首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism for synthesis of monounsaturated fatty acids under aerobic and anaerobic conditions was studied in the facultative anaerobic cyanobacterium, Oscillatoria limnetica. The hexadecenoic acid (C161) of aerobically grown O. limnetica was shown to contain both the 7 (79%) and 9 (21%) isomers, while the octadecenoic (C181) acid was entirely the 9 acid. Incorporation of [2-14C] acetate into the fatty acids under aerobic conditions resulted in synthesis of the 7 and 9 C161 and the 9 C181. Synthesis of unsaturated fatty acids in the presence of DCMU required sulfide. Anaerobic incubations in the presence of DCMU and sulfide (less than 0.003% atmospheric oxygen) resulted in a two-fold increase in monounsaturated fatty acids of both 7 and 9 C161 and 9 and 11 C181. The synthesis of these isomers is characteristic of a bacterialtype, anaerobic pathway.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - MFA monounsaturated fatty acid  相似文献   

2.
By means of reaction calorimetry we measured the apparent enthalpy change, Happ, of the binding of Mn2+-ions to goat -lactalbumin as a function of temperature. The observed Happ can be written as the sum of contributions resulting from a conformational and a binding process. In combination with the thermal unfolding curve of goat -lactalbumin, we succeeded in separating the complete set of thermodynamic parameters (H, G, S, Cp) into the binding and conformational contributions. By circular dichroism we showed that NH 4 + -ions, upon binding to bovine a-lactalbumin, induce the same conformational change as do Na+ and K+: the binding constant equals 98 ± 9 M–1.Abbreviations BLA bovine -lactalbumin - GLA goat -lactalbumin - HLA human -lactalbumin - CD circular dichroism Offprint requests to: H. Van DaelDeceased  相似文献   

3.
Negative-ion fast atom bombardment tandem mass spectrometry has been used in the characterization of non-, mono-, di- and trisulfated disaccharides from heparin and heparan sulfate. The positional isomers of the sulfate group of monosulfated disaccharides were distinguished from each other by negative-ion fast atom bombardment tandem mass spectra, which provide an easy way of identifying the positional isomers. This fast atom bombardment collision induced dissociation mass spectrometry/mass spectrometry technique was also applied successfully to the characterization of di- and trisulfated disaccharides.Abbreviations FABMS fast atom bombardment mass spectrometry - CID collision induced dissociation - MIKE mass analysed ion kinetic energy - MS/MS mass spectrometry/mass spectrometry - HPLC high performance liquid chromatography - UA d-gluco-4-enepyranosyluronic acid - CS chondroitin sulfate - DS dermatan sulfate - HA hyaluronan - Hep heparin - HS heparan sulfate - UA(14) GlcNAc 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNAc 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcN6S 2-amino-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcN 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcN6S 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcNS 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNS 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(13)GalNAc 2-acetamido-2-deoxy-3-O-(-d-Gluco-4-enepyranosyluronic acid)-d-galatose - UA(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA2S(13)GalNAc 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-galactose - UA2S(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA2S(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA(13)GalNAcDiS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA(13)GlcNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose.  相似文献   

4.
Population-level variation in the leaf carbon isotope discrimination () values was examined in Encelia farinosa, a common Sonoran Desert shrub. There was approximately a 2 range in values among different plants. These differences in values among neighboring plants were maintained through time, both under conditions when neighbors were present and after neighbors had been removed. Individuals with high values were found to have an accelerated growth rate when these plants were released from competition for water. Individuals with low values were better able to persist through long-term drought. These data suggest possible tradeoffs between conditions favoring high- and low--value plants within a natural population. Given the temporal variability in precipitation between years and spatial variability in microhabitat quality in the Sonoran Desert, variation in values among E. farinosa plants will be maintained within a population.  相似文献   

