首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
The purpose of this study was to determine whether neural and/or muscular factors contributed to the inferior strength-related motor performances of obese adolescents. Subjects were 10 non-obese (14.6% fat) and 11 obese (32.3% fat) males matched for age (15-18 years), level of maturity (Tanner stages IV and V), lean body mass, and height. Peak torque (PT) was measured during maximal voluntary isometric (IS) and isokinetic (IK) knee extension (KE). Peak twitch torque (TT), time to peak torque (TPT), and half-relaxation time (HRT) of the knee extensors were elicited by percutaneous electrical stimulation. The interpolated twitch technique was used to determine the extent of motor unit activation (% MUA) during maximal voluntary IS KE. Knee extensor cross-sectional area (CSA) was determined by computed axial tomography taken at the mid-thigh. All strength and area measurements were made on the right side of the body. Obese subjects had significantly (P less than 0.05) lower maximal voluntary IS and IK KE strength normalized for body weight, and significantly lower % MUA during IS KE. There were no significant differences (P greater than 0.05) between groups for absolute or normalized (for the product of muscle CSA and height) ISPT, IKPT, and TT, knee extensor CSA, or TPT and HRT. These results suggest that reduced MUA and a lower strength per mass ratio (due to excess fat) are probably important contributing factors to the poorer motor performances of the obese, especially for complex motor tasks involving large muscle groups and the support or moving of body weight.  相似文献   

2.
The purposes of this study were to 1) determine the effect of concentric isokinetic training on strength and cross-sectional area (CSA) of selected extensor and flexor muscles of the forearm and leg, 2) examine the potential for preferential hypertrophy of individual muscles within a muscle group, 3) identify the location (proximal, middle, or distal level) of hypertrophy within an individual muscle, and 4) determine the effect of unilateral concentric isokinetic training on strength and hypertrophy of the contralateral limbs. Thirteen untrained male college students [mean age 25.1 +/- 6.1 (SD) yr] volunteered to perform six sets of 10 repetitions of extension and flexion of the nondominant limbs three times per week for 8 wk, using a Cybex II isokinetic dynamometer. Pretraining and posttraining peak torque and muscle CSA measurements for both the dominant and nondominant limbs were determined utilizing a Cybex II isokinetic dynamometer and magnetic resonance imaging scanner, respectively. The results indicated significant (P less than 0.0008) hypertrophy in all trained muscle groups as well as preferential hypertrophy of individual muscles and at specific levels. None of the muscles of the contralateral limbs increased significantly in CSA. In addition, significant (P less than 0.0008) increases in peak torque occurred for trained forearm extension and flexion as well as trained leg flexion. There were no significant increases in peak torque, however, for trained leg extension or for any movement in the contralateral limbs. These data suggest that concentric isokinetic training results in significant strength and hypertrophic responses in the trained limbs.  相似文献   

3.
Isometric muscle strength of the hand-grip and of trunk flexion and extension, and isokinetic torque of elbow and knee flexion and knee extension were assessed in a random sample of 8 and 13 year old Swedish children. The results were compared with respect to sex and age in absolute terms and relative to weight, height2 and estimates of lean body mass and cross-sectional muscle area. Daily physical activity was also estimated. The muscle strength variables were in general found to be very similar in the 8 year old boys and girls. In the 13 year old group the boys were generally stronger than the girls, in both absolute and relative terms, except for similar torque values during knee extension. The absolute and relative muscle strength and torque values were higher in the older than in the younger children, with the exception of trunk strength per unit of body weight and of lean body mass, which were similar in boys of both ages and significantly lower in the older than in the younger girls. No significant correlation was found between the estimates of physical activity and isometric and isokinetic muscle strength and torque.  相似文献   

