首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The systematic study of the mesomorphic phase properties of synthetic and biologically derived lipids began some 30 years ago. In the past decade, interest in this area has grown enormously. As a result, there exists a wealth of information on lipid phase behavior, but unfortunately these data have until now been scattered throughout the literature in a variety of books, proceedings and journals. The data have recently been compiled in a centralized database, LIPIDAT, with a view to providing ready access to the data and to the appropriate literature. LIPIDAT consists of a tabulation of all known mesomorphic and polymorphic phase transition temperatures and enthalpy changes for synthetic and biologically-derived lipids in the dry and in the partially and fully hydrated states. Also included is the effect of pH, and of salt and metal ion concentration and other additives such as proteins, drugs, etc., on the thermodynamic values. The methods used in making the measurements and the experimental conditions are reported. Bibliographic information includes comprehensive literature referencing and list of authors, but does not at the present time include article titles. As of this writing, the database is current through June, 1990 and is approaching 10,000 records in length. Each record contains 28 fields. In this paper we report the contents and present an analysis of LIPIDAT as it refers to fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). This database subset represents about 7% of all LIPIDAT records. It includes data collected over a 23-year period from 1967 to 1989 and consists of 702 records obtained from 336 articles in 55 different journals. The number of records per year rises steadily beginning in 1971, reaches a maximum of 89 records/year in 1977 and remains relatively constant at 60-70 records/year in the succeeding period. Journals making the greatest contribution to the DMPC subset include Biochimica et Biophysica Acta, Biochemistry, Chemistry and Physics of Lipids and the Biophysical Journal. These four journals account for 71% of the total records in the database subset. The analysis shows that differential scanning calorimetry, electron spin resonance, fluorescence, nuclear magnetic resonance and Raman spectroscopy are the methods most commonly used for DMPC transition temperature determination. An interesting pattern emerges as to the place in time the different methods assume or loose popularity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
There is a growing awareness of the utility of lipid phase behavior data in studies of membrane-related phenomena. Such miscibility information is commonly reported in the form of temperature-composition (T-C) phase diagrams. The current index is a conduit to the relevant literature. It lists lipid phase diagrams, their components and conditions of measurement, and complete bibliographic information. The main focus of the index is on lipids of membrane origin where water is the dispersing medium. However, it also includes records on acylglycerols, fatty acids, cationic lipids, and detergent-containing systems. The miscibility of synthetic and natural lipids with other lipids, with water, and with biomolecules (proteins, nucleic acids, carbohydrates, etc.) and non-biological materials (drugs, anesthetics, organic solvents, etc.) is within the purview of the index. There are 2188 phase diagram records in the index, the bulk (81%) of which refers to binary (two-component) T-C phase diagrams. The remainder is made up of more complex (ternary, quaternary) systems, pressure-T phase diagrams, and other more exotic miscibility studies. The index covers the period from 1965 through to July, 2001.  相似文献   

3.
Biological membranes consist mainly of lipids and proteins. At present, the structure of the lipid phase appears to be established, but hypotheses on the molecular organization of the protein are difficult to support. Thus the deformation behavior of whole human erythrocyte ghosts, ghosts after the selective removal of lipids and ghosts stripped of lipids as well as nonlipid components have been examined in the hope of securing indirect information on the organization of the protein. It has been found that large localized deformations result in partial membrane failure and long uniformly wide fibrils, frequently in excess of 3000 Å, are drawn across the rupture. These data are interpreted in terms of currently favored membrane models and the possibility of a fibrous membrane framework consisting predominantly of protein is reviewed. The behavior of the membrane in its various stages of extraction is compared and contrasted to that of synthetic polymer films of known organization.  相似文献   

4.
Monte Carlo (MC) simulations, Differential Scanning Calorimetry (DSC) and Fourier Transform InfraRed (FTIR) spectroscopy were used to study the melting behavior of individual lipid components in two-component membranes made of DMPC and DSPC. We employed Monte Carlo simulations based on parameters obtained from DSC profiles to simulate the melting of the different lipids as a function of temperature. The simulations show good agreement with the FTIR data recorded for deuterated and non-deuterated lipids, which demonstrates that the information on the differential melting of the individual components is already contained in the calorimetric profiles. In mixtures, both lipids melt over a wide temperature range. As expected, the lipid melting events of the lipid with the lower melting temperature occur on average at lower temperatures. The simulations also yield information on the lateral distribution of the lipids that is neither directly contained in the DSC nor in the FTIR data. In the phase coexistence region, liquid disordered domains are typically richer in the lower-melting-temperature lipid species.  相似文献   