5.
The kinetics and temperature dependencies of development and relaxation of light-induced absorbance changes caused by deepoxidation of violaxanthin to antheraxanthin and zeaxanthin (Z; peak at 506 nm) and by light scattering (S; peak around 540 nm) as well as of nonphotochemical quenching of chlorophyll fluorescence (NPQ) were followed in cotton leaves. Measurements were made in the absence and the presence of dithiothreitol (DTT), an inhibitor of violaxanthin deepoxidase. The amount of NPQ was calculated from the Stern-Volmer equation. A procedure was developed to correct gross AS (Sg) for absorbance changes around 540 nm that are due to a spectral overlap with Z. This protocol isolated the component which is caused by light-scattering changes alone (Sn). In control leaves, the kinetics and temperature dependence of the initial rate of rise in Sn that takes place upon illumination, closely matched that of Z. Application of DTT to leaves, containing little zeaxanthin or antheraxanthin, strongly inhibited both Sn and NPQ, but DTT had no inhibitory effect in leaves in which these xanthophylls had already been preformed, showing that the effect of DTT on An and NPQ results solely from the inhibition of violaxanthin deepoxidation. The rates and maximum extents of Sn and NPQ therefore depend on the amount of zeaxanthin (and/or antheraxanthin) present in the leaf. In contrast to the situation during induction, relaxation of Z upon darkening was much slower than the relaxation of Sn and NPQ. The relaxation of Sn and NPQ showed quantitatively similar kinetics and temperature dependencies (Q10=2.4). These results are consistent with the following hypotheses: The increase in lumen-proton concentration resulting from thylakoid membrane energization causes deepoxidation of violaxanthin to antheraxanthin and zeaxanthin. The presence of these xanthophylls is not sufficient to cause Sn or NPQ but, together with an increased lumen-proton concentration, these xanthophylls cause a conformational change, reflected by Sn. The conformational change facilititates nonradiative energy dissipation, thereby causing NPQ. Membrane energization is prerequisite to conformational changes in the thylakoid membrane and resultant nonradiative energy dissipation but the capacity for such changes in intact leaves is quite limited unless zeaxanthin (and/or antheraxanthin) is present in the membrane. The sustained Sn and NPQ levels that remain after darkening may be attributable to a sustained high lumen-proton concentration.Abbreviations A antheraxanthin - DTT dithiothreitol - F, Fm chlorophyll fluorescence yield at actual, full closure of the PSII centers - NPQ nonphotochemical chlorophyll fluorescence quenching - PFD photon flux density - PSII photosystem II - V violaxanthin - Z zeaxanthin - Sn, Z spectral absorbance change caused by light-scattering, violaxanthin deepoxidation We thank Connie Shih for skillful assistance in growing the plants, and for conducting HPLC analyses. A Carnegie Institution Fellowship and a Feodor-Lynen-Fellowship by the Alexander von Humboldt-Foundation to W. B. is gratefully acknowledged. This work was supported in part by Grant No. 89-37-280-4902 of the Competitive Grants Program of the U.S. Department of Agriculture to O.B. This is C. I. W. — D. P. B. Publication No. 1094.  相似文献   

6.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

7.
Clostridium sporogenes MD1 grew rapidly with peptides and amino acids as an energy source at pH 6.7. However, the proton motive force (p) was only –25 mV, and protonophores did not inhibit growth. When extracellular pH was decreased with HCl, the chemical gradient of protons (ZpH) and the electrical membrane potential () increased. The p was –125 mV at pH 4.7, even though growth was not observed. At pH 6.7, glucose addition did not cause an increase in growth rate, but increased to –70 mV. Protein synthesis inhibitors also significantly increased . Non-growing, arginine-energized cells had a of –80 mV at pH 6.7 or pH 4.7, but was not detected if the F1F0 ATPase was inhibited. Arginine-energized cells initiated growth if other amino acids were added at pH 6.7, and and ATP declined. At pH 4.7, ATP production remained high. However, growth could not be initiated, and neither nor the intracellular ATP concentration declined. Based on these results, it appears that C. sporogenes MD1 does not need a large p to grow, and p appears to serve as a mechanism of ATP dissipation or energy spilling.Mandatory disclaimer: Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.  相似文献   

8.
The enzyme 6-desaturase is responsible for the conversion of linoleic acid (18:2) to -linolenic acid (18:3). A cyanobacterial gene encoding 6-desaturase was cloned by expression of a Synechocystis genomic cosmid library in Anabaena, a cyanobacterium lacking 6-desaturase. Expression of the Synechocystis 6-desaturase gene in Anabaena resulted in the accumulation of -linolenic acid (GLA) and octadecatetraenoic acid (18:4). The predicted 359 amino acid sequence of the Synechocystis 6-desaturase shares limited, but significant, sequence similarity with two other reported desaturases. Analysis of three overlapping cosmids revealed a 12-desaturase gene linked to the 6-desaturase gene. Expression of Synechocystis 6-and 12-desaturase in Synechococcus, a cyanobacterium deficient in both desaturases, resulted in the production of linoleic acid and -linolenic acid.  相似文献   