4.
Coactivation of knee flexors during knee extension assists in joint stability by exerting an opposing torque to the anterior tibial displacement induced by the quadriceps. This opposing torque is believed to be generated by eccentric muscle actions that stiffen the knee, thereby attenuating strain to joint ligaments, particularly the anterior cruciate ligament (ACL). However, as the lengths of knee muscles vary with changes in joint position, the magnitude of flexor/extensor muscle force coupling may likewise vary, possibly affecting the capacity for active knee stabilization. The purpose of this study was to assess the effect of changes in movement speed and joint position on eccentric/concentric muscle action relationships in the knees of uninjured (UNI) and post-ACL-surgery (INJ) subjects (n = 14). All subjects were tested for maximum eccentric and concentric torque of the contralateral knee flexors and extensor muscles at four isokinetic speeds (15 degrees-60 degrees x s(-1)) and four joint position intervals (20 degrees-60 degrees of knee flexion). Eccentric flexor torque was normalized to the percentage of concentric flexor torque generated at each joint position interval for each speed tested (flexor E-C ratio). In order to estimate the capacity of the knee flexors to resist active knee extension, the eccentric-flexor/concentric-extensor ratios were also computed for each joint position interval and speed (flexor/extensor E-C ratio). The results revealed that eccentric torque surpassed concentric torque by 3%-144% across movement speeds and joint position intervals. The magnitude of the flexor E-C ratio and flexor/extensor E-C increased significantly with speed in both groups of subjects (P < 0.05) and tended to rise with muscle length as the knee was extended; peak values were generated at the most extended joint position (20 degrees-30 degrees). Although torque development patterns were symmetrical between the contralateral limbs in both groups, between-group comparisons revealed significantly higher flexor/extensor E-C ratios for the INJ group compared to the UNI group (P < 0.05), particularly at the fastest speed tested (60 degrees x s(-1)). The results indicate that joint position and movement speed influence the eccentric/concentric relationships of knee flexors and extensors. The INJ subjects appeared to accommodate to surgery by developing the eccentric function of their ACL and normal knee flexors, particularly at higher speeds and at more extended knee joint positions. This may assist in the dynamic stabilization of the knee at positions where ACL grafts have been reported to be most vulnerable to strain.  相似文献   

5.
This study compares the effects of rest intervals on isokinetic muscle torque recovery between sets of a knee extensor and flexor exercise protocol in physically active younger and older women. Twenty young (22.4 +/- 1.7 years) and 16 older (70.7 +/- 4.3 years) women performed three sets of eight maximum repetitions of knee extension/flexion at 60 degrees x s(-1). The rest interval between sets was 15, 30, and 60 seconds and was randomly assigned across three testing days. No significant interaction of rest by set by age group was observed. There was a significant decline in mean knee extensor torque when 15- and 30-second rest intervals were used between sets, but not when a 60-second rest interval was applied for both the young and the old women. No significant decline for mean knee flexor torque was observed in the older women when a 30-second rest interval was used, whereas a longer 60-second rest interval was required in younger women. Active younger and older women require similar rest intervals between sets of a knee extensor exercise (60 seconds) for complete recovery. However, older women recovered faster (30 seconds) than younger women (60 seconds) between sets of a knee flexor exercise. The exercise-to-rest ratio for knee extensors was similar for young and old women (1:2). Old women required only a 1:1 exercise-to-rest ratio for knee flexor recovery, whereas younger women required a longer 1:2 exercise-to-rest ratio. The results of the present study are specific to isokinetic testing and training and are more applicable in rehabilitation and research settings. Practitioners should consider age and gender when prescribing rest intervals between sets.  相似文献   

6.
The purpose of this study was to determine if pomegranate juice supplementation improved the recovery of skeletal muscle strength after eccentric exercise in subjects who routinely performed resistance training. Resistance trained men (n = 17) were randomized into a crossover design with either pomegranate juice or placebo. To produce delayed onset muscle soreness, the subjects performed 3 sets of 20 unilateral eccentric elbow flexion and 6 sets of 10 unilateral eccentric knee extension exercises. Maximal isometric elbow flexion and knee extension strength and muscle soreness measurements were made at baseline and 2, 24, 48, 72, 96, and 168 hours postexercise. Elbow flexion strength was significantly higher during the 2- to 168-hour period postexercise with pomegranate juice compared with that of placebo (main treatment effect; p = 0.031). Elbow flexor muscle soreness was also significantly reduced with pomegranate juice compared with that of placebo (main treatment effect; p = 0.006) and at 48 and 72 hours postexercise (p = 0.003 and p = 0.038, respectively). Isometric strength and muscle soreness in the knee extensors were not significantly different with pomegranate juice compared with those using placebo. Supplementation with pomegranate juice attenuates weakness and reduces soreness of the elbow flexor but not of knee extensor muscles. These results indicate a mild, acute ergogenic effect of pomegranate juice in the elbow flexor muscles of resistance trained individuals after eccentric exercise.  相似文献   

