of the epicotyl. The capacity of excised tissue sections to convert exogenous ACC to ethylene was also much greater in the apical region, reflecting the distribution of soluble protein in the epicotyl.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - FW fresh weight - GC/MS coupled gas chromatography/mass spectrometry - HPLC high-performance liquid chromatography  相似文献   

12.
Intact etiolated bean (Phaseolus vulgaris L. cv. Limburgse vroege) seedlings were illuminated with red light (10.5 W·m-2) for 10 min. After different time intervals ethylene production, and contents of 1-aminocyclopropane-1-carboxylic acid (ACC) and 1-(malonylamino)cyclopropane-1-carboxylic acid were measured. The red-light-induced decrease of ethylene production in 8-d-old intact etiolated bean seedlings was fast, strong and long-lasting ad was mediated through the phytochrome system. This effect appeared to be strictly age-dependent, as it could not be detected in plants younger than 6 d or older than 11 d.The capacity for the conversion of ACC to ethylene was not affected by red light. The inhibitory effect of the light treatment on ethylene production could be related to a reduced free-ACC content. This reduction was a consequence of a temporary non-reversible increase of ACC malonylation and a long-lasting, for a certain time reversible, inhibition of ACC synthesis. The effect of a brief irradiation with red light on the decrease of ethylene production and free-ACC content was completed after about 2 h. Reversibility by far-red, however, persisted for at least 3 h, and was lost between 3 and 6 h.Abbrevation ACC 1-aminocyclopropane-1-carboxylic acid - M-ACC 1-(malonylamino)cyclopropane-1-carboxylic acid  相似文献   

13.
Stem sections of etiolated pea seedlings (Pisum sativum L. cv. Alaska) were incubated overnight on tracer amounts of l-[U-(14)C]methionine and, on the following morning, on 0.1 millimolar indoleacetic acid to induce ethylene formation. Following the overnight incubation, over 70% of the radioactivity in the soluble fraction was shown to be associated with S-methylmethionine (SMM). The specific radioactivity of the ethylene evolved closely paralleled that of carbon atoms 3 and 4 of methionine extracted from the tissue and was always higher than that determined for carbon atoms 3 and 4 of extracted SMM.Overnight incubation of pea stem sections on 1 millimolar methionine enhanced indoleacetic acid-induced ethylene formation by 5 to 10%. Under the same conditions, 1 millimolar homocysteine thiolactone increased ethylene synthesis by 20 to 25%, while SMM within a concentration range of 0.1 to 10 millimolar did not influence ethylene production. When unlabeled methionine or homocysteine thiolactone was applied to stem sections which had been incubated overnight in l-[U-(14)C]methionine, the specific radioactivity of the ethylene evolved was considerably lowered. Application of unlabeled SMM reduced the specific radioactivity of ethylene only slightly.  相似文献   

14.
Continuous illumination of 10-day-old etiolated dwarf pea seedlings caused an increase in lipoxygenase activity. At the same time the activity in both stem and leaf tissue decreased. The lipoxygenase isoenzymes of the whole seedling and separated leaf and stem tissue were affected differently by light. It is concluded that lipoxygenase is not involved directly in photosynthesis or chloroplast development.  相似文献   

15.
Lupin seeds treated with 1-amino-cyclopropane-1-carboxylic acid (ACC) or2-chloroethylphosphonic acid (CEPA) produced hypocotyls showing a typicalethylene growth response (reduced elongation and increased thickness), whichcould be efficiently counteracted by the presence of silver thiosulfate (STS).The fact that ACC and CEPA stimulated the ethylene produced in different zonesalong the hypocotyls suggests that these compounds, which are stored in theseeds during treatment, were transported to and along the hypocotyl. The same istrue in hypocotyls from STS-treated seeds, which indicates that stress ethyleneis induced by metal toxicity. CEPA was more effective than ACC in both producingethylene and influencing growth due to the high capacity of the hypocotyl toconjugate ACC. At the same time that CEPA inhibited hypocotyl elongation, thehypocotyl diameter increased and ethylene production exceeded the maximum valueof the control. The subsequent recovery of hypocotyl elongation coincided with adecrease in ethylene production and involved cell elongation. The final celllength was similar (in ACC-) or higher (in CEPA-treated plants) than in thecontrol, although the hypocotyls were shorter in both cases, while the number ofcells per column was reduced to half that observed in the control. Thisinhibition of cell division caused by ethylene was selective since the number ofcell layers did not change. The variations in cell diameter in the epidermisand, especially, in the cortex and pith were correlated with the variations inhypocotyl diameter produced by ACC, CEPA and STS. The results show that theethylene-induced hypocotyl thickening was irreversible and mainly due to anincrease in cell diameter, while the inhibition of hypocotyl elongation wasreversible and involved irreversible inhibition of cell division and,paradoxically, stimulation of cell elongation to produce cells longer than thoseof the control.  相似文献   