9.
Brevibacterium flavum 22LD-P cells were shown to maintain a transmembrane pH gradient (pH) from 0.6 to 1.8–2 units and a transmembrane electric potential difference () from 0 to 200 mV depending on the pH and ionic composition of the incubation medium, grwoth substrate and concentration of cells. decreased from 120–140 mV to 0 when medium pH was lowered from neutral to 5.0–5.5 and increased to 180–200 mV when medium pH was raised to 8–9 in cells utilizing acetate or endogenous substrate. Cells growing on sucrose, kept around 100–120 mV at neutral as well as acidic medium pH. Intracellular pH in the acetate utilizing or endogenously respiring cells was maintained with the range of 8.9 to 5.5 at medium pH ranging from 9.1 to 4.0, respectively. Sucrose grown cells were able to maintain a more stable intracellular pH. Endogenously respiring cells in potassium phosphate buffer at high biomass concentrations maintained larger pH and relatively smaller , than the same cells in diluted suspensions. Cells in sodium phosphate buffer possessed larger and almost no pH, but was still dependent on biomass concentration.The lack of intracellular pH homeostasis and the collapse of at acid medium pH are discussed in the context of cell membrane proton permeability.  相似文献   

10.
The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update   总被引:14,自引:0,他引:14  
Mitochondrial dysfunction has been shown to participate in the induction of apoptosis and has even been suggested to be central to the apoptotic pathway. Indeed, opening of the mitochondrial permeability transition pore has been demonstrated to induce depolarization of the transmembrane potential (m), release of apoptogenic factors and loss of oxidative phosphorylation. In some apoptotic systems, loss of m may be an early event in the apoptotic process. However, there are emerging data suggesting that, depending on the model of apoptosis, the loss of m may not be an early requirement for apoptosis, but on the contrary may be a consequence of the apoptotic-signaling pathway. Furthermore, to add to these conflicting data, loss of m has been demonstrated to not be required for cytochrome c release, whereas release of apoptosis inducing factor AIF is dependent upon disruption of m early in the apoptotic pathway. Together, the existing literature suggests that depending on the cell system under investigation and the apoptotic stimuli used, dissipation of m may or may not be an early event in the apoptotic pathway. Discrepancies in this area of apoptosis research may be attributed to the fluorochromes used to detect m. Differential degrees of sensitivity of these fluorochromes exist, and there are also important factors that contribute to their ability to accurately discriminate changes in m.  相似文献   

11.
SCM2, a novel gene encoding a yeast tryptophan permease, was cloned as a high-copy-number suppressor of cse2-1. The cse2-1 mutation causes cold sensitivity, temperature sensitivity and chromosome missegregation. However, only the cold-sensitive phenotype of cse2-1 cells is suppressed by SCM2 at high copy. SCM2 is located on the left arm of yeast chromosome XV, adjacent to SUP3 and encodes a 65 kDa protein that is highly homologous to known amino acid permeases. Four out of five disrupted scm2 alleles (scm21-4) cause slow growth, whereas one disrupted allele (scm25) is lethal. Cells with both the scm21 and trp1-101 mutations exhibit a synthetic cold-sensitive phenotype and grow much more slowly at the permissive temperature than cells with a single scm21 or trp1-101 mutation. A region of the predicted SCM2 protein is identical to the partial sequence recently reported for the yeast tryptophan permease TAP2, indicating that SCM2 and TAP2 probably encode the same protein.  相似文献   

12.
Pseudomonas exotoxin A (PE) is one of the most potent cytotoxic agents produced byPseudomonas aeruginosa. In this study, we examined the possibility of using PE with a deletion of 38 carboxyl-terminal amino acid residues, designated PE(576–613), for active immunization against PE-mediated disease. We first examined the toxic effects of PE and PE(576–613) on 5- and 9-week-old ICR mice. The results show that the subcutaneous administration of PE(576–613) at a dose of 250 µg was still nontoxic to 5- and 9-week-old ICR mice, while native PE was lethal at a dose of 0.5 and 1 µg, respectively. PE(576–613) was then used to immunize ICR mice. The minimum dose of PE(576–613) that could effectively induce anti-PE antibodies in 5- and 9-week-old ICR mice was found to be 250 ng. However, immunization with 250 ng PE(576–613) failed to protect the immunized mice from a lethal dose of PE. The effective immunization dose of PE(576–613) that could protect mice against a 2 µg PE challenge was found to be 15 µg. In addition, sera obtained from PE(576–613)-immunized ICR mice were able to neutralize PE intoxication and effectively protect mice from PE. Thus, PE(576–613) may be used as an alternative route to new PE vaccine development.  相似文献   