7.
Standardized measurements of dynamic strength of the kneee extensor muscles were performed in 25 healthy male subjects (17-37 yr) by means of isokinetic contractions, i.e., knee extensions with constant angular velocities. Overall variation between double determinations of maximal torque throughout the 90 degrees arc of motion (0 degrees = fully extended leg) averaged 10% for the different constant velocities chosen. At any given angle of the knee the torque produced was higher for isometric than for dynamic contractions. Dynamic torque decreased gradually with increased speed of shortening. Peak dynamic torque was reached at knee angles in the range: 55-66 degrees, with a displacement toward smaller knee angles with higher angular velocities. Correlations were demonstrated between peak torque produced at the highest speed of muscle shortening and percent as well as relative area of fast twitch fibers in the contracting muscle. In addition muscles with a high percentage of fast twitch fibers had the highest maximal contraction speeds. These observations on intact human skeletal muscle are consistent with earlier findings in animal skeletal muscle preparations.  相似文献   

8.
The aim of the present study was to investigate the EMG-joint angle relationship during voluntary contraction with maximum effort and the differences in activity among three hamstring muscles during knee flexion. Ten healthy subjects performed maximum voluntary isometric and isokinetic knee flexion. The isometric tests were performed for 5 s at knee angles of 60 and 90 degrees. The isokinetic test, which consisted of knee flexion from 0 to 120 degrees in the prone position, was performed at an angular velocity of 30 degrees /s (0.523 rad/s). The knee flexion torque was measured using a KIN-COM isokinetic dynamometer. The individual EMG activity of the hamstrings, i.e. the semitendinosus, semimembranosus, long head of the biceps femoris and short head of the biceps femoris muscles, was detected using a bipolar fine wire electrode. With isometric testing, the knee flexion torque at 60 degrees knee flexion was greater than that at 90 degrees. The mean peak isokinetic torque occurred from 15 to 30 degrees knee flexion angle and then the torque decreased as the knee angle increased (p<0.01). The EMG activity of the hamstring muscles varied with the change in knee flexion angle except for the short head of the biceps femoris muscle under isometric condition. With isometric contraction, the integrated EMGs of the semitendinosus and semimembranosus muscles at a knee flexion angle of 60 degrees were significantly lower than that at 90 degrees. During maximum isokinetic contraction, the integrated EMGs of the semitendinosus, semimembranosus and short head of the biceps femoris muscles increased significantly as the knee angle increased from 0 to 105 degrees of knee flexion (p<0.05). On the other hand, the integrated EMG of the long head of the biceps femoris muscle at a knee angle of 60 degrees was significantly greater than that at 90 degrees knee flexion with isometric testing (p<0.01). During maximum isokinetic contraction, the integrated EMG was the greatest at a knee angle between 15 and 30 degrees, and then significantly decreased as the knee angle increased from 30 to 120 degrees (p<0.01). These results demonstrate that the EMG activity of hamstring muscles during maximum isometric and isokinetic knee flexion varies with change in muscle length or joint angle, and that the activity of the long head of the biceps femoris muscle differs considerably from the other three heads of hamstrings.  相似文献   