16.
Summary Both ethylene and IAA induce swelling in the sub-apical region of etiolated pea plants. The modified cells of these two types of swellings differ both morphologically and in their enzyme composition. In ethylene the cell walls become thickened within 24 h and the level of peroxidase is enhanced; ethylene does not affect cellulase levels. IAA induced swellings are not accompanied by early thickening of cell walls or enhanced peroxidase activity, but IAA greatly increases the level of cellulase. It is proposed that the retardation of extension growth by ethylene treatment results from the deposition of longitudinal microfibrils in the walls and that cross linking bonds in the polysaccharide matrix prevent their separation. Lateral expansion can occur, however, in the presence of auxin-induced cellulase which breaks or prevents the formation of these bonds.  相似文献   

17.
Brassinosteroid, an analogue of brassinolide, (BR) (2α, 3α, 22β, 23β-tetrahydroxy-24β-methyl-B-homo-7-oxa-5α-cholestan-6-one), was tested in conjunction with indole-3-acetic acid (IAA), naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-butyric acid (IBA), indole-3-propionic acid (IPA), indole-3-pyruvic acid (IPyA), indole-3-aldehyde (IAld), indole-3-carbinol (ICB) or tryptophan (TRP) for its effects on ethylene production by etiolated mung bean (Vigna radiata (L.) Rwilcz cv. Berken) hypocotyl segements. The enhancement of ethylene production due to BR was greatest in conjunction with 1 μM IBA, 2,4-D, IAA, or NAA (these increases were 2580, 2070, 890, and 300%, respectively). When increasing concentrations of IBA, 2,4-D, IAA, or NAA were used, there was a decrease in the percentage stimulation by BR. Both IPyA and IPA had different optimal concentrations than the other auxins tested. Their BR-enhanced maximum percentage stimulations (1430 and 1580%) were greatest with 5 μM IPya and 10 μM IPA, respectively. There was a marked reduction in the percentage stimulation by BR with either 100 μM IPyA or IPA. The inactive indoles (IAld, ICB, or TRP) did not synergize with BR at any of the concentrations tested. Four hours following treatment those segments in contact with 1 μM BR with or without the addition of 10 μM IAA began to show a stimulation in ethylene production above the control and this stimulation became greater over the following 20 h. It was necessary for BR to be in continual contact with the tissue to have a stimulatory effect on auxin-induced ethylene production. When segments excised from greater distances below the hypocotyl hook, were treated with either IAA alone or in combination with BR, there was a decrease in ethylene production with increasing distance. There was no effect of hypocotyl length on BR stimulation of auxin-induced ethylene production; however, there was a definite decrease in ethylene production when IAA was applied alone.  相似文献   

18.
Abstract. A system is described whereby seedling development can be analysed in terms of growth rates of specific 1 mm regions of the hypocotyl. The technique involves time-lapse photography of marked hypocotyls in a specially designed chamber which accommodates seedlings in various orientations with respect to gravity, and under irradiation regimes differing in light quality, quantity and direction. The results of a preliminary study of the upward growth of etiolated or green cress seedlings in darkness or overhead while light are reported. Highest growth rates in etiolated seedlings were observed in zones in the upper one-third of ihe hypocotyl. In green seedlings, growth was more prominent within the subapical zones. Light further restricted growth of the median and basal zones in both types of seedling. However, in their immediate responses to the onset of irradiation, green and etiolated seedlings differed markedly. In etiolated seedlings, recovery of growth at the apex was accompanied by the development of inhibition in the median-basal regions; green seedlings showed a transient inhibition of growth in the apical zone together with a strong immediate inhibition in the median-basal regions.  相似文献   

19.
《Phytochemistry》1986,25(2):319-322
The effect of octylguanidine on the growth of intact etiolated barley seedlings was tested. Inhibition of root and shoot growth was observed and this inhibition was partially relieved by addition of K+ to the culture medium. Octylguanidine probably inhibits growth of roots and shoots by interfering with the transport of K+ across the cell membrane.  相似文献   

20.
A survey of a range of plant tissues showed that the hydroxycinnamate CoA ligase in crude extracts of pea shoots had a high relative activity towards sinapic and other methoxycinnamic acids, together with high activity with p-coumaric acid. The pea enzyme has been resolved by chromatography on DEAE-cellulose into two peaks which differ in their substrate specificity. The form which elutes at relatively low salt concentrations has a ratio activity towards p-coumaric and sinapic acids of about 1.8:1 while the form eluting at higher salt concentrations, although showing very high activity with p-coumaric acid, is inactive towards sinapic acid. The pattern of elution of these forms following gel filtration on Ultragel AcA 34 and Sephadex G100 suggests that these two isoenzymes which differ in ionic properties and substrate specificity can exist in two or three molecular weight forms and there is evidence that these forms are under certain circumstances interconvertible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号