13.
Summary Clostridium thermocellum produced different levels of true cellulase (Avicelase) depending on the carbon source used for growth. In defined medium with fructose, the cellulase titer was seven times higher than with cells growing on cellobiose and four times higher than cells growing with glucose. During the lag phase on fructose, the differences were even more dramatic, i.e. 60 times higher than in cells growing on cellobiose and 40 times that of cells lagging or growing in glucose. In an attempt to detect factors that might contribute to these differences, we considered intracellular ATP, chemical potential (pH), electrical potential (Y), proton motive force (p), growth rate, and rates of uptake of inorganic phosphate and sugars. We noted a direct correlation between cellulase production and intracellular ATP levels and an inverse relationship of cellulase production with Y and p values. It thus appears that cellulase is best produced by cells high in ATP and low in Dp and its electrical component DY. There was no obvious relationship between the cellulase titer and the other parameters. Although the physiological significance of such correlations is unknown, the data suggest that further investigation is warranted.  相似文献   

14.
A theory of conformational transitions in closed circular DNA as a function of topological linking number of the molecule () is elaborated taking into account topological and energetical considerations. The theory predicts a step-like dependence of a number of superhelical turns in DNA molecules () on . Thus, the number of superhelical turns = for small values of . For a large (when conformational transitions begin to occur) =–ij, where ij is the total angle of conformational transitions for a given . This prediction is in good agreement with published data on the dependence of the sedimentation coefficient of circular DNA molecules on their topological linking number. The results also allow to explain the disagreement between a number of titratable superhelical turns in circular DNA molecules and a number of supercoiles seen on electron micrographs for molecules with sufficiently large .  相似文献   

15.
The reaction of methanol dehydrogenase with cytochrome c L from Methylophaga marina and the reactions of the non-physiological substrates, Wurster's blue and ascorbic acid, with both proteins were studied as a function of temperature (4–32 °C), pressure (1–2000 bar) and ionic strength using the optical high pressure stopped-flow method. The thermodynamic parameters H, S and V were determined for all reactions where electron transfers are involved. These data allowed the determination of the Maxwell relationships which proved the internal thermodynamic consistency of the system under study. A conformational change on the cytochrome c L level was deduced from both breaks in the Arrhenius plots and the variation of the V with temperature.Abbreviations MOPS 4-morpholinepropanesulfonic acid - CHES 2-(cyclohexylamino)ethanesulfonic acid - MDH methanol dehydrogenase - EDTA ethylenedinitrilotetraacetic acid disodium salt - BTB bromothymol blue (3,3-dibromothymolsulfoneph-thalein) - PQQ 2,7,9-tricarboxy-lH-pyrrolo-[2,3f]quinoline-4,5-dione - cytochrome c HH mammalian horse heart cytochrome c  相似文献   

16.
The relationship between the electrochemical proton gradient, H+ , and citrate transport has been studied in tonoplast vesicles from Hevea brasiliensis (the rubber tree). Vesicles were generated from lyophilized samples of fresh vacuoles obtained from the latex sap. Methylamine was used to measure intravesicular pH and lipophilic ions to determine the electrical potential difference () across the tonoplast. When incubated at pH 7.5 in the absence of ATP, the tonoplast vesicles showed a pH of 0.6 units (interior acid) and a of about-100 mV (interior negative). This potential is thought to be made up of contributions from an H+ diffusion potential, diffusion potentials from other cations and a Donnan potential arising from the presence of internal citrate. In the presence of 5 mol m-3 MgATP the pH was increased to about 1.0 unit and the to about-10 mV. Under these conditions the proton-motive force ( p H+ /F) became positive and reached +50 mV. These effects were specific to MgATP (ADP and Mg2+ having no significant effect) and were prevented by the protonophore p-trifluoromethoxycarbonylcyanidephenylhydrazone (FCCP). Citrate uptake by the vesicles was markedly stimulated by MgATP; ADP and Mg2+ again had no effect. Nigericin greatly increased pH and this was associated with a large increase in citrate accumulation. The results indicate that the vesicle membrane possesses a functional H+-translocating ATPase. The H+ generated by this ATPase can be used to drive citrate uptake into the vesicles. The properties of the tonoplast vesicles are compared with those of the fresh latex vacuoles.Abbreviations H+ electrochemical proton gradient - electrical potential difference across membrane - p proton-motive force ( H+ /F) - FCCP p-trifluoromethoxycarbonylcyanidephenylhydrazone - TPMP+ triphenylmethylphosphonium ion  相似文献   

17.
    