9.
The aim of this study was to calculate the theoretical variation of the nonlinear damping factor (B) as a function of the muscle shortening velocity, and then to compare the theoretical values with the experimental data obtained on both the elbow flexor and the ankle extensor muscles. The theoretical variation of the B factor was determined from a muscle model consisting of a contractile component in parallel with a viscous damper both in series with an elastic component, and by using, the charateristic equation of the force velocity curve. In this muscle model, the viscous element modelled the inability of the muscle to generate as big a contracting force (while shortening) as possible under isometric conditions. Eight volunteer subjects performed maximal concentric elbow flexions and ankle extensions on an isokinetic ergometer at angular velocities of 60, 120, 180, 240, 300 and 360°·s–1, and held two maximal isometric actions at an elbow angle of 90° (0° corresponds to the full extension) and at an ankle angle of 0° (0° corresponds to the foot flexion of 90° relative to the leg axis). From these measurements, the force and the shortening velocity values of each muscle were determined by using a musculo-skeletal model of the joint. The results showed that the theoretical behaviour of the B factor would seem to be dependent on the shortening velocity and on the parameter which varies according to the muscle fibre type composition and affects the curvature of the force-velocity curve (af). For each muscle group, the experimental data of B fitted with the theoretical equation, and the best fit was obtained for an of of 0.28 for the ankle extensor and of 0.32 for the elbow flexor muscles. These results indicated that from the muscle model used in the present study it is possible to describe the mechanical behaviour of the muscle during maximal concentric action.  相似文献   

10.
Eight men (20-23 years) weight trained 3 days.week-1 for 19 weeks. Training sessions consisted of six sets of a leg press exercise (simultaneous hip and knee extension and ankle plantar flexion) on a weight machine, the last three sets with the heaviest weight that could be used for 7-20 repetitions. In comparison to a control group (n = 6) only the trained group increased (P less than 0.01) weight lifting performance (heaviest weight lifted for one repetition, 29%), and left and right knee extensor cross-sectional area (CAT scanning and computerized planimetry, 11%, P less than 0.05). In contrast, training caused no increase in maximal voluntary isometric knee extension strength, electrically evoked knee extensor peak twitch torque, and knee extensor motor unit activation (interpolated twitch method). These data indicate that a moderate but significant amount of hypertrophy induced by weight training does not necessarily increase performance in an isometric strength task different from the training task but involving the same muscle group. The failure of evoked twitch torque to increase despite hypertrophy may further indicate that moderate hypertrophy in the early stage of strength training may not necessarily cause an increase in intrinsic muscle force generating capacity.  相似文献   

11.
The influence of time of day on muscular performance was studied. From part of the results of two different studies (EAS et EPS), the effects of sleep deprivation were appreciated. Seven times over the 24-h period, developed torque and myoelectric activity were estimated during maximal isometric voluntary contractions using an isokinetic dynamometer: elbow flexion for EAS in standardised sleep, and knee extension for EPS in complete sleep deprivation. The results showed nycthemeral changes in torque in both conditions (p < 0.005), with maximal values recorded at the beginning of night. Although during sleep deprivation (EPS) the rhythm followed neurophysiological factors, during EAS, this rhythm was accounted for by the variations in the contractile state of muscle.  相似文献   

12.
The purpose of this study was to investigate the force-producing characteristics of boys aged 13 years in relation to fatigue of elbow flexor muscles. Maximal voluntary force in elbow flexion was measured before and after a muscle endurance test (MET) by using an isokinetic dynamometer isometrically, concentrically and eccentrically at three velocities, i.e. 0.21, 0.52, and 1.05 rad · s–1. The MET consisted of maximal concentric and eccentric muscle actions performed alternately at 0.52 rad · s–1 for 50 consecutive trials. Muscle cross-sectional area (CSA) of elbow flexor muscles (biceps brachii and brachialis) was measured by a B-mode ultrasound apparatus. Although eccentric force showed significantly higher values than concentric force during MET, there was no significant difference in the rate of decline in force between the two actions. There was no significant difference in the rate of decline in force after MET for each velocity and muscle action. Isometric, concentric and eccentric force before MET was significantly related to muscle CSA whereas, after MET, concentric force significantly correlated with muscle CSA but there was no significant correlation between muscle CSA and isometric or eccentric force. From our study, it is therefore suggested that in development to maturity, isometric, concentric and eccentric force decrease at the same rate with advancing muscle fatigue; however, there might be differences among muscle actions in facors affecting force development.  相似文献   