5.
The effect of uranyl acetate on the mesomorphic phase state of lipids in model membranes as well as in isolated biological membranes has been examined. As little as 0.8 mM (0.03% [wt/vol]) uranyl acetate induces a liquid crystal-to-gel phase transformation in egg phosphatidic acid, bovine brain phosphatidylserine, and in lysed chromaffin granule membranes. These results along with others in the literature indicate that the uranyl acetate used in samples for electron microscopy could alter membrane morphology.  相似文献   

6.
The PLMItRNA database contains information and multialignments of tRNA genes and molecules detected in higher plant mitochondria. It has been developed from a previous compilation of higher plant mitochondrial tRNA genes [Sagliano,A., Volpicella,M., Gallerani,R. and Ceci,L.R. (1998) Nucleic Acids Res., 26, 154-155] and implemented with data and sequences of tRNA molecules retrieved from the literature. The current version of the database reports information on 171 genes and 16 tRNA molecules from 24 plants. PLMItRNA is accessible via WWW at http://bio-www.ba.cnr.it:8000/srs/  相似文献   

7.
In ecological research, plant functional trait analyses are widely applied to understand to what extent the inter‐specific variation in trait attributes has an adaptive value or to predict ecosystem processes and changes. Compared to vascular plants, trait studies using bryophytes are scarce, which is likely due to missing trait information for bryophyte species. With the BryForTrait database, we want to reduce this deficit. Our database represents a compilation of autecological information and morphological and regenerative trait data on different stages of the life cycle of bryophytes occurring in forest ecosystems. The database contains information for 35 traits and 721 Central European bryophyte species; in total more than 23,000 trait values. The BryForTrait database will enable future trait studies, providing new insights into bryophyte‐dominated ecosystems.  相似文献   

8.
The demonstrated existence and possible physiological relevance of mesomorphic phase transitions in cellular membranes suggests that a theoretical understanding of lipid phase behavior is biologically relevant. As a step in this direction, the gel to liquid crystal phase transition of phospholipid bilayers is examined. A qualitative mechanism involving configurational coupling of the lipid hydrocarbon chains is proposed to explain the transition. The predictions of the mechanism which pertain to the structure of the liquid crystal are explored and found to be in accord with the present experimental view of this phase.  相似文献   

9.
Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GM1 exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact cellular plasma membranes consistently reveals a constant level of confined diffusion for raft lipid analogs that vary greatly in their partitioning behavior, suggesting different physicochemical bases for these phenomena.  相似文献   

10.
Nonbilayer phases of membrane lipids   总被引:7,自引:0,他引:7  
Numerous liquid crystalline biomembrane lipids are known to exhibit non-lamellar phases characterized by curvature of their component lipid monolayers. An understanding of the phase stability of these systems begins with analysis of the energy of bending the monolayers, the interactions which lead to the bending energy, and the geometrical constraints which lead to competing energy terms which arise when the monolayers are bent and packed onto lattices with different structures. Diffraction and other techniques suitable for probing lipid phase structure are described. A phenomenological model is reviewed which successfully explains many of the qualitative features of lipid mesomorphic phase behavior. A key result of this model is that lipid bilayer compositions which are close to the non-lamellar phase boundaries of their phase diagrams are characterized by a frustrated elastic stress which may modulate the activity of imbedded membrane proteins and which may provide a rationale for the prevalence of non-lamellar-tending lipid species in biomembrane bilayers. Areas in need of future research are discussed.  相似文献   

11.
Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) have been used to elucidate the phase behavior of two binary lipid mixtures, acyl chain perdeuterated 1,2-dipalmitoylphosphatidylethanolamine (DPPE-d62)/1,2-dielaidoylphosphatidylcholine (DEPC) and acyl chain perdeuterated 1,2-dipalmitoylphosphatidylcholine (DPPC-d62)/1,2-dimyristoylphosphatidylethanolamine (DMPE). The former shows gel state immiscibility over most of the composition range. The FT-IR data indicate that one of the solid phases is essentially pure DEPC, while the other solid phase contains both lipids. The DPPC-d62/DMPE pair are miscible over the entire composition range. The use of deuterated lipids as one component in the mixture permits the melting characteristics of each component to be separately determined in the FT-IR experiment. The FT-IR data are used to assign the endotherms observed in the DSC to particular molecular components. For the DPPE-d62/DEPC system, two endotherms are observed at compositions between 10 and 67 mol% DPPE-d62. The lower transition is assigned to the DEPC component, while the higher event contains contributions to the enthalpy from both lipids in the mixture. The midpoint of the DEPC melting occurs substantially below that for DPPE-d62. For the miscible pair, each of the lipids melt over approximately the same temperature range. The complementary and consistent nature of the information available from FT-IR and from DSC is demonstrated from the current work.  相似文献   