,-Dehydroamino acids are useful peptide modifiers. However, their stereoelectronic properties still remain insufficiently recognized. Based on FTIR experiments in the range of s(N-H), AI, AII and s(C=C) and ab initio calculations with B3LYP/6-31G*, we studied the solution conformational preferences and the amide electron density perturbation of Ac-Xaa-NHMe, where Xaa = Ala, (E)-Abu, (Z)-Abu, (Z)-Leu, (Z)-Phe and Val. Each of these dehydroamides adopts a C5 structure, which in Ac-Ala-NHMe is fully extended and accompanied by the strong C5 hydrogen bond. Interaction with bond C=C lessens the amidic resonance within the flanking amide groups. The N-terminal C=O bond is noticeably shorter, both amide bonds are longer than the corresponding bonds in the saturated entities and the N-terminal amide system is distorted. Ac-Ala-NHMe constitutes an exception. Its C-terminal amide bond is shorter than the standard one and both amide systems are ideally planar. Ac-(E)-Abu-NHMe shares stereoelectronic features with both Ac-Ala-NHMe and (Z)-dehydroamides.  相似文献   

18.
Whole cells of the extreme thermophile Thermus thermophilus HB8 contained a membrane-bound respiratory chain (comprised of nicotinamide nucleotide transhydrogenase, NADH dehydrogenase, menaquinone, and cytochromes b, c, aa3, o), which exhibited a maximumH+/O quotient of approximately 8 g-ion H+·g-atom O-1 for the oxidation of endogenous substrates. Whole cell respiration at 70° at the expense of endogenous substrates or ascorbate-TMPD generated a transmembrane protonmotive force (p) of up to 197 mV and an intracellular phosphorylation poteintial (Gp), measured under similar conditions, of approximately 43.9 kJ·mol-1.The measured Gp/p ratio thus indicated anH+/ATP quotient of approximately 2.3 g-ion H+·mole ATP-1. Glucose-limited continuous cultures of T. thermophilus at 60°, 70° and 78.5° exhibited extremely low moler growth yields (Y O2 max 27.6 g cells·mol O 2 -1 ; Y glucose max 64.4 g cells ·mol glucose-1) compared with mesophilic bacteria of similar respiratory chain composition and proton translocation efficiency. These low yields are probably at least partly explained by the extremely high permeability of the cytoplasmic membrane to H+, which thus causes the cells to respire rapidly in order to maintain the protonmotive force at a level commensurate with cell growth.Abbreviations TPMP+ triphenylmethylphosphonium cation - FCCP carbonylcyanide p-trifluoromethoxy phenythydrazone - TMPD N,N,N,N-tetramethyl-p-phenylene diamine  相似文献   

19.
The suitability of conductivity measurement for monitoring growth in plant cell culture has been tested using suspended cells and genetically-transformed hairy roots of Atropa belladonna, and aggregated cells of Solanum aviculare. Other researchers have proposed that a constant ratio exists between increase in cell concentration (x) and decrease in medium conductivity (C). In all cases studied in this work, x/C was not constant over a wide range of cell densities tested in batch culture. With cell suspensions, x/C decreased continuously during the growth phase from 3.4 to 2.5 g cm l–1 mS–1. For the hairy roots, the ratio between x and C varied by as much as 4-fold during growth. The relationship between conductivity and growth for S. aviculare aggregates was found to vary depending on inoculum density. No simple correlation between conductivity change and cell growth was apparent for the plant-cell systems studied.  相似文献   

20.
A mutant considered to be defective in the conversion of n-6 to n-3 fatty acids (3-desaturation) was derived from a 5-desaturation-defective mutant (Mut44) of Mortierella alpina 1S-4, after treating its spores with N-methyl-N-nitro-N-nitrosoguanidine. This mutant cannot produce 8(Z),11(Z),14(Z),17(Z)-eicosatetraenoic acid or any other n-3 fatty acids, of which about 10% was found in its parental strain upon cultivation at 12°C. The mutant's growth rate was comparable to that of the parental strain when grown at 28°C, but it became much slower when the mutant grew at 12°C, at which the lag phase for Mut44 was about 2 d but 5 d for the mutant.Abbreviations 18:33 9(Z),12(Z),15(Z)-octadecatrienoic acid - 18:43 6(Z),9(Z),12(Z),15(Z)-octadecatetraenoic acid - 20:43 8(Z),11(Z),14(Z),17(Z)-eicosatetraenoic acid - AA arachidonic acid - DHGA dihomo--linolenic acid - EPA 5(Z),8(Z),11(Z),14(Z),17(Z)-eicosapentaenoic acid - GLC gas-liquid chromatography - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PC phosphatidylcholine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号