13.
The purpose of this study was to examine the effect of different muscle contraction modes and intensities on patellar tendon moment arm length (d(PT)). Five men performed isokinetic concentric, eccentric and passive knee extensions at an angular velocity of 60 deg/s and six men performed gradually increasing to maximum effort isometric muscle contractions at 90( composite function) and 20( composite function) of knee flexion. During the tests, lateral X-ray fluoroscopy imaging was used to scan the knee joint. The d(PT) differences between the passive state and the isokinetic concentric and extension were quantified at 15( composite function) intervals of knee joint flexion angle. Furthermore, the changes of the d(PT) as a function of the isometric muscle contraction intensities were determined during the isometric knee extension at 90( composite function) and 20( composite function) of knee joint flexion. Muscle contraction-induced changes in knee joint flexion angle during the isometric muscle contraction were also taken into account for the d(PT) measurements. During the two isometric knee extensions, d(PT) increased from rest to maximum voluntary muscle contraction (MVC) by 14-15%. However, when changes in knee joint flexion angle induced by the muscle contraction were taken into account, d(PT) during MVC increased by 6-26% compared with rest. Moreover, d(PT) increased during concentric and eccentric knee extension by 3-15%, depending on knee flexion angle, compared with passive knee extension. These findings have important implications for estimating musculoskeletal loads using modelling under static and dynamic conditions.  相似文献   

14.
Nine healthy men (22-45 yr) completed 100 repetitive maximal isometric contractions of the ankle plantar flexor muscles in two knee positions of full extension (K0) and flexion at 90 degrees (K90), positions that varied the contribution of the gastrocnemii. Electromyographic activity was recorded from the medial and lateral gastrocnemii and soleus muscles by using surface electrodes. Plantar flexion torque in K0 was greater and decreased more rapidly than in K90. The electromyographic amplitude decreased over time, and there were no significant differences between muscles and knee joint positions. The level of voluntary effort, assessed by a supramaximal electrical stimulation during every 10th contraction, decreased from 96 to 70% (P < 0.05) with no difference between K0 and K90. It was suggested that a decrease in plantar flexion torque was attributable to both central and peripheral fatigue and that greater fatigability in K0 than in K90 would result from a greater contribution and hence more pronounced fatigue of the gastrocnemius muscle. Further support for this possibility was provided from changes in twitch torque.  相似文献   

15.
The purpose of this study was to evaluate maximal torque of the knee flexors and extensors, flexor/extensor ratios, and maximal torque differences between the 2 lower extremities in young track and field athletes. Forty male track and field athletes 13-17 years old and 20 male nonathletes of the same age participated in the study. Athletes were divided into 4 groups according to their age and event (12 runners and 10 jumpers 13-15 years old, 12 runners and 6 jumpers 16-17 years old) and nonathletes into 2 groups of the same age. Maximal torque evaluation of knee flexors and extensors was performed on an isokinetic dynamometer at 60°·s(-1). At the age of 16-17 years, jumpers exhibited higher strength values at extension than did runners and nonathletes, whereas at the age of 13-15 years, no significant differences were found between events. Younger athletes were weaker than older athletes at flexion. Runners and jumpers were stronger than nonathletes in all relative peak torque parameters. Nonathletes exhibited a higher flexor/extensor ratio compared with runners and jumpers. Strength imbalance in athletes was found between the 2 lower extremities in knee flexors and extensors and also at flexor/extensor ratio of the same extremity. Young track and field athletes exhibit strength imbalances that could reduce their athletic performance, and specific strength training for the weak extremity may be needed.  相似文献   

16.
The force velocity relationship of in vivo human muscle fibers has often been derived from the torque-angular speed relationship during maximal voluntary isokinetic contractions. However, the assumption of a close association between joint performance and muscle mechanics is questionable. We aimed to determine the relationship between knee extension angular speeds, vastus lateralis fascicle and muscle tendon unit (MTU) shortening speeds, and maximal knee extensor force for the entire range of knee joint movement, for the isokinetic range, and for the ranges before, after and at peak torque occurrence, with different commonly used pre-loading conditions. Higher peak forces were observed when knee extensions were preceded by a pre-load, despite the similarity in fascicle shortening speeds. For the entire and the isokinetic range, MTU always shortened faster than fascicles, and this difference increased as joint speed increased. Interestingly, fascicle shortening velocities were greater before compared to after peak torque occurrence while the opposite happened at the MTU level. Assuming a close relationship between joint and fascicle dynamics results in an overestimation of muscle contractile component shortening velocity or force production at peak torque. The force velocity relationships obtained in vivo depend crucially on the test conditions, and the movement range used for analysis.  相似文献   