12.
The thermodynamic properties of fully-hydrated lipids provide important information about the stability of membranes and the energetic interactions of lipid bilayers with membrane proteins (Nagle and Scott, Physics Today, 2:39, 1978). The lamellar/inverse hexagonal (L(alpha)-H(II)) phase transition of 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) water mixtures is a first-order transition and, therefore, at constant pressure, must have a thermodynamically well-defined equilibrium transition temperature. The observed transition temperature is known to be dependent upon the rate at which the temperature is changed, which accounts for the many different values in the literature. X-ray diffraction was used to study the phase transition of fully-hydrated DOPE to determine the rate-independent transition temperature, T(LH). Samples were heated or cooled for a range of rates, 0.212 < r < 225 degrees C/hr, and the rate-dependent apparent phase transition temperatures, T(A)(r) were determined from the x-ray data. By use of a model-free extrapolation method, the transition temperature was found to be T(LH) = 3.33 +/- 0.16 degrees C. The hysteresis, /T(A)(r) - T(LH)/, was identical for heating and cooling rates, +/-r, and varied as /r/beta for beta approximately 1/4. This unexpected power-law relationship is consistent with a previous study (Tate et al., Biochemistry, 31:1081-1092, 1992) but differs markedly from the exponential behavior of activation barrier kinetics. The methods used in this study are general and provide a simple way to determine the true mesomorphic phase transition temperatures of other lipid and lyotropic systems.  相似文献   

13.
The primary function of the skin is to protect the body for unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. The stratum corneum consists of corneocytes surrounded by lipid regions. As most drugs applied onto the skin permeate along the lipid domains, the lipid organization is considered to be very important for the skin barrier function. It is for this reason that the lipid organization has been investigated quite extensively. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid organization is different from that of other biological membranes. In stratum corneum, two lamellar phases are present with repeat distances of approximately 6 and 13 nm. Moreover the lipids in the lamellar phases form predominantly crystalline lateral phases, but most probably a subpopulation of lipids forms a liquid phase. Diseased skin is often characterized by a reduced barrier function and an altered lipid composition and organization. In order to understand the aberrant lipid organization in diseased skin, information on the relation between lipid composition and organization is crucial. However, due to its complexity and inter-individual variability, the use of native stratum corneum does not allow detailed systematic studies. To circumvent this problem, mixtures prepared with stratum corneum lipids can be used. In this paper first the lipid organization in stratum corneum of normal and diseased skin is described. Then the role the various lipid classes play in stratum corneum lipid organization and barrier function has been discussed. Finally, the information on the role various lipid classes play in lipid phase behavior has been used to interpret the changes in lipid organization and barrier properties of diseased skin.  相似文献   

14.
The primary function of the skin is to protect the body for unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. The stratum corneum consists of corneocytes surrounded by lipid regions. As most drugs applied onto the skin permeate along the lipid domains, the lipid organization is considered to be very important for the skin barrier function. It is for this reason that the lipid organization has been investigated quite extensively. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid organization is different from that of other biological membranes. In stratum corneum, two lamellar phases are present with repeat distances of approximately 6 and 13 nm. Moreover the lipids in the lamellar phases form predominantly crystalline lateral phases, but most probably a subpopulation of lipids forms a liquid phase. Diseased skin is often characterized by a reduced barrier function and an altered lipid composition and organization. In order to understand the aberrant lipid organization in diseased skin, information on the relation between lipid composition and organization is crucial. However, due to its complexity and inter-individual variability, the use of native stratum corneum does not allow detailed systematic studies. To circumvent this problem, mixtures prepared with stratum corneum lipids can be used. In this paper first the lipid organization in stratum corneum of normal and diseased skin is described. Then the role the various lipid classes play in stratum corneum lipid organization and barrier function has been discussed. Finally, the information on the role various lipid classes play in lipid phase behavior has been used to interpret the changes in lipid organization and barrier properties of diseased skin.  相似文献   

15.
Free area theories for lateral diffusion in lipid bilayers are reviewed and discussed. It has been suggested by Almeida et al. that free area theories yield quantitative predictions for lateral diffusion coefficients of lipids. We investigate the plausibility of this suggestion by first sketching what is to be expected of a quantitative theory with predictive power, and subsequently examining whether existing free area theories comply with these expectations. Our conclusion is that current free area theories for lipid bilayers are not quantitative theories with predictive power. They involve a number of adjustable parameters, all of which are not estimated independently, but derived from fitting the theory to the very data whose behavior the theory is supposed to predict. Further, the interpretation and behavior of some of the parameters are ambiguous. The best example is the so-called activation barrier, whose qualitative behavior with the cholesterol concentration in a DMPC bilayer varies depending on the experimental method used to generate the input data and the exact assumptions made to formulate the theory. Independent determination of the activation barrier from numerical simulations or experiments appears to be very difficult.  相似文献   