17.
Previous research has demonstrated that muscular strength of the knee extensors is related to the speed an athlete can produce during a single-sprint performance. Football players, as well as many other athletes on the field and the court, execute multiple sprints during the course of a match. The purpose of this study was to examine the relationships between leg strength, single-sprint speed, and repeated-sprint ability. Thirty-eight football players from 3 codes (soccer, rugby league, rugby union) completed a 12- x 20-m repeated-sprint protocol and were evaluated for peak isokinetic knee extension and flexion torque at 60 degrees .s(-1), 150 degrees .s(-1), and 240 degrees .s(-1). Although single-sprint performance correlated with peak extensor and flexor torque at all velocities, the strongest correlation was observed between relative knee extensor torque at 240 degrees .s(-1) and the initial acceleration phase (0-10 m) of the single-sprint performance (r = -0.714, p < 0.01). However, the data suggest that factors other than strength contribute to repeated-sprint ability. This finding provides new evidence in elucidating the relationship between strength and repeated-sprint performance.  相似文献   

18.
This study aimed to evaluate the validity and test–retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r = 0.74−0.85; P < 0.001) and between EMG activity and submaximal isometric torque (r  0.99; P < 0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from −3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test–retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes.  相似文献   

19.
The influence of elbow joint angle on elbow flexor isometric evoked twitch contractile properties was assessed in 15 young women (F), 18 young men (M) and 11 male bodybuilders (BB). Measurements were made at elbow joint angles of 1.31, 1.57, 1.83, 2.09, 2.36, 2.62 and 2.88 rad (3.14 rad =180° =full extension). The largest peak twitch torque values [mean (SE) N · m] in F [3.77 (0.20)], M [10.38 (0.68)] and BB [11.38 (1.05)] occurred at 2.88 rad. Peak torque was progressively smaller at smaller joint angles, but the decline from 2.88 to 1.31 rad was greater in M (68%) and BB (76%) than F (59%). Thus, the magnitude of intergroup differences in peak twitch torque (PT) was joint angle dependent. Twitch time to peak torque (TPT) was influenced in a complex way by joint angle in the three groups; BB had the lowest values at small joint angles but the highest values at the largest angles. Half-relaxation time (HRT) generally increased from the smallest to largest joint angles in a pattern that did not differ significantly among the three groups. Maximum rates of twitch torque development and relaxation showed the same pattern of results as PT; indicating that these time-related measures were more sensitive to joint angle effects on PT than on TPT or HRT. The results of this study indicate that careful consideration should be given to the selection of joint angles in the measurement of evoked twitch contractile properties for the purpose of making group comparisons or investigating the effects of interventions such as training.  相似文献   

20.
To study the role of coactivation in strength and force modulation in the elbow joint of children and adolescents with cerebral palsy (CP), we investigated the affected and contralateral arm of 21 persons (age 8-18) with spastic unilateral CP in three tasks: maximal voluntary isokinetic concentric contraction and passive isokinetic movement during elbow flexion and extension, and sub-maximal isometric force tracing during elbow flexion. Elbow flexion-extension torque and surface electromyography (EMG) of the biceps brachii (BB) and triceps brachii (TB) muscles were recorded. During the maximal contractions, the affected arm was weaker, had decreased agonist and similar antagonist EMG amplitudes, and thus increased antagonist co-activation (% of maximal activity as agonist) during both elbow flexion and extension, with higher coactivation levels of the TB than the BB. During passive elbow extension, the BB of the affected arm showed increased resistance torque and indication of reflex, and thus spastic, activity. No difference between the two arms was found in the ability to modulate force, despite increased TB coactivation in the affected arm. The results indicate that coactivation plays a minor role in muscle weakness in CP, and does not limit force modulation. Moreover, spasticity seems particularly to increase coactivation in the muscle antagonistic to the spastic one, possibly in order to increase stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号