16.
DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.  相似文献   

17.
Phase behavior of lipids from Halobacterium halobium   总被引:1,自引:0,他引:1  
Mixtures of dipalmitoylphosphatidylcholine with purple membrane lipids, red membrane lipids, or total lipids of Halobacterium halobium have been studied with differential scanning calorimetry. A comparison of red and purple membrane lipids reveals no difference in their phase behavior, indicating that lipid phase behavior plays no role in the in vivo separation of red and purple membranes. The effects of variation of the salt content of the suspending solution have also been examined. Studies of the melting behavior of these mixtures as H. halobium lipid content is varied suggest that the gel to liquid-crystal transition does not occur in the lipids of H. halobium.  相似文献   

18.
The main problem with topical application of compounds to administer drugs to and regulate drug levels in a human body, is the barrier formed by the intercellular lipid matrix of the stratum corneum (SC). In a search for possibilities to overcome this barrier function, a good understanding of the organization and phase behavior of these lipids is required. SC lipid model studies especially provide a wealth of information with respect to the lipid organization and the importance of certain subclasses of lipids for the structure. Previously, we have shown that electron diffraction (ED) provides detailed information on the lateral lipid packing in both intact SC (G.S.K. Pilgram et al., J. Invest. Dermatol. 113 (1999) 403) and SC lipid models (G.S.K. Pilgram et al., J. Lipid Res. 39 (1998) 1669). In the present study, we used ED to examine the influence of two azones and sebaceous lipids on the lateral phase behavior of lipids isolated from human SC. We established that human SC lipids are arranged in an orthorhombic packing pattern. Upon mixing with the two enhancers the orthorhombic packing pattern was still observed; however, an additional fluid phase became more apparent. In mixtures with sebaceous lipids, the presence of the hexagonal lattice increased. These findings provide a basis for the mechanism by which these enhancers and sebaceous lipids interact with human SC lipids.  相似文献   

19.
Wan C  Kiessling V  Tamm LK 《Biochemistry》2008,47(7):2190-2198
We showed previously that cholesterol-rich liquid-ordered domains with lipid compositions typically found in the outer leaflet of plasma membranes induce liquid-ordered domains in adjacent regions of asymmetric lipid bilayers with apposed leaflets composed of typical inner leaflet lipid mixtures [Kiessling, V., Crane, J. M., and Tamm, L. K. (2006) Biophys. J. 91, 3313-26]. To further examine the nature of transbilayer couplings in asymmetric cholesterol-rich lipid bilayers, the effects on the lipid phase behavior in asymmetric bilayers of different lipid compositions were investigated. We established systems containing several combinations of natural extracted and synthetic lipids that exhibited coexisting liquid-ordered (lo) and liquid-disordered (ld) domains in a supported bilayer format. We find that lo phase domains are induced in all quaternary inner leaflet combinations composed of PCs, PEs, PSs, and cholesterol. Ternary mixtures of PCs/PEs/Chol, PCs/PSs/Chol also exhibit lo phases adjacent to outer leaflet lo phases. However, with the exception of brain PC extracts, binary PC/Chol mixtures are not induced to form lo phases by adjacent outer leaflet lo phases. Higher melting lipid ad-mixtures of PEs and PSs are needed for lo phase induction in the inner leaflet. It appears that the phase behavior of the inner leaflet mixtures is dominated by the intrinsic chain melting temperatures of the lipid components, rather than by their specific headgroup classes. In addition, similar studies with synthetic, completely saturated lipids and cholesterol show that lipid oxidation is not a factor in the observed phase behavior.  相似文献   

20.
Synthetic lipids with a nitroxide or a fluorescent probe have been extensively used during the last 30 years to determine the transmembrane diffusion of phospholipids in artificial or biological membranes. However, the relevance of data obtained with these modified lipids has sometimes been questioned. Beside possible artefacts introduced by the reporter probe, synthetic lipids used in cells often contain a short fatty acid chain in the sn-2 position, which gives them higher water solubility than naturally occurring lipids. In the present review, we have attempted to give a critical appraisal. Main strategies are recalled and important discoveries obtained with lipid probes on transmembrane lipid traffic in eukaryotic cells are briefly summarized. Examples of artefacts caused by lipid probes are given. Comparisons between data obtained by different techniques such as ESR and fluorescence allow us to emphasize the complementary character of the two approaches and more generally show the necessity to use several probes before drawing conclusions concerning endogenous lipids. In spite of these pitfalls, overall, lipid probes have provided a wealth of useful information that, to date, cannot be obtained with unlabeled